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Abstract

We give a new proof that compact infra-solvmanifolds with isomorphic fundamental groups are smoothly
di,eomorphic. More generally, we prove rigidity results for manifolds which are constructed using a/ne
actions of virtually polycyclic groups on solvable Lie groups. Our results are derived from rigidity properties
of subgroups in solvable linear algebraic groups.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A closed manifold M is called topologically rigid if every homotopy equivalence h :N → M
from another manifold N is homotopic to a homeomorphism. The Borel conjecture expects every
closed aspherical manifold to be topologically rigid. The manifold M is called smoothly rigid if
every homotopy equivalence is homotopic to a di,eomorphism. Geometric methods are useful to
prove smooth rigidity inside some classes of closed aspherical manifolds. Well-known cases are,
for example, locally symmetric spaces of non-compact type [26], or @at Riemannian manifolds [6].
In this paper, we study the smooth rigidity problem for infra-solvmanifolds. These manifolds are
constructed by considering isometric a/ne actions on solvable Lie groups.

The fundamental group of an infra-solvmanifold is a virtually polycyclic group. A result of Far-
rell and Jones [11] on aspherical manifolds with virtually polycyclic fundamental group shows that
infra-solvmanifolds are topologically rigid. Yet, an argument due to Browder [9] implies that there
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exist smooth manifolds which are homeomorphic but not di,eomorphic to the n-torus, for n¿ 5. Far-
rell and Jones [12] proved that any two compact infrasolvmanifolds of dimension not equal to four,
whose fundamental groups are isomorphic, are di,eomorphic. This generalizes previous results of
Bieberbach [6] on compact @at Riemannian manifolds, Mostow [22] on compact solv-manifolds and
of Lee and Raymond [19] on infra-nilmanifolds. The proof of Farrell and Jones requires smoothing
theory and the topological rigidity result. Recent results of Wilking on rigidity properties of iso-
metric actions on solvable Lie-groups [31] imply the smooth rigidity of infra-solvmanifolds in all
dimensions, giving an essentially geometric proof.

In well-known cases, smooth rigidity properties of geometric manifolds are closely connected to
rigidity properties of lattices in Lie groups. The aim of the present paper is to establish the smooth
rigidity of infra-solvmanifolds from natural rigidity properties of virtually polycyclic groups in lin-
ear algebraic groups. More generally, we prove rigidity results for manifolds which are constructed
using a/ne, not necessarily isometric, actions of virtually polycyclic groups on solvable Lie groups.
This approach leads us to a new proof of the rigidity of infra-solvmanifolds, and also to a geo-
metric characterization of infra-solvmanifolds in terms of polynomial actions on a/ne space Rn.
As an application of the latter point of view we compute the cohomology of an infra-solvmanifold
using the Gnite-dimensional complex of polynomial di,erential forms. This generalizes a result of
Goldman [14] on compact complete a/ne manifolds. As another application, we show that every
infra-solvmanifold has maximal torus-rank. Our approach towards rigidity of infra-solvmanifolds also
suggests to study the rigidity-problem for the potentially bigger class of manifolds which are con-
structed using a/ne actions of virtually polycyclic groups on solvable Lie groups. Our main result
establishes smooth rigidity for virtually polycyclic a/ne actions if the holonomy of the action is
contained in a reductive group, generalizing the particular case of isometric actions.

Infra-solvmanifolds: We come now to the deGnition of infra-solvmanifolds. Let G be a Lie-group
and let A,(G) denote the semi-direct product G o Aut(G), where Aut(G) is the group of auto-
morphisms of G. We view A,(G) as a group of transformations acting on G. If � is a subgroup
of A,(G) then let �0 denote its connected component of identity, and hol(�)6Aut(G) its image
under the natural homomorphism A,(G) → Aut(G).

De�nition 1.1. An infra-solvmanifold is a manifold of the form � \ G, where G is a connected,
simply connected solvable Lie group, and � is a torsion-free subgroup of A,(G) which satisGes (1)
the closure of hol(�) in Aut(G) is compact.

The manifold � \G is a smooth manifold with universal cover di,eomorphic to Rm, m=dimG−
dim�0, where �0 is the connected component of identity in �. The fundamental group of � \ G
is isomorphic to � = �=�0. It is known that � \ G is Gnitely covered by a solv-manifold, i.e., a
homogeneous space of a solvable Lie group. By a result of Mostow [23] the torsion-free group � is
then a virtually polycyclic group. (Recall that a group � is called virtually polycyclic (or polycyclic
by Gnite) if it contains a subgroup �0 of Gnite index which is polycyclic, i.e., �0 admits a Gnite
normal series with cyclic quotients. The number of inGnite cyclic factors in the series is an invariant
of � called the rank of � [29].) If � \ G is compact then dim� \ G equals the rank of �. Not
every smooth manifold which is Gnitely covered by a compact solvmanifold is di,eomorphic to an
infra-solvmanifold. By the work of Wall et al. (see [18]), there exist fake tori which are Gnitely
covered by standard tori. Consequently, these smooth manifolds do not carry any infra-solv structure.
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Main results: Let � be a torsion-free virtually polycyclic group. To � we associate in a func-
torial way a solvable by Gnite real linear algebraic group H� which contains � as a discrete and
Zariski-dense subgroup. The group H� is called the real algebraic hull for �. The construction of
the algebraic hull for � extends results of Malcev [21] on torsion-free nilpotent groups, and results
of Mostow [24] on torsion-free polycyclic groups. The extended construction was Grst announced in
[4]. The details are provided in Appendix A of this paper.
We explain now the role the real algebraic hull plays in the construction of infra-solvmanifolds.

Let T6H� be a maximal reductive subgroup, and let U denote the unipotent radical of H�. Then
H� decomposes as a semi-direct product H�=U ·T . The splitting induces an injective homomorphism

T :H� → A,(U ) and a corresponding a/ne action of �6H� on U . The quotient space

M� =
T (�) \U
is a compact aspherical manifold of dimension n = rank �, and has universal cover U = Rn. In
fact, we show that M� is an infra-solvmanifold. We call every manifold M� which arises by this
construction a standard �-manifold.

We prove:

Theorem 1.2. Let � be a torsion-free virtually polycyclic group. Then M� is a compact infra-
solvmanifold and the fundamental group �1(M�) is isomorphic to �. Every two standard
�-manifolds are di6eomorphic and every given isomorphism of fundamental groups of standard
�-manifolds is induced by a smooth di6eomorphism.

Let G be a connected, simply connected Lie group, and let g denote its Lie algebra. The group
Aut(G) attains the structure of a real linear algebraic group since it has a natural identiGcation with
the group Aut(g) of Lie algebra automorphisms of g. Our main result is:

Theorem 1.3. Let G be a connected, simply connected solvable Lie group. Let �6A,(G) be a
solvable by 7nite subgroup which acts freely and properly on G with compact quotient manifold
M = � \ G. Assume that one of the following two conditions is satis7ed:

(i) G is nilpotent, or
(ii) hol(�)6Aut(G) is contained in a reductive subgroup of Aut(G).

Then the group �=�=�0 is virtually polycyclic, and M is di6eomorphic to a standard �-manifold.

We deduce:

Theorem 1.4. Every compact infra-solvmanifold is smoothly di6eomorphic to a standard
�-manifold.

Corollary 1.5. Compact infra-solvmanifolds are smoothly rigid. In particular, every two compact
infra-solvmanifolds with isomorphic fundamental groups are smoothly di6eomorphic.

Theorem 1.2 also implies the following result which was Grst proved by Auslander and Johnson
[2]. Their construction is di,erent from ours.
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Corollary 1.6. Every torsion-free virtually polycyclic group is the fundamental group of a compact
infra-solvmanifold.

