
Linear Algebra and its Applications 425 (2007) 26–62
www.elsevier.com/locate/laa

On the Kronecker Problem and related problems
of Linear Algebra

Alexander G. Zavadskij

Departamento de Matemàticas, Universidad Nacional de Colombia, Bogotà, Colombia

Received 21 March 2006; accepted 9 March 2007
Available online 30 March 2007

Submitted by R.A. Horn

Abstract

We consider some classification problems of Linear Algebra related closely to the classical Kronecker
Problem on pairs of linear maps between two finite-dimensional vector spaces. As shown by Djoković and
Sergeichuk, the Kronecker’s solution is extended to the cases of pairs of semilinear maps and (more generally)
pseudolinear bundles respectively. Our objective is to deal with the semilinear case of the Kronecker Problem,
especially with its applications. It is given a new short solution both to this case and to its contragredient
variant. The biquadratic matrix problem is investigated and reduced in the homogeneous case (in charac-
teristic /= 2) to the semilinear Kronecker Problem. The integer matrix sequence �n and �-transformation
of polynomials are introduced and studied to get a simplified canonical form of indecomposables for the
mentioned homogeneous problem. Some applications to the representation theory of posets with additional
structures are presented.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We recall that the classical Kronecker Problem is the problem of classifying all pairs of linear
maps between two finite-dimensional vector spaces over a field K , as may be visualized by the
diagram
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U1
A

⇒
B

U2. (1)

In other words, it is the problem of classifying indecomposable in the natural sense objects
of the form (U1, U2,A,B), up to isomorphism. It was solved completely by Kronecker [18]
long ago, meanwhile a solution to the partial regular case was given earlier by Weierstrass
[25].

One can find several relatively recent simplified solutions, including those which present
descriptions not solely of the mentioned objects but also of the naturally defined morphisms
between them, i.e. dealing with the whole category formed by the objects (U1, U2,A,B). See
in particular [2,22] for the categorical and homological approach, [10] for a simplified matrix
classification of indecomposables, [5,24] for other linear-algebraic solutions. Though usually
it is assumed in the classical situation that K is a (commutative) field, in fact all the main
results and considerations (at least, concerning indecomposables) are valid also for any division
ring K .

Moreover, the Kronecker’s classification has been extended already to the case of pairs of
semilinear maps by Djoković [6] (this case is named below the semilinear Kronecker Problem1),
as well as to a more general pseudolinear bundle case by Sergeichuk [23]. It appeared, in both
situations the discrete canonical forms of indecomposables are the same as in the classical case,
while the continuous ones are consequences of the known facts of the theory of modules over
skew polynomial rings (exposed for instance in [3]).

The aim of the present article is to examine thoroughly once more the semilinear Kro-
necker Problem, especially its applications to other problems of Linear Algebra. First of all,
using a unified matrix approach, we obtain a concise solution both to this problem and to
its contragredient variant. Furthermore, we consider an important biquadratic matrix problem
reducing it in the homogeneous case (in characteristic /= 2) to the semilinear Kronecker Prob-
lem and then obtaining two natural canonical forms of indecomposables, with applications.
The second form arises on the base of developing some special �-transformation technique
for polynomials. The involved for this integer matrix sequence �n is interesting of itself as
well.

For the convenience of the reader, initially we present in Section 2 a purely matrix descrip-
tion of the main considered in the paper linear-algebraic problems and the obtained canonical
forms, accompanied by minimum of definitions necessary to understand the formulations. In
particular, the placed here Theorems 3 and 4 describe the two main obtained canonical forms
and are equivalent to the given in Section 7 (in more abstract terms) Theorems 15 and 17 respec-
tively.

The systematic exposition of the material starts in Section 3. First we recall briefly in Sec-
tions 3 and 4 basic definitions and facts concerning semilinear maps and canonical forms under
transformations of σ -similarity (with a base in the theory of non-commutative polynomials over
division rings).

Then we give at once in Section 5 a new short proof of the result by Djoković (Theorem
1) solving the semilinear Kronecker Problem.2 We continue by a parallel solution to the corre-
sponding contragredient problem for semilinear maps (Theorem 2) extending the known one by

1 The semilinear case is in fact the case of a pair consisting of one linear and one semilinear map, to which the case of
two semilinear maps A,B is trivially reduced.