The torus rank r of a manifold M is the maximum dimension of a torus which acts almost
freely and smoothly on M . For a closed aspherical manifold M , r is bounded by the rank of the
center of the fundamental group. If r equals the rank of the center then the torus rank of M is said
to be maximal. It is known (see [20]) that the torus rank of a solvmanifold is maximal and the
result is expected to hold for infra-solvmanifolds as well. It is straightforward to see that standard
�-manifolds admit maximal torus actions. Therefore, we also have:

Corollary 1.7. Every infra-solvmanifold has maximal torus rank.

Let U be a connected, simply connected, nilpotent Lie group, and let u denote its Lie-algebra.
Nomizu [27] proved that the cohomology of a compact nilmanifold M = U=�, where �6U is a
lattice, is isomorphic to the cohomology of the complex of left invariant di,erential forms on U . This
means that the cohomology of the nilmanifold M is computed by the Lie algebra cohomology H ∗(u).
Now let � be a torsion-free virtually polycyclic group and M� a standard �-manifold. Let H�=U ·T
be the real algebraic hull for �, where U is the unipotent radical and T is maximal reductive.
Then T acts by automorphisms on U and on the cohomology ring H ∗(u). Let H ∗(u)T denote the
T -invariants in H ∗(u). Let M be an infra-solvmanifold with fundamental group �. By Theorem
1.4, M is di,eomorphic to the standard �-manifold M�. Hence, the following result computes the
cohomology of M :

Theorem 1.8. Let M� be a standard �-manifold. Then the de Rham-cohomology ring H ∗(M�) is
isomorphic to H ∗(u)T .

We remark that the theorem implies that the discrete group cohomology of �, H ∗(�;R)=H ∗(M�),
is isomorphic to the rational cohomology (see [17, Theorem 5.2]) of the real linear algebraic group
H�.

Some historical remarks: We want to give a few more historical remarks about the context of
our paper, and the techniques we use. As our main tool we employ the algebraic hull functor
which naturally associates a linear algebraic group to a (torsion-free) virtually polycyclic group or
to a solvable Lie group. This functor was considered by Mostow in his paper [24]. Auslander and
Tolimieri solved the main open problems on solv-manifolds at their time using the technique of the
nilpotent shadow and semi-simple splitting for solvable Lie groups (see [1,3]). Mostow remarked
then in [25] that the nilpotent shadow and splitting construction may be derived naturally from
the algebraic hull, and reproved the Auslander–Tolimieri results, as well as his older result on the
rigidity of compact solv-manifolds. In our paper, we establish and use the properties of the algebraic
hull functor for the class of virtually polycyclic groups not containing Gnite normal subgroups. We
provide the necessary results and proofs about the hull functor in an appendix. Immediate applications
are then our rigidity results and cohomology computations for infra-solvmanifolds. In [4] we give
another application of the hull functor in the context of a/ne crystallographic groups and their
deformation spaces.
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Arrangement of the paper: We start in Section 2 with some preliminaries on real algebraic and
syndetic hulls for virtually polycyclic groups, a/ne actions and splittings of real algebraic groups.
The necessary results about the construction of algebraic hulls are provided in Appendix A. In Section
3 we prove Theorems 1.2 and 1.3. In Section 4 we provide some applications on the geometry of
infrasolvmanifolds. In particular, we show that infra-solvmanifolds are distinguished in the class of
aspherical compact di,erentiable manifolds with a virtually polycyclic fundamental group by the
existence of a certain atlas whose coordinate changes are polynomial maps. As an application, we
compute the cohomology of infra-solvmanifolds in terms of polynomial di,erential forms, and derive
Theorem 1.8.

2. Hulls and splittings

We need some terminology concerning real algebraic groups. For terminology on algebraic groups
see also Appendix A. Let G be a R-deGned linear algebraic group. The group of real points G =
GR6GLn(R) will be called a real algebraic group. The group G has the natural Euclidean topology
which turns it into a real Lie-group but it carries also the Zariski-topology induced from G. Let
H =HR be another real algebraic group. A group homomorphism � :G → H is called an algebraic
homomorphism if it is the restriction of a R-deGned morphism G → H of linear algebraic groups.
If � is an isomorphism of groups which is algebraic with algebraic inverse, then � is called an
algebraic isomorphism. We let G0 denote the Zariski-irreducible component of identity in G, and
G0 the connected component in the Euclidean topology. In particular, G06G0 is a subgroup of
Gnite index in G. If g is an element of G then g = gugs denotes the Jordan-decomposition of g.
Here gu ∈G is unipotent, gs ∈G is semisimple, and gu; gs commute. Let M ⊂ G be a subset. Then
M denotes the Zariski-closure of M in G. We put Mu = {gu | g∈M}, Ms = {gs | g∈M}. We let
u(G) denote the unipotent radical of G, i.e., the maximal normal subgroup of G which consists of
unipotent elements.

2.1. Solvable by 7nite real algebraic groups

A linear algebraic group H is called solvable by Gnite if H0 is solvable. Assume that H is
solvable by Gnite. Then Hu =u(H). In particular, for any subgroup G of H, u(G)=G ∩Gu. If G is
a nilpotent subgroup then (cf. [7, Section 10]) Gu and Gs are subgroups of H, and G6Gu ×Gs. A
Zariski-closed subgroup T6H which consists only of semi-simple elements is called a d-subgroup
of H. The group H = HR is called a solvable by Gnite real algebraic group. Every Zariski-closed
subgroup T6H consisting of semi-simple elements is called a d-subgroup of H . Any d-subgroup
of H is an abelian by Gnite group, and its identity component T 0 is a real algebraic torus.

Proposition 2.1. Let H be a solvable by 7nite real linear algebraic group. Let T be a maximal
d-subgroup of H , and U = u(H) the unipotent radical of H . Then

H = U · T (semi-direct product):

Moreover, any two maximal d-subgroups T and T ′ of H are conjugate by an element of U .
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Proof. Let us assume that H6H is a Zariski-dense subgroup. Let T be the Zariski-closure of T in
H. Then T is a R-deGned subgroup of H, and a d-subgroup. Also T6TR and, by maximality of T ,
T =TR. Moreover, T is a maximal reductive R-deGned subgroup of H. Therefore, by a well-known
result (see [8, Proposition 5.1]) H = U · T, where U = u(H), and every two R-deGned maximal
reductive subgroups T and T′ are conjugate by an element of UR = U . Then the decomposition of
H follows. Since T and T ′ are the group of real-points in maximal d-subgroups T and T′ they are
conjugate by an element of U .

2.2. Algebraic hulls

Let � be a torsion-free virtually polycyclic group. We introduce the concept of an algebraic hull
for �. For more details and proofs see Appendix A. Let G be a linear algebraic group, and let U
denote the unipotent radical of G. We say that G has a strong unipotent radical if the centralizer
ZG(U) is contained in U.

Theorem 2.2. There exists a Q-de7ned linear algebraic group H and an injective homomorphism
 :� → HQ so that,

(i)  (�) is Zariski-dense in H,
(ii) H has a strong unipotent radical U,
(iii) dimU = rank �.

We call the Q-deGned linear algebraic group H the algebraic hull for �. The homomorphism  
may be chosen so that  (�) ∩HZ has Gnite index in  (�). Let k6C be a subGeld. The hull H
together with a Zariski-dense embedding  :� → Hk of � into the group of k-points of H satisGes
the following rigidity property:

(∗) Let H′ be another linear algebraic group and  ′ :� → H′
k an injective homomorphism so that

(i)–(iii) above are satisGed with respect to H′. Then there exists a k-deGned isomorphism
� :H → H′ so that  ′ = � ◦  .

In particular, the group H is determined by conditions (i)–(iii) up to Q-deGned isomorphism of
linear algebraic groups.

The real algebraic hull for �: Let H be an algebraic hull for �, H = HR the group of real
points. Put U = u(H). Then there exists an injective homomorphism  :� → H which satisGes:
(i)  (�)6H is a discrete, Zariski-dense subgroup, (ii) H has a strong unipotent radical, and (iii)
dimU = rank �. Let H ′ =H′

R be another real linear algebraic group,  ′ :� → H ′ an embedding of
� into H ′ so that (i)–(iii) are satisGed with respect to H′. Hence, as a consequence of the rigidity
property (∗), there exists an algebraic isomorphism � :H → H ′ so that  ′ = � ◦  . We call the
solvable by Gnite real linear algebraic group H� := H the real algebraic hull for �.

The real algebraic hull for G: Let G be a connected, simply connected solvable Lie-group. By
Raghunathan [28, Proposition 4.40], there exists an algebraic hull for G. This means that there
exists an R-deGned linear algebraic group HG, and an injective Lie-homomorphism  :G → (HG)R
so that (i)′  (G)6HG is a Zariski-dense subgroup, (ii)′ HG has a strong unipotent radical U, and
(iii)′ dimU = dimG. Moreover, HG satisGes rigidity properties analogous to the rigidity properties
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of H�. Let HG =(HG)R. Then there exists a continuous injective homomorphism  :G → HG which
has Zariski-dense image in HG. As for real hulls of discrete groups, these data are uniquely deGned
up to composition with an isomorphism of real algebraic groups, and we call HG the real algebraic
hull for G. We consider henceforth a Gxed continuous Zariski-dense inclusion G6HG.

Let N denote the nilpotent radical of G, i.e., the maximal, connected nilpotent normal subgroup
of G, and let UG denote the unipotent radical of HG. Then (cf. the proof of Lemma A.7) N6UG =
u(HG), so that N is the connected component of u(G) = G ∩ u(HG). We remark further that G
is a normal subgroup of HG. In fact, N6UG is Zariski-closed in HG, and [G;G]6N implies
therefore that [HG;HG]6N . Let T be a maximal d-subgroup of HG. We consider the decomposition
HG = UG · T . Since HG is decomposed as a product of varieties, the projection map  T :HG → UG,
g= ut �→ u, onto the Grst factor of the splitting is an algebraic morphism.

Proposition 2.3. Let G be connected, simply connected solvable Lie group, and G6HG a contin-
uous, Zariski-dense inclusion into its real algebraic hull. Then G is a closed normal subgroup of
HG. Moreover, if T6HG is a maximal d-subgroup then

HG = GT; G ∩ T = {1}:
Let UG =u(HG) denote the unipotent radical of HG. Then the algebraic projection map  T :HG →
UG restricts to a di6eomorphism  :G → UG.

Proof. Let C be a Cartan subgroup of G. Then C is nilpotent, and G = NC, where N6UG is the
nilradical of G. Let us put S=Cs={gs | g∈C}, so that C6Cu×S. Note that Cu is a closed subgroup
of UG, and S is an abelian subgroup of HG which is centralized by C. Let T6HG be a maximal
d-subgroup which contains S. Since HG =G6NCuT , we conclude that UG =NCu and HG =GT . It
follows that the crossed homomorphism  :G → UG is surjective, in fact, since dimUG =dimG it is
a covering map. Since UG is simply connected  must be a di,eomorphism. Therefore T ∩G= {1}.
From the above remarks, G is a normal subgroup of HG. Let �T :HG → T denote the projection
map onto the second factor of the splitting HG = UG · T . Then G = {g = u#(u) | u∈UG}, where
#= �T −1 :U → T is a di,erentiable map. Therefore G is a closed subgroup.

Let �6G be a lattice. We call � a Zariski-dense lattice if � is Zariski-dense in HG. We remark:

Proposition 2.4. Let G be a connected, simply connected solvable Lie group, and �6G a
Zariski-dense lattice. Then the real algebraic hull HG is a real algebraic hull for �.

Proof. By the inclusion �6G we have an inclusion �6HG. Since � is cocompact, rank � =
dimG = dim u(HG). Therefore HG is a R-deGned algebraic hull for �. By the rigidity property
(∗), there exists an R-deGned isomorphism H� → HG. In particular, there is an induced algebraic
isomorphism of the groups of real points H� and HG.

Identifying, Aut(G) with Aut(g), where g is the Lie-algebra of G, we obtain a natural structure of
real linear algebraic group on Aut(G). Let H be a solvable by Gnite linear algebraic group, and let
Auta(H) denote its group of algebraic automorphisms. In [15], it is observed that the group Auta(H)
is itself a linear algebraic group if H has a strong unipotent radical. In particular, Auta(HG), the



910 O. Baues / Topology 43 (2004) 903–924

group of algebraic automorphisms of HG, inherits a structure of a real linear algebraic group. The
rigidity of the hull HG induces an extension homomorphism

E : Aut(G) ,→ Auta(HG);  �→ %:

Proposition 2.5. The extension homomorphism E : Aut(G) ,→ Auta(HG) identi7es the real linear
algebraic group Aut(G) with a Zariski-closed subgroup of Auta(HG).

Proof. Let hG denote the Lie-Algebra of HG. From the inclusion G6HG, we have that g ⊆ hG.
Since HG = H 0

G, it follows from the discussion in [15, Section 3] that the Lie-functor identiGes the
group Auta(HG) with a Zariski-closed subgroup Auta(hG) of Aut(hG). Consider

Auta(hG; g) = Auta(hG) ∩ {’ |’(g) ⊆ g}:
The rigidity property of the hull implies that the restriction map

Auta(hG; g) → Aut(g)

is surjective. Since G6HG is Zariski-dense, the restriction map is injective as well. This implies
that the restriction map induces an isomorphism of real linear algebraic groups. Since the image
of Aut(G) in Auta(HG) corresponds to the Zariski-closed subgroup Auta(hG; g)6Auta(hG), the
proposition follows.

2.3. A<ne actions by rational maps

Let G be a group. We view the a/ne group A,(G) as a group of transformations acting on G
by declaring

(g; �) · g′ = g�(g′); where (g; �)∈A,(G); g′ ∈G:

Let H be a solvable by Gnite real linear algebraic group with a strong unipotent radical. Let
Auta(H)6Aut(H) denote its group of algebraic automorphisms. We remark that, since H has
a strong unipotent radical, Auta(H) is a real linear algebraic group (as follows from [15, Section
4]), and so is

A,a(H) = H o Auta(H):

Let T be a maximal d-subgroup of H , and U =u(H). For h∈H , let c(h) :H → H denote the inner
automorphism l �→ hlh−1 of H . If L6H is a normal subgroup cL(h) denotes the restriction of c(h)
on L. Let h=ut be a decomposition of h∈H with respect to the algebraic splitting H =U ·T . Then
we have a homomorphism of real algebraic groups


T :H → A,a(U ); h= ut �→ (u; cU (t)):

Since H has a strong unipotent radical, the homomorphism 
T is injective. Similarly, if G6H is a
normal subgroup of H , H = GT and G ∩ T = {1}, we deGne

)T :H → A,(G); h= gt �→ (g; cG(t)):
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Lemma 2.6. Let H be a solvable by 7nite real algebraic group with a strong unipotent radical
U , and let T6H be a maximal d-subgroup. Assume there exists a connected Lie subgroup G of
H which is normal in H , so that H = GT , H ∩ T = {1}. Then )T :H → A,(G) is an injective
continuous homomorphism. Moreover, the projection  :G → U , induced by the splitting H =U ·T ,
is a di6eomorphism which is equivariant with respect to the a<ne actions )T and 
T .

Proof. We remark Grst that H = GT implies that the Zariski-closure G6H contains the unipotent
radical U of H . The argument given in the proof of Proposition 2.3 shows that  is a di,eomorphism.
Using the notation in the proof of Proposition 2.3, we can write

)T (h) = ( T (h)#( T (h)); cG(#( T (h))−1�T (h))):

This shows that )T is continuous. It is also injective: Assume that )T (gt) = 1. Then, in particular,
cG(t) = idG. Hence, t centralizes the unipotent radical U . Since t is semisimple and H has a
strong unipotent radical, this implies t = 1. Therefore, h∈G. But )T is clearly injective on G,
proving that )T is injective. Finally, let h∈H , g∈G. Then an elementary calculation shows that
 ()T (h) · g) = 
T (h) ·  (g), proving that  is equivariant.