2 In fact, this proof works also in the pseudolinear bundle case (see Remark 9).
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Dobrovol’skaja and Ponomarev [9] for a pair of counter-oriented linear mappings. We hope, our
approach helps to clarify a bit more the essence and unity of the observed problems.

In Section 6, the biquadratic matrix problem is defined as the problem of classifying rectangular
matrices over a bimodule G1⊗

F
G2, where G1, G2 are quadratic extensions of a field F , by G1-

elementary transformations of their rows and G2-elementary transformations of columns. This
(still open in general) problem plays an important role in the representation theory. Its particular
case (when F = R and G1 = G2 = C) was solved completely by Dlab and Ringel in [8] and can
be reduced (as shown in [6]) to the semilinear Kronecker Problem.

Beginning Section 7, we restrict our considerations by the case charF /= 2 and show under
this assumption (Proposition 13 and Corollary 14) that the homogeneous biquadratic problem (for
which G1 = G2 is the same field G) is reduced to the (1, σ )-pencil problem, i.e. to the semilinear
Kronecker Problem determined by a pair of automorphisms {1, σ } of the field G with σ being
the natural conjugation. This leads to the first canonical form of indecomposables described by
Theorem 15 (or equivalently by Theorem 3).

Since the first canonical form is not the best possible with respect to the standard base of the
bimodule G⊗

F
G, we need to examine the question more defining in Section 8 an integer matrix

sequence �n which allows to improve the situation. Its main properties are being established
along that section (for n � 9, the matrices �n are shown explicitly in Appendix).

Using the sequence �n, we introduce and study in Section 9 the �-transformation of polynomi-
als establishing in the next section its important relationship with the (1, σ )-pencil representations
(Theorems 36 and 41 and several corollaries).

Then at last we are able to obtain in Section 11 the desired simplified second canonical form
of indecomposables for an arbitrary homogeneous biquadratic problem in characteristic /= 2
(Theorem 44 and its consequence Theorem 17, the last one equivalent to Theorem 4).

Finally, in Section 12, some applications to the representation theory of posets with addi-
tional structures are observed. We outline the way of extending the main results from [26,28,29]
(obtained there for the pair of fields R ⊂ C) to the case of an arbitrary quadratic extension F ⊂ G

in characteristic /= 2 (Theorems 48 and 49). Also we correct a gap in the construction of the
differentiation algorithm X in [28].

Remark that the restriction to the case charF /= 2 (in the investigation of the homogeneous
biquadratic problem, beginning Section 7) was chosen with a purpose to simplify the situation
and exposition of the material. It seems, in characteristic 2 one can obtain similar results but using
a more deep combinatorics.

The author is grateful to the referee for useful remarks and suggestions.

2. Main matrix canonical forms

An important role in our considerations plays a canonical form for the semilinear Kronecker
Problem. In the matrix language, this problem consists in classifying indecomposable pairs (A, B)

of rectangular matrices of equal size over a division ring K with an automorphism σ with respect
to transformations of the form

(A, B) �→ (X−1AY, X−1BYσ ), (2)

with non-singular square matrices X, Y . Its solution was given by Djoković [6] and is described
by the following Theorem 1 which extends the classical Kronecker’s classification [18] from the
linear case (σ = 1) to the semilinear one.
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We use the following notations. If In is the identity matrix of order n, then I
↑
n , I

↓
n , I→n , I←n

are the matrices obtained from In by joining to it one additional zero-row or zero-column from
the above, below, right or left respectively. It is convenient to admit the case n = 0, then I

↑
0 and

I
↓
0 are “empty matrices” consisting formally of one row and zero columns each one (dually, I→0

and I←0 consist of zero rows and one column each one).
Let J+n (λ) (respectively J−n (λ)) be the Jordan block of order n with the eigenvalue λ and

entries 1 above (below) the main diagonal. Let Jn(λ) be any of the mentioned blocks.
If f (t) = a0 + ta1 + · · · + tn−1an−1 + tn is a monic non-constant polynomial over K , denote

by C(f ) its standard companion matrix which is a square matrix of order n of the form

C(f ) =

−a0
1 −a1

. . .
...