Finally, we brie@y remark how the a/ne action 
T depends on the choice of maximal d-subgroup
in H�. Let T ′6H� be another maximal d-subgroup. By Proposition 2.1, there exists v∈U so that
T ′ = vTv−1. Let h= ut, where u∈U , t ∈T . The decomposition h= u′t′ of h relative to T ′ is given
by u′ = uvtv−1, t′ = tv. Hence,

Lemma 2.7. Let Rv :U → U denote right-multiplication with v on U , and T ′ = vTv−1. Then, for
all h∈H , 
T (h) ◦ Rv = Rv ◦ 
T ′(h).

2.4. Syndetic hulls

The notion of syndetic hull of a solvable subgroup of a linear group is due to Fried and Goldman,
[13, Section 1.6]. Fried and Goldman introduced this notion in the context of a/ne crystallographic
groups. We will employ the syndetic hull to prove that standard �-manifolds are infra-solvmanifolds.
We use the slightly modiGed deGnition for the syndetic hull which is given in [16]. Let V be a
Gnite-dimensional real vector space.

De�nition 2.8. Let � be a polycyclic subgroup of GL(V ), and G a closed, connected subgroup of
GL(V ) such that �6G. G is called a syndetic hull of � if � is a Zariski-dense (i.e., G6�)
uniform lattice in G, and dimG = rank �.

The syndetic hull for � is necessarily a connected, simply connected solvable Lie group. If
�6GL(V ) is discrete, �6 (�)0, and �=u(�) is torsion-free then it is proved in [16, Proposition
4.1, Lemma 4.2] that � has a syndetic hull. In particular, any virtually polycyclic linear group has a
normal Gnite index subgroup which possesses a syndetic hull. We need the following slightly reGned
result:
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Proposition 2.9. Let H6GL(V ) be a Zariski-closed subgroup. Let �6H be a virtually polycyclic
discrete subgroup, Zariski-dense in H . Then there exists a 7nite index normal subgroup �06�,
and a syndetic hull G for �0, �06G6H , so that G is normalized by �.

A similar result is also stated in [13, Section 1.6]. However, the proof given in [13] is faulty. We
reGne the proof of [16, Proposition 4.1] a little to obtain Proposition 2.9. Also we warn the reader
that a syndetic hull �6G is (in general) not uniquely determined by �, neither a good syndetic
hull (cf. [16]) is uniquely determined by �. (See [16, Section 9].)

Proof of Proposition 2.9. There exists a normal polycyclic subgroup �6� of Gnite index with the
following properties: �6H0, [�; �]6 u(H), and �=u(�) is torsion-free. We consider the abelian
by Gnite Lie group T =H=N , where N =[�; �]. Let p :H → T denote the projection, and � : Ê → T
the universal cover. Then Ê is an extension of a vector space E by some Gnite group .. Let
Ŝ = �−1(�N=N ), S = Ŝ ∩ E. Then .= Ŝ=S. Now K =ker � ⊂ S is invariant by the induced action of
. on S. From Maschke’s theorem we deduce that there exists a .-invariant complement P ⊂ S of
K so that KP is of Gnite index in S.

Now deGne OP to be the real vector space spanned by P, G = p−1(�( OP)), and �0 = G ∩ �. Then
�0 is of Gnite index in �, and G is a syndetic hull for �0 in the sense of DeGnition 2.8. Since OP
is invariant by . the Lie group G is normalized by �.

3. Standard �-manifolds

Let � be a torsion-free virtually polycyclic group. The purpose of this section is to explain the
construction of standard �-manifolds and to prove Theorems 1.2 and 1.3.

3.1. Construction of standard �-manifolds

Let H� be a real algebraic hull for �, and Gx a Zariski-dense embedding �6H�. Let T be a
maximal d-subgroup of H�, and put U = u(H�) for the unipotent radical of H�. We consider the
a/ne action 
T :H� → A,a(U ) which is deGned by the splitting H� = U · T . Since U is strong in
H�, the homomorphism 
T is injective. Let

M�;
T =
T (�) \U
denote the quotient space of the a/ne action of � on U . We will show that M�;
T is a compact
manifold with fundamental group isomorphic to �. In fact, the proof implies that M�;
T is an
infra-solvmanifold. We also show that the di,eomorphism class of M�;
T depends only on �, not on
the choice of maximal d-subgroup T in H�, nor on the particular embedding of � into H�. In fact,
we show that the corresponding actions of � are a/nely conjugate. We call M� =M�;
T a standard
�-manifold.

Proof of Theorem 1.2. We Grst show that M� is an infra-solvmanifold. Let �0 be a Gnite index
normal subgroup of � so that there exists a syndectic hull �06G6H� for �0. By Proposition 2.9,
we may also assume that G is normalized by �. By the deGning properties of the hull, (H�)0 is a
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real algebraic hull for G. Since G is a normal subgroup in its hull, it follows that G is a normal
subgroup of H� = �(H�)0. Let T be a maximal d-subgroup of H�. We infer from Proposition 2.3
that H� =GT , G ∩ T = {1}. Let )T :H� → A,(G) denote the a/ne action which is deGned by this
splitting. Lemma 2.6 implies that the a/ne action )T is e,ective. Note that )T (�)∩G contains �0,
hence )T (�) is discrete in A,(G) and hol()T (�))6Aut(G) is Gnite. Therefore, the quotient space

M)T =)T (�) \G
is an infra-solvmanifold. Since G is di,eomorphic to Rn, the fundamental group �1(M)T ) is isomor-
phic to �. Since G is a syndetic hull, M)T is compact. Let  :G → U be the projection map which
is induced by the splitting H� =U · T . By Lemma 2.6,  induces a di,eomorphism O : )T (�) \G →

T (�) \ U . Hence 
T (�) \ U is di,eomorphic to a compact infra-solvmanifold.

Note that the di,eomorphism class of M� does not depend on the choice of maximal d-subgroup
in H�. In fact, let T ′6H� be another maximal d-subgroup. Then, by Proposition 2.1, there exists
v∈U so that T ′ = vTv−1. By Lemma 2.7, Rv :U → U induces a smooth di,eomorphism M�;
T →
M�;
T ′ . The di,eomorphism class of M� is also independent of the particular choice of Zariski-dense
embedding of � into H�. Let �′6H� be a Zariski dense subgroup isomorphic to �, and let
� :� → �′ be an isomorphism. By the rigidity of the real algebraic hull, there exists an algebraic
automorphism O� :H� → H� extending �. The restriction of O� on the unipotent radical U of H�

projects to a di,eomorphism M�;
T → M�′ ; 
 O�(T )
which induces � on the level of fundamental groups.

Similarly, any given automorphism of �1(M�;
T ) corresponds to an automorphism � of �. The
algebraic extension O� projects to a di,eomorphism of M�;
T inducing � on �1(M�;
T ).

We also remark:

Proposition 3.1. Every standard �-manifold M� admits a smooth e6ective action of an
r-dimensional torus T r , where r = rank Z(�).

Proof. Let UZ = Z(�) be the Zariski-closure of Z(�) in H�. Since UZ 6Z(H�), UZ 6U , and
dimUZ = r. It follows that 
T (UZ) induces a free maximal torus action on M�.

Theorem 1.4 and Proposition 3.1 imply Corollary 1.7.

3.2. A<ne actions on unipotent groups

Here we show that every compact manifold which arises by (solvable by Gnite) a/ne actions on
unipotent groups is di,eomorphic to a standard �-manifold.

Proposition 3.2. Let U be a connected, simply connected nilpotent Lie group. Let �6A,(U ) be
a solvable by 7nite subgroup which acts freely and properly on U with compact quotient manifold
M=�\U . Let T6 O�6A,(U ) be a maximal d-subgroup. Then M is di6eomorphic to 
T (�)\u( O�).

Proof. We decompose O�=u( O�)T . Since any maximal d-subgroup of Aut(U ) is maximal in A,(U ),
we may assume (after conjugation of � with a suitable element of A,(U )) that T6Aut(U ).
In particular, O� · 1 = u( O�) · 1, and hence � acts on the orbit O = u( O�) · 16U . Since O is the
homogeneous space of a connected unipotent group acting on U , it is a submanifold di,eomorphic
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to Rk , k6 dimU . The connected, simply connected solvable Lie group �0 acts freely on O, and the
quotient space �0\O is a simply connected aspherical manifold. Hence, the quotient space MO=�\O
is a manifold with fundamental group isomorphic to �, and homotopy equivalent to an Eilenberg–
Mac Lane space K(�; 1). Since M is an aspherical compact manifold with fundamental group �,
its dimension equals the cohomological dimension of �. This implies that dimM6 dimMO, and
consequently O = U . In particular, u( O�) acts transitively on U and the orbit map

o : u( O�) → U; 3 �→ 3 · 1
in 1∈U is a di,eomorphism. Using T6Aut(U ), it is straightforward to verify that o is �-equivariant
with respect to the a/ne action 
T of � on u( O�). Hence, M is di,eomorphic to 
T (�) \ u( O�).

The next result shows how the algebraic hull enters the picture:

Proposition 3.3. Let �6A,(U ) be virtually polycyclic, such that � acts freely and properly
discontinuously on U , and with compact quotient M =�\U . Then the Zariski-closure �6A,(U )
is an algebraic hull for �. In particular, M is di6eomorphic to a standard �-manifold.

Proof. Put H = �6A,(U ). By the previous proposition, the orbit map o : u(H) → U in 1∈U
is a di,eomorphism. In particular, dim u(H) = rank �. Let T6H be a maximal d-subgroup. We
may assume that T6Aut(U ). This shows that T ∩ ZH (U ) = {1}. Hence, H has a strong unipotent
radical. It follows that H is an algebraic hull for �. Since o is equivariant with respect to the action

T , M is di,eomorphic to a standard �-manifold.

Next, we consider a/ne actions which arise from splittings of solvable by Gnite linear algebraic
groups.

Proposition 3.4. Let H =UT be a solvable linear algebraic group. Let 46H be a Zariski-dense
subgroup such that � = 
T (4)6A,(U ) acts freely and properly on U with compact quotient
manifold M = � \ U . Then � = �=�0 is virtually polycyclic and M is di6eomorphic to a standard
�-manifold.

Proof. Put U�0 = u(�0), and remark that U�0 6U under the natural inclusion U6A,(U ). Since
�0 is normal in �, U�0 is normal in O�. From �0 · 1 = U�0 · 1 and dim u(�0)6 dim�0, we deduce
that �0 · 1 = U�0 · 1 and also that dim�0 = dimU�0 . Let h∈4, such that 
T (h)∈�0. Then h= uht,
where uh ∈U�0 and t ∈T . Moreover,


T (h) · u= uhut = uh(tut−1u−1)u:

Remark that �0, and U�0 are normal in 
T (H). This implies that hu = vt, where v∈U�0 , v =
(uuhu−1)(utu−1t−1). Furthermore uuhu−1 ∈U�0 , and consequently utu−1t−1 ∈U�0 . Since �0 acts
freely, this implies that �0 · u= u(�0) · u. Hence, �0 and U�0 have the same orbits on U .
Put L = H=U�0 , and UL = U=U�0 . Let � :H → L be the quotient homomorphism. Put 5 :=

�(4). Then 5 is a Zariski-dense subgroup of L. Decompose L = UL�(T ). Evidently, � induces a
di,eomorphism of quotient spaces 
T (4) \ U → 
�(T )(5) \ UL. In particular, M is di,eomorphic
to 
�(T )(5) \ UL. Moreover, 
�(T )(5) is a discrete solvable subgroup of A,(UL) and isomorphic
to �=�0. Since A,(UL) has only Gnitely many connected components, a theorem of Mostow [23]
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implies that � = �=�0 is virtually polycyclic. By Proposition 3.3, M is di,eomorphic to a standard
�-manifold.

Putting the results together, we proved:

Theorem 3.5. Let U be connected, simply connected nilpotent Lie group. Let �6A,(U ) be a
solvable by 7nite subgroup which acts freely and properly on U with compact quotient manifold
M=�\U . Then �=�=�0 is virtually polycyclic, and M is di6eomorphic to a standard �-manifold.

3.3. Rigidity of reductive a<ne actions

Let G be a connected, simply connected solvable Lie group and �6A,(G) a solvable by Gnite
subgroup which acts on G. Let HG be an algebraic hull for G, and Gx a Zariski-dense continuous
inclusion G6HG. By the rigidity of the hull, there are induced inclusions hol(�)6Auta(HG), and
�6A,a(HG). Let T6HG be a maximal d-subgroup, and UG the unipotent radical of HG. Then,
G acts a/nely on UG via the action 
T , cf. Section 2.3. Note that the orbit map of this action in
1∈UG, oT :G → UG, coincides with the projection di,eomorphism  :G → UG. Via oT , the a/ne
action of � on G induces then a di,eomorphic action of � on UG.

Lemma 3.6. Suppose that hol(�)6Auta(HG) stabilizes T . Then the action of � on UG induced
by the orbit map oT :G → UG is a<ne.

Proof. A straightforward computation shows that the lemma is true: Let 3= (h; �)∈A,(G), where
h∈G, �∈ hol(�). We consider � henceforth as an element of Aut(HG). Write h = uhth, where
uh ∈UG, th ∈T . Analogously, write g= ugtg, for g∈G. Now, 3 · g= h�(g) = uhth�(ug)�(tg). By our
assumption, �(tg)∈T . Hence,

oT (3 · g) =  (uh�(ug)th th�(tg)) = uh�(ug)th

= 
T (h) · �(ug) = (
T (h) ◦ �) · oT (g):

Therefore, the action of 3 on G, corresponds to the action of 
T (h) ◦ � on UG.

Lemma 3.7. Let L6Auta(HG) be a reductive subgroup. Then L stabilizes a maximal torus T6HG.

Proof. Consider the semi-direct product HL = HG o L. Then u(HL) = UG is the unipotent radical
of HL. Let S be a maximal reductive subgroup in HL which contains L such that HL = UGS. Then
T = S ∩HG is a d-subgroup in HG which is normalized by L, and S =TL. The latter equality shows
that HG = UGT and therefore T is a maximal torus of HG.

In the light of Theorem 3.5, Lemmas 3.6 and 3.7 prove the following:

Theorem 3.8. Let �6A,(G) act freely on M with quotient space � \ G a compact manifold.
Assume further that hol(�)6Auta(HG) is contained in a reductive subgroup of Auta(HG). Then
M = � \ G is di6eomorphic to a standard �-manifold.
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Theorem 3.8 implies part (ii) of Theorem 1.3. In fact, by Proposition 2.5 assumption (ii) implies
that hol(�) is contained in a reductive subgroup of Auta(HG). In particular, condition (ii) is satisGed
if the Zariski-closure of hol(�) in Aut(G) is compact. This proves Theorem 1.4.

4. Geometry of infra-solvmanifolds

We derive a few consequences of our proof which concern the existence and uniqueness of certain
geometric structures on infra-solvmanifolds. As another application we construct a Gnite-dimensional
complex which computes the cohomology of an infra-solvmanifold.

4.1. Infra-solv geometry

Let M be a compact infra-solvmanifold. A pair (G;�), � ⊂ A,(G), so that M is di,eomorphic to
�\G is called a presentation for M . By the proof of Theorem 1.2, every standard �-manifold admits
a presentation (G;�) so that �6A,(G) is discrete with Gnite holonomy group hol(�). Hence, by
Theorem 1.4, every compact infra-solvmanifold has such a presentation. (The appendix of [12] is
devoted to proving that every infra-solvmanifold has a presentation with Gnite holonomy.)