1 −an−2
1 −an−1

(3)

(throughout the whole paper, the non-shown entries of matrices are supposed to be zeroes).
Denote by 	 = ∪n	n the set of all indecomposable polynomials (with right coefficients) of

the skew polynomial ring R = K[t, σ ] (see details in Section 4)3 where 	n is the subset of
polynomials of degree n. Notice, if f ∈ 	 then det C(f ) = 0⇔ f (t) = 0⇔ f = tn.

For a subset X ⊂ 	, let Ẋ be any fixed maximal subset of non-similar in pairs polynomials in
X.

Now the result of Djoković ([6], Theorem 1) can be presented in the following form.

Theorem 1. The indecomposable pairs of matrices (A, B) for the semilinear Kronecker Problem
(2) over an arbitrary skew field K with an automorphism σ are exhausted, up to equivalence, by
the pairs of the following types:

0 = 0∗ : (In, C(f )), where f ∈ 	̇n\tn and n � 1.

1 = 1∗ : (a) (In, Jn(0)) and (b) (Jn(0), In), n � 1.

2 = 3∗ : (I↑n , I
↓
n ), n � 0.

3 = 2∗ : (I→n , I←n ), n � 0.

These pairs are non-equivalent two-by-two.

We place a new short proof of Theorem 1 in Section 5. As for the formulation above, one
should take into account the following:

(a) If (A, B) is an indecomposable pair of type N , then N∗ denotes the type of the “dual pair”
(defined naturally in the invariant language, as in Section 5).

(b) Representations of type (1), given by J+n (0) and J−n (0), are equivalent (in each of the
subcases (a) and (b)).

(c) Formal “empty” matrix representations (I→0 , I←0 ) and (I
↑
0 , I

↓
0 ) correspond to trivial rep-

resentations (K, 0, 0, 0) and (0, K, 0, 0) respectively of the form (U1, U2,A,B) in the
scheme (1).

3 If σ = 1 and K is a field, then 	 is precisely the set of all polynomials of the form pm(t) with irreducible p(t) ∈ K[t]
and m � 1 (these are the classical elementary divisors of the ordinary commutative polynomial ring K[t]).
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We also investigate the contragredient semilinear Kronecker Problem which is rather like the
previous one and can be interpreted as the problem of classifying pairs (A, B) of rectangular
matrices over K (such that A and BT are of equal size) by transformations of the form

(A, B) �→ (X−1AY, Y−1BXσ ), (4)

with non-singular X, Y . The linear case σ = 1 is known as the contragredient equivalence problem
for linear maps solved originally by Dobrovol’skaja and Ponomarev [9]. Their solution is extended
to the semilinear case as follows.

Theorem 2. The indecomposable pairs of matrices (A, B) corresponding to the contragredient
semilinear Kronecker Problem (4) over an arbitrary skew field K with an automorphism σ are
exhausted, up to equivalence, by the pairs of the following types:

0 = 0∗ : (In, C(f )), where f ∈ 	̇n\tn and n � 1.

1 = 1∗ : (a) (In, Jn(0)) and (b) (Jn(0), In), n � 1.

2 = 3∗ : (I↑n , I→n ), n � 0.

3 = 2∗ : (I→n , I
↑
n ), n � 0.

These pairs are non-equivalent two-by-two.

Theorem 2 does not follow from Theorem 1. At the same time, since the formulations of the
theorems are very similar, one can expect also very similar solutions. We confirm the truth of this
in Section 5 proving the result.

One of the main objectives of the present paper is to obtain canonical forms for some matrix
problem determined by an arbitrary quadratic field extension F ⊂ G in characteristic /= 2, called
the homogeneous biquadratic problem (for the reason of terminology, see Section 6). The problem
can be described in the following way.

Fix an element u in G having the minimal polynomial t2 + q over F . Then G = F(u) and
each element x ∈ G is presented uniquely in the form x = α + βu (α, β ∈ F ) where α = Rex
and β = Imx are called the real and imaginary parts of x (with respect to F ). Thus real and
complex matrices are understood below in the generalized sense, as matrices over F and over G

respectively.