Corollary 4.1. Every compact infra-solvmanifold M admits a discrete presentation with 7nite
holonomy.

Let (G;�) be a discrete presentation for M with Gnite holonomy. Then M is Gnitely covered
by the homogeneous space � ∩ G \ G of the solvable Lie-group G. The group G carries a natural
@at (but not necessarily torsion-free) left invariant connection which is preserved by A,(G). Since
the presentation is discrete, M has a @at connection inherited from G. The group of covering
transformations of �∩G\G → M is acting by connection preserving di,eomorphisms. This geometric
property distinguishes infra-solvmanifolds from the larger class of compact manifolds which admit
a Gnite covering by a solv-manifold. (Compare also [30] for a similar discussion.) One should note
however that the Lie group G, and discrete presentation (G;�) is not uniquely determined by M .
However, Wilking [31] proved that every infra-solvmanifold is modeled in a canonical way on an
a/ne isometric action on a super-solvable Lie-group.

Our approach implies that, dropping the condition of Gnite holonomy, there is a canonical choice
of @at geometry on M which is modeled on a nilpotent Lie group. Let U be a unipotent real
algebraic group, �6A,(U ) a discrete subgroup which acts properly discontinuously on U . (It is
not required that the holonomy of � be Gnite.) Then � preserves the natural @at invariant connection
on U , and there is an induced @at connection on the quotient manifold M . We say that M has an
a<nely =at geometry modeled on U . Let U� denote the unipotent radical of the real algebraic hull
of �. We call U� the unipotent shadow of �.

Corollary 4.2. Every compact infra-solvmanifold M admits an a<nely =at geometry modeled on
the simply connected nilpotent Lie group U�1(M).

Toral a<ne actions: A natural question is the following: Given G a simply connected solvable
Lie group. Which polycyclic groups act a<nely on G with a compact quotient manifold? In the
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particular case where G is abelian, this question asks for the classiGcation of a/ne crystallographic
groups. This is a well known and di/cult geometric problem. (Compare [4], and also the references
cited therein for some recent results).

Some answers to the above question can be given when putting restrictions on the holonomy. Let
us call the holonomy hol(�)6Aut(G) toral if the Zariski-closure of hol(�) is a reductive subgroup
of Aut(G). In particular, hol(�) is toral if its closure is compact. Hence, infra-solvmanifolds come
from toral actions. Note that also standard �-manifolds are constructed using toral a/ne actions.
Now let UG denote the unipotent radical of HG, and U� the radical of H�. We remark:

Proposition 4.3. Let � be torsion-free virtually polycyclic, acting on the connected, simply con-
nected solvable Lie group G with compact quotient space and toral holonomy. Then UG = U�.

Proof. Let T1 denote the Zariski-closure of hol(�) in Auta(HG). By the assumption, T16Auta(HG)
is a d-subgroup. By Proposition 2.5, T1 stabilizes G, i.e., T16Aut(G). Also T1 stabilizes a maximal
torus T6HG. Then the corresponding projection map  :G → UG induces an a/ne action of � on
UG. By the proof of Lemma 3.6, the image of � in A,(UG) is contained in UGoTT16A,(UG). By
Proposition 3.3, the Zariski-closure of � in UGoTT1 is an algebraic hull for �. Hence, UG=U�.

In particular, if � acts isometrically on G, then UG = U�.

4.2. Polynomial geometry

The construction of standard �-manifolds was carried out in the category of real algebraic groups.
In fact, as noted above such a manifold is obtained as a quotient space �\U , where U is a unipotent
real algebraic group, and �6A,a(U ) is a properly discontinuous subgroup. In particular, � acts
algebraically on U . A di,erentiable map of Rn is called a polynomial map if its coordinate functions
are polynomials. A polynomial di,eomorphism is a polynomial map which has a polynomial inverse.
A group of polynomial di,eomorphisms of Rn is called bounded if there is a common bound for the
degrees of the polynomials which describe its elements. It is known that any algebraic group action
on Rn is bounded. Now, since U is di,eomorphic to Rn, n= dimU , and since the di,eomorphism
is given by the exponential map exp : u = Rn → U which actually is an algebraic map, we obtain:

Corollary 4.4. Every torsion-free virtually polycyclic group � acts faithfully as a discrete group of
bounded polynomial di6eomorphisms on Rn, n=rank �. The quotient space � \Rn is di6eomorphic
to a standard �-manifold.

Slightly more general, our proof works for all virtually polycyclic groups which do not have Gnite
normal subgroups (see the appendix). The existence of such actions was shown previously in [10]
by di,erent methods. Recently, it was proved [5] that a bounded polynomial action of � on Rn is
unique up to conjugation by a bounded polynomial di,eomorphism. Therefore Theorem 1.4 implies
also the following characterization of infra-solvmanifolds.

Corollary 4.5. Let M be a compact di6erentiable manifold, aspherical and with a virtually poly-
cyclic fundamental group. Then M is di6eomorphic to an infra-solv manifold if and only if M is
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di6eomorphic to a quotient space of Rn by a properly discontinuous bounded group of polynomial
di6eomorphisms.

4.3. Polynomial cohomology

Let M be an infra-solvmanifold and Gx a di,eomorphism of M to a quotient space Rn=�, where
� acts as a group of bounded polynomial di,eomorphisms. Recall that a di,erential form (more
generally a tensor Geld) on Rn is called polynomial if its component functions relative to the standard
coordinate system are polynomials. Since � acts by polynomial maps, the notion of polynomial
di,erential form on M is well deGned. This gives a subcomplex

6∗
poly(M) ⊂ 6∗(M)

of the C∞-de Rham complex 6∗(M). The following result generalizes a theorem of Goldman [14]
on the cohomology of compact complete a/ne manifolds:

Theorem 4.6. The induced map on cohomology H ∗
poly(M) → H ∗(M) is an isomorphism.

Proof. The idea of the proof which is given in [14] carries over to our situation. We pick up the
notation of Section 3. Let �6H�, where H� is the algebraic hull of �. As explained in Section 3,
H� acts as a subgroup of A,a(U ) on U . Via exp : u → U , H� acts by polynomial maps on Rn=U .
The cohomology of M is computed by the complex 6∗(Rn)� of �-invariant di,erential forms on
Rn. Therefore, we have to show that the inclusion of complexes

6∗
poly(Rn)� → 6∗(Rn)�

induces an isomorphism on cohomology. Let �0 be a Gnite index normal subgroup of � with syndetic
hull G, so that

�06G6H = (H�)0:

We consider now the following inclusion maps of complexes

6∗(Rn)H → 6∗(Rn)G → 6∗(Rn)�0 :

Decompose H =US =GS, where S is a maximal d-subgroup of H . By Lemma 2.6, G acts simply
transitively on Rn via the a/ne action 
T of H� on U . Hence, the complex 6∗(Rn)G identiGes with
the complex H ∗(g) of left invariant di,erential forms on G. The action of G on H ∗(g) which is
induced by conjugation is trivial. Since G is Zariski-dense in H , H acts trivially on H ∗(g). The
a/ne action of S6H on U corresponds to conjugation on G. It follows that S acts trivially on the
cohomology of the complex 6∗(Rn)G. Since S acts reductively on 6∗(Rn)G, this implies

H ∗(6∗(Rn)G) = H ∗(6∗(Rn)G)S = H ∗(6∗(Rn)H ):

In particular, 6∗(Rn)H → 6∗(Rn)G induces an isomorphism on cohomology. The map 6∗(Rn)G →
6∗(Rn)�0 is an isomorphism on the cohomology level by a theorem of Mostow [25] (see also [28,
Corollary 7.29]). Hence, the induced map H ∗(6∗(Rn)H ) → H ∗(6∗(Rn)�0) is an isomorphism.

Next remark that 6∗(Rn)H =6∗
poly(Rn)H =6∗

poly(Rn)�0 . The Grst equality follows since every left
invariant di,erential form on U is polynomial relative to the coordinates given by the exponential



O. Baues / Topology 43 (2004) 903–924 919

map. The second equality follows since �0 is Zariski-dense in H . We conclude that the natural map

H ∗(6∗
poly(Rn)�0) → H ∗(6∗(Rn)�0)

is an isomorphism. This proves that H ∗
poly(M�0) = H ∗(M�0).

Put . = �=�0. Then . acts on the cohomology of 6∗(Rn)�0 . The inclusion map 6∗(Rn)� →
6∗(Rn)�0 induces an isomorphism on cohomology

H ∗(M�) → H ∗(M�0)
.:

Similarly, H ∗
poly(M�0)

. is isomorphic to the cohomology of the .-invariant forms in 6∗
poly(Rn)�0 ,

implying that H ∗
poly(M�) = H ∗

poly(M�0)
.. Hence,

H ∗
poly(M�) = H ∗(M�):

The theorem follows.

Proof of Theorem 1.8. By the previous theorem, H ∗(M�) = H ∗
poly(M�). Now

H ∗
poly(M�) = H ∗(6∗

poly(Rn)H�):

Let T be a maximal d-subgroup of H�. Since U acts simply transitively on Rn, the complex
6∗
poly(Rn)H� is isomorphic to the left-invariant forms on U which are Gxed by T . Let u denote the

Lie algebra of U . Since T acts reductively on the complex 6∗
poly(Rn)U , it follows that

H ∗
poly(M�) = H ∗((6∗

poly(Rn)U )T ) = H ∗(u)T :
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Appendix A. Algebraic hulls for virtually polycyclic groups

Let k6C be a subGeld. A group G is called a k-deGned linear algebraic group if it is a
Zariski-closed subgroup of GLn(C) which is deGned by polynomials with coe/cients in k. A mor-
phism of algebraic groups is a morphism of algebraic varieties which is also a group homomorphism.
A morphism is deGned over k if the polynomials which deGne it have coe/cients in k. It is called
a k-isomorphism if its inverse exists and is a morphism deGned over k. Let U = u(G) denote the
unipotent radical of G. We say that G has a strong unipotent radical if the centralizer ZG(U) is
contained in U.

A.1. The algebraic hull

Let � be a virtually polycyclic group. Its maximal nilpotent normal subgroup Fitt(�) is called the
Fitting subgroup of �. Now assume that Fitt(�) is torsion-free and Z�(Fitt(�))6Fitt(�). In this
case, we say that � has a strong Fitting subgroup. We remark (see also Corollary A.9) that this
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condition is equivalent to the requirement that � has no non-trivial Gnite normal subgroups. The
following result was announced in [4].

Theorem A.1. Let � be a virtually polycyclic group with a strong Fitting subgroup. Then there
exists a Q-de7ned linear algebraic group H and an injective group homomorphism  :� → HQ so
that,

(i)  (�) is Zariski-dense in H,
(ii) H has a strong unipotent radical U,
(iii) dimU = rank �.

Moreover,  (�) ∩HZ is of 7nite index in  (�).

We remark that the group H is determined by the conditions (i)–(iii) up to Q-isomorphism of
algebraic groups:

Proposition A.2. Let H′ be a Q-de7ned linear algebraic group,  ′ :� → H′
Q an injective homo-

morphism which satis7es (i)–(iii) above. Then there exists a Q-de7ned isomorphism � :H → H′
so that  ′ = � ◦  .

Corollary A.3. The algebraic hull H� of � is unique up to Q-isomorphism of algebraic groups. In
particular, every automorphism � of � extends uniquely to a Q-de7ned automorphism � of H�.

We call the Q-deGned linear algebraic group H the algebraic hull for �. If � is Gnitely generated
torsion-free nilpotent then H is unipotent and Theorem A.1 and Proposition A.2 are essentially due
to Malcev. If � is torsion-free polycyclic, Theorem A.1 is due to Mostow [24] (see also [28, Section
IV, p. 74] for a di,erent proof).

A.2. Construction of the algebraic hull

Let � be a virtually polycyclic group with Fitt(�) torsion-free. Since � is virtually polycyclic it
contains a torsion-free polycyclic subgroup � which is normal and of Gnite index. By Mostow’s
theorem there exists an algebraic hull  � :� → H� for �. Hence, in particular � is realized as a
subgroup of a linear algebraic group.

Embedding of 7nite extensions: We use a standard induction procedure to realize the Gnite ex-
tension group � of � in a linear algebraic group which Gnitely extends H�. The procedure is
summarized in the next lemma.

Lemma A.4. Let G be a linear algebraic group de7ned over Q and �6GQ a subgroup. Let
� be a 7nite extension group of � so that � is normal in �. Let � = �r1 ∪ · · · ∪ �rm be the
decomposition of � into left cosets, and assume that there are Q-de7ned algebraic group morphisms
f1; : : : ; fm :G → G so that

fi(8) = ri8r−1
i ; i = 1; : : : ; m; for all 8∈�: (A.1)
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Then there exists a Q-de7ned linear algebraic group I(G; �; �), an injective homomorphism  :� →
I(G; �; �) and a Q-de7ned injective morphism of algebraic groups % :G → I(G; �; �) which extends
 :� → I(G; �; �) so that  (�)6 I(G; �; �)Q, I(G; �; �) =%(G) (�) and %(G) ∩  (�) =  (�).

For more comments and details of the proof see [15, Proposition 2.2].
The algebraic hull for �: We continue with our standing assumption that � is a virtually polycyclic

group with Fitt(�) torsion-free and Z�(Fitt(�))6Fitt(�). Let �6� be a torsion-free polycyclic
normal subgroup of Gnite index. By Mostow’s result there exists an algebraic hull H� for �, and we
may assume that �6 (H�)Q is a Zariski-dense subgroup. Replacing � with a Gnite index subgroup,
if necessary, we may also assume that H� is connected.

Proposition A.5. There exists a Q-de7ned linear algebraic group I(H�; �) which contains H�, and
an embedding  :� → I(H�; �)Q which is the identity on �, such that I(H�; �) = H� (�) and
 (�) ∩H� =  (�).

Proof. Let � = �r1 ∪ · · · ∪ �rm be a decomposition of � into left cosets. By the rigidity of the
algebraic hull (Proposition A.2), conjugation with ri on � extends to Q-deGned morphisms fi of H
which satisfy (A.1). The results follows then from Lemma A.4, putting I(H�; �) := I(H�; �; �).

We need some more notations. Let G be an algebraic group. We let G0 denote its connected
component of identity. If g is an element of G then g= gugs denotes the Jordan-decomposition of g
(i.e., gu is unipotent, gs is semisimple and [gs; gu] = 1). If M is a subset then let Mu = {gu | g∈M},
Ms = {gs | g∈M}.
If G is a subgroup then u(G) denotes the unipotent radical of G, i.e., the maximal normal subgroup

of G which consists of unipotent elements. We will use the following facts (cf. [7, Section 10]): If
G is a nilpotent subgroup then Gu and Gs are subgroups of G, and G6Gu × Gs. If G0 is solvable
then Gu = u(G). In particular, for any subgroup G of G, u(G) = G ∩ Gu.

To construct the algebraic hull for � we have to further reGne Proposition A.5.