On the other hand, real 2m× 2n matrices of the form
[

X −qY

Y X

]
are said to be formally

complex. If m = n, the correspondence[
X −qY

Y X

]
�→ X + Yu

is an isomorphism from the ring of such special 2n× 2n matrices over F onto the ring of all
n× n matrices over G.

Naturally, if (F, G) = (R, C), where R and C are the fields of ordinary real and complex
numbers, and q = 1, then we stay with the standard real, complex and formally complex matrices.

The homogeneous biquadratic problem corresponding to the extension F ⊂ G = F(u) con-
sists in finding a canonical form for real (in the agreed generalized sense) matrices of even size
2m× 2n with respect to formally complex transformations of the form[

A B

C D

]
�→

[
X −qY

Y X

] [
A B

C D

] [
Z −qT

T Z

]
, (5)

where all matrices are over F , the blocks A, B, C, D are of equal size m× n and X, Y, Z, T are
square blocks of suitable order such that both the transforming matrices in (5) are non-singular.
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A particular case of this problem, for (F, G) = (R, C) and q = 1, is precisely the problem
considered and solved by Dlab and Ringel in [8]. As shown in [6], it is reduced to the semilinear
Kronecker Problem over C.

The problem (5) also can be reduced analogously to the semilinear Kronecker Problem (2) over
G, as we explain in Section 7 using suitable bases of linear spaces (Proposition 13). This leads
immediately to the first canonical form for the problem (5) described by the following Theorem
3 (which is the matrix version of Theorem 15).

Let σ be the natural involution (conjugation) on G = F(u) given by σ(α + βu) = α − βu,
and R = G[t, σ ], 	 = ∪n	n the same polynomial sets as above (for K = G).

Theorem 3 (The first matrix canonical form). Let F ⊂ F(u) be a quadratic field extension in
characteristic /= 2 with the minimal polynomial t2 + q of the element u. Then the indecomposable

matrices
[

A B

C D

]
for the homogeneous biquadratic problem (5) are exhausted, up to equivalence,

by the pairwise non-equivalent ones of the following types (corresponding to the types of Theorem
1, under the assumption K = G):

(0)
In + Re C(f ) qIm C(f )

Im C(f ) In − Re C(f )
f ∈ 	̇n\tn, n � 1.

(1a)
In + Jn(0)

In − Jn(0)
n � 1. (2)

I
↑
n + I

↓
n

I
↑
n − I

↓
n

n � 0.

(1b)
Jn(0)+ In

Jn(0)− In
n � 1. (3)

I→n + I←n
I→n − I←n

n � 0.

Notice, one can realize also a purely matrix reduction of the biquadratic homogeneous problem
(5) to the semilinear Kronecker Problem (2). Namely, set for brevity

P =
[
P1 −qP2
P2 P1

]
, P σ =

[
P1 qP2
−P2 P1

]
, P ′ =

[
P1 qP2
P2 −P1

]
, E =

[
In 0
0 −In

]
,

where Pi are some m× n blocks over F , and take the same convention (as for P ) for another real
2m× 2n matrix Q, as well as for square real matrices X and Y of order 2m and 2n respectively.
In such notations, Theorem 1 ensures a solution of the canonical form problem

P �→ XPY, Q �→ XQYσ (6)

for pairs (P, Q) of formally complex 2m× 2n matrices. Then the second transformation in (6)

implies Q′ = QE �→ XQEEYσ E = XQ′Y . Thus each 2m× 2n matrix M =
[

A B

C D

]
over F

(which is uniquely presented in the form M = P +Q′) is reduced precisely by the transformations
of type (5). So, canonical pairs (P, Q) for (6) give canonical matrices P +Q′ for (5).

The first canonical form can be simplified more, on the base of using some special �-transfor-
mation of polynomials. For this, we define in Section 8 an integer matrix sequence �n = [�ij

n ]
by the explicit formula

�ij
n =

∑
k

(−1)k
(

j − 1
k

) (
n− j

i − k − 1

)
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and establish its main properties4 (in the sum above, one assumes
(

m

l

)
= 0 if the condition

0 � l � m is not satisfied).
For a subset � ⊂ R and an element a ∈ K , let �〈a〉 be the subset of all polynomials in � not

vanishing in a (notice that 	̇n〈0〉 = 	̇n\tn, this set figured in the previous theorems).
To each polynomial f = a0 + ta1 + · · · + tnan in R〈−1〉 of degree n � 0 with the vector-

column of coefficients [f ] = (a0, a1, . . . , an)
T, one can attach a polynomial �n+1f (this is

the “almost �-transform of f ”) given by the matrix product [�n+1f ] = �n+1[f ]. Then the
�-transform of f is a polynomial

�f = (�n+1f )
an

f (−1)
,

and the transformation � appears to be an involution on R〈−1〉 preserving degrees and lead-
ing coefficients of polynomials (see Section 9). Observing its relationship with the semilinear
Kronecker Problem, we obtain in Section 11 Theorem 44 ensuring the following result which
is equivalent to Theorem 17 and represents in matrix terms the second canonical form for the
homogeneous biquadratic problem.

Theorem 4 (The second matrix canonical form). Under the assumptions of Theorem 3, the

indecomposable matrices
[

A B

C D

]
for the homogeneous biquadratic problem (5) are exhausted,

up to equivalence, by the pairwise non-equivalent ones of the following types:

(1)
In

Im C(f ) Re C(f )
n � 1 (2)

I
↑
n

I
↓
n

(3)
I→n

I←n
.

f ∈ �(	̇n〈−1〉) ∪ (t + 1)n n � 0 n � 0

It should be remarked that if a given polynomial f ∈ 	̇ is real, then Re C(f ) = C(f ) and
Im C(f ) = 0, so the corresponding to f matrix (1) is simpler. This fact can be used in particular
in the case (F, G) = (R, C) where the whole set of indecomposable polynomials 	̇ can be formed
of real ones only, say as in Corollary 7.

If so, then one can consider the mentioned in Theorem 4 special set of polynomials�(	̇n〈−1〉) ∪
(t + 1)n as the set Sn of all elementary divisors of degree n of the ring R[t] having the constant
term inside the segment [−1, 1] (see Example 46). In other words, it suffices to deal only with the
collection S = ∪nSn formed by all polynomials of the form gm where m � 1 and g(t) = t + c

or g(t) = t2 + bt + c is a real irreducible polynomial with the condition |c| � 1.
Therefore, it holds the following result (equivalent to Theorem 47) which describes one more

simplified canonical form for the problem solved in [8].

Theorem 5. In the case of the quadratic extension R ⊂ C, the indecomposable non-equivalent

matrices
[

A B

C D

]
corresponding to the homogeneous biquadratic problem (5) (with q = 1) are

exhausted, up to equivalence, by the pairwise non-equivalent matrices of the types (1)–(3) shown
in Theorem 4, with a new condition f ∈ Sn for the type (1) matrices (which implies automatically
Re C(f ) = C(f ) and Im C(f ) = 0).

4 There is also a simple recurrence definition of �n (see Lemma 19 and Corollary 22, together with (23), and observe
the matrices shown in Appendix).
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3. Pairs of semilinear maps

Let K be a division ring with an automorphism α and U1, U2 be right finite-dimensional vector
spaces over K . We remind (see [1,3,16]) that a map A : U1 −→ U2 is called semilinear (with
respect to the automorphism α) if it satisfies the conditions

(x + y)A = xA+ yA

(xa)A = (xA)aα.

for all x, y ∈ U1 and a ∈ K . Below we call briefly such maps α-semilinear. In particular, each
linear map is 1-semilinear.

Given two automorphisms α, β of the division ring K , then the (α, β)-pencil is a quiver (i.e.
an oriented graph) P of the form

© α

⇒
β

© (7)

the arrows of which are marked by the automorphisms α, β. A representation of P over K is any
collection U = (U1, U2,A,B) consisting of two right finite-dimensional K-spaces U1, U2 and
two semilinear maps A,B between them where A is α-semilinear and B is β-semilinear.

Representations are the objects of the category of representations rep P = rep(P, K, α, β) of
the (α, β)-pencil P , with a natural definition of morphisms. Namely, a morphism ϕ : U −→ U ′
in rep P is any pair ϕ = (ϕ1, ϕ2) of K-linear maps ϕi : Ui −→ U ′i such that Aϕ2 = ϕ1A

′ and
Bϕ2 = ϕ1B

′.
It is clear that the category rep P is additive. A morphism ϕ in rep P is an isomorphism iff both

ϕ1 and ϕ2 are ordinary isomorphisms between vector spaces. The direct sum of representations
and indecomposability are defined in a standard way. The dimension of a representation U is a
vector d = dim U = (d1, d2) with di = dimK Ui .

The problem of classifying indecomposable representations of P , up to isomorphism, is called
in the present paper the (α, β)-pencil problem. It admits a natural matrix interpretation.

Let U be a representation of P . If you fix some K-bases in U1 and U2, then the pair of
semilinear maps A,B is presented by a pair of rectangular matrices (A, B) of equal size over K

called a matrix representation of P . The pair (A, B) is transformed (when changing the bases)
into another pair (A′, B ′) as follows:

A′ = X−1AYα, B ′ = X−1BYβ (8)

where X, Y are some non-singular square matrices. We write in this case (A, B)
(α,β)∼ (A′, B ′) or

simply (A, B) ∼ (A′, B ′) and call the considered pairs (α, β)-equivalent.
One can apply to the pair of matrices (A, B) the following admissible transformations to obtain

an (α, β)-equivalent matrix representation (A′, B ′):

(a) Simultaneous left5 elementary row transformations in A and B over K .
(b) Simultaneous right α-elementary column transformations in A and β-elementary column

transformations in B over K.6

5 One should multiply rows by scalars to the left.
6 These transformations are generated by simultaneous multiplications to the right the i-ph columns in A and B by xα

and xβ respectively (x ∈ k× = k\0) and by simultaneous additions the i-ph column to the j -ph column (i /= j ) in A and
B with the right coefficients xα and xβ respectively.
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Setting Y = Zω, where ω is any automorphism of K , you get immediately

A′ = X−1AZωα, B ′ = X−1BZωβ. (9)

Hence, the (α, β)-pencil problem is equivalent to the (ωα, ωβ)-pencil problem, in particular, to
the (1, σ )-pencil problem for σ = α−1β. In other words, the classification of pairs of semilinear
maps of the form (1) is reduced to the classification of pairs consisting of one linear and one
semilinear map.

Notice that the (1, 1)-pencil problem is nothing else but the classical Kronecker Problem.
Changing the orientation of one of the arrows in the diagram (7), you get the contragredient

(α, β)-pencil

© α

�
β

© (10)

representations of which

U1
A

�
B

U2 (11)

are defined analogously to the single-directed case. So, their classification leads to the contragre-
dient (α, β)-equivalence problem consisting in classifying pairs (A, B) of rectangular matrices
over K (with equal size of A and BT) by transformations of the form

A′ = X−1AYα, B ′ = Y−1BXβ (12)

with square regular X, Y . In other words, one can apply to the pair (A, B):

(a′) Simultaneous left elementary row transformations in A and right β-inverse7 column trans-
formations in B.

(b′) Simultaneous left row transformations in B and right α-inverse column transformations in
A.

Here also it is enough to deal with the (1, σ )-case only, and the (1, 1)-case is nothing else but
the known contragredient equivalence problem for linear maps solved originally in [9] (see also
[14], in particular for applications).

4. Canonical form under σ -similarity

Suppose that U = (U1, U2,A,B) is a representation of the (1, σ )-pencil P such that A is
an isomorphism. Then the spaces U1 and U2 are naturally identified with help of A (let it be
U1 = U2 = U and A = Id), hence only one σ -semilinear operator B : U −→ U remains. Its
matrix B is considered as a representation of the σ -loop L(σ ) of the form

and is transformed (accordingly to base changing in U with a matrix X) by the rule

B ′ = X−1BXσ . (13)

We call such transformations the transformations of σ -similarity and write B
σ∼B ′. Their

special cases are the transformations of ordinary similarity (σ = 1) and of consimilarity [13,19]

7 One has to apply