Proof of Theorem A.1. Let U denote the unipotent radical of H�. By Proposition A.5, we may
assume that �6GQ is a Zariski-dense subgroup of a Q-deGned linear algebraic group G so that
G =H��, u(G) =U and � ∩H� = �. Since H� is an algebraic hull, Fitt(�)6U, see Proposition
A.7. Since Fitt(�) is a subgroup of Gnite index in Fitt(�) the group . = {8s | 8∈Fitt(�)}6G is
Gnite. Since Fitt(�) is a normal subgroup of �, . is normalized by �. Hence, the centralizer of .
in G contains a Gnite index subgroup of �. Since the centralizer of . is a Zariski-closed subgroup
of G it contains (H�)0 =H�. In particular, . centralizes �. We consider now the homomorphism
 u : Fitt(�) → UQ which is given by 8 �→ 8u. The kernel of  u is contained in the Gnite group
.. Since Fitt(�) is torsion-free,  u is injective. Assigning  : 38 �→  u(3)8 deGnes an injective
homomorphism  : Fitt(�)� → (H�)Q. (To see that  is injective suppose that 1 =  (38), for
3∈Fitt(�), 8∈�. Then 8 =  u(3)−1 is unipotent, i.e., 8∈ u(�)6Fitt(�). Therefore 38∈Fitt(�),
and  (38) =  u(38), and hence 38= 1.) Clearly, the homomorphism  is the identity on �. Let us
put �∗= (Fitt(�)�). Then H� is an algebraic hull for �∗. We consider now the extension �∗6�.
By Proposition A.5, there exist an algebraic group I∗(H�; �) and an embedding  ∗ :� → I∗(H�; �)Q
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so that  ∗(�)∩I∗(H�; �)=�∗. By construction, the group I∗(H�; �) satisGes (i) and (iii) of Theorem
A.1 with respect to  ∗ and �. Moreover, by our construction  ∗(Fitt(�))6U = u(I∗(H�; �)).

We consider now the centralizer ZI∗(H�;�)(U) of U in I∗(H�; �). It is a Q-deGned algebraic
subgroup of the solvable by Gnite group I∗(H�; �). Therefore ZI∗(H�;�)(U) = Z(U)S, where S is
a Q-deGned subgroup which consist of semisimple elements. We remark that S = ZI∗(H;�)(U)S is
normal in I∗(H; �). Since S ∩  ∗(�) centralizes Fitt(�)6U, the assumption that � has a strong
Fitting subgroup implies that S ∩  ∗(�)={1}. Let � : I∗(H; �) → H�= I∗(H; �)=S be the projection
homomorphism. Since H� is Q-deGned with a strong unipotent radical, H� with the embedding
� ∗ :� → (H�)Q is an algebraic hull for �.

A.3. Properties of the algebraic hull

Let � be a virtually polycyclic group. We assume that � admits an algebraic hull H�. The next
proposition implies Proposition A.2, and Corollary A.3.

Proposition A.6. Let k be a sub7eld of C, and G a k-de7ned linear algebraic group with a strong
unipotent radical. Let ; :� → G be a homomorphism so that ;(�) is Zariski-dense in G. Then
; extends uniquely to a morphism of algebraic groups ;H� :H� → G. If ;(�)6Gk then ;H� is
de7ned over k.

Proof. We will use the diagonal argument. Therefore we consider the subgroup

D = {(8; ;(8)) | 8∈�}6H� ×G:

Let �1, �2 denote the projection morphisms onto the factors of the product H� × G. Let D be the
Zariski-closure of D, and U= u(D) the unipotent radical of D. The group D is a solvable by Gnite
linear algebraic group, and D is deGned over k if ;(�)6Gk . Let 
 = �1|D :D → H�. Since � is
Zariski-dense in H�, 
 is onto. In particular, a maps U = Du onto u(H�). By [28, Lemma 4.36]
we have dimU6 rank � = dim u(H�), and hence dimU = dim u(H�). In particular, it follows that
the restriction 
 :U → u(H�) is an isomorphism. Thus the kernel of 
 consists only of semi-simple
elements. Let x∈ ker 
. Then x centralizes U. Since �2(U) = u(G), �2(x) centralizes u(G). Since G
has a strong unipotent radical, x is in the kernel of �2, hence x = 1. It follows that the morphism

 is an isomorphism of groups. It is also an isomorphism of algebraic groups. If ;(�)6Gk then

 is k-deGned. One can also show that 
−1 is k-deGned. (Compare e.g. [15, Lemma 2.3].) We put
;H� = �2 ◦ 
−1 to get the required unique extension. ;H� is k-deGned if ;(�)6Gk .

Remark. The proposition shows that the condition that ;(�) has a strong unipotent radical forces
the homomorphism ; to be well behaved. For example, ; must be unipotent on the Fitting subgroup
of �. See Proposition A.7 below.

We study some further properties of the algebraic hull. In particular, we characterize the abstract
virtually polycyclic groups which admit an algebraic hull in the sense of Theorem A.1. Let us assume
that � is a Zariski-dense subgroup of a linear algebraic group H with a strong unipotent radical.

Proposition A.7. We have Fitt(�)6 u(H). In particular, u(�)=Fitt(�) and Fitt(�) is torsion-free.
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Proof. Let F be the maximal nilpotent normal subgroup of H. Clearly, F = F is a Zariski-closed
subgroup. Therefore u(F) = u(H). Now since F is nilpotent, Fs is a subgroup, Fu = u(F) and
F=Fs ·u(F) is a direct product of groups. Since H has a strong unipotent radical Fs must be trivial,
and it follows that F = u(H). The Zariski-closure of Fitt(�) is a nilpotent normal subgroup of H
and therefore Fitt(�) is contained in F. Hence Fitt(�)6 u(H).

Let N = Fitt(�) be the Zariski-closure of Fitt(�) in H. We just proved N6 u(H).

Proposition A.8. Let X=ZH(N) be the centralizer of N in H. Let X0 be its component of identity.
Then X0 is a nilpotent normal subgroup of H, and X06 u(H). Moreover, Z�(Fitt(�))6Fitt(�).

Proof. Since X0 is a connected solvable algebraic group, X0 = U · T, where U is a connected
unipotent group and T is a maximal torus in X0. Let X1 = [X0;X0] and deGne �0 = � ∩H0. Then
�0 is a polycyclic normal subgroup of �, and Fitt(�0) = Fitt(�). Since �06H0, it follows that
[�0; �0]6 u(�0)6Fitt(�0). This implies [X0;X0]6 [H0;H0]=[�0; �0]6N. We deduce [X0;X1]=
[T;X1] = {1}. On the other hand, by Borel [7, Section 10.6] all maximal tori in X0 are conjugate
by an element of X1. Hence T must be an invariant subgroup of X0. In particular, T is a normal
abelian subgroup of H. Therefore, by the proof of the previous proposition, T is contained in u(H).
Since T consists of semisimple elements, T= {1}. Hence, X0 = Z(u(H)).

Next put X =Z�(Fitt(�)) and X0=X ∩X0. Then X0 is of Gnite index in X , nilpotent, and a normal
subgroup of �. The latter implies that X06Fitt(�). It follows that X0 is centralized by X . Since
X0 is of Gnite index in X the commutator subgroup [X; X ] must be Gnite. Since [X; X ] is normal in
� it follows that u(H�) centralizes [X; X ]. Since H has a strong unipotent radical [X; X ] = {1}. It
follows that X is an abelian normal subgroup of �, and hence X 6Fitt(�).

Recall that � is said to have a strong Fitting subgroup if Fitt(�) is torsion-free and contains its
centralizer. We summarize:

Corollary A.9. Let � be virtually polycyclic. Then � admits an algebraic hull H if and only if �
has a strong Fitting subgroup.

We remark that this condition holds if and only if every Gnite normal subgroup of � is trivial. In
fact, let us assume that the maximal normal Gnite subgroup of � is trivial. Then Fitt(�) is torsion-free
since its elements of Gnite order form a Gnite normal subgroup of �. Now put X = Z�(Fitt(�)),
and let X0 be a polycyclic normal subgroup of Gnite index in X which is nilpotent-by-abelian. From
[X0; X0]6Fitt(X )6Fitt(�) we deduce that X06Fitt(�). Therefore [X; X ] must be Gnite, and it
follows from our assumption that [X; X ] = {1}. Hence, X 6Fitt(�).
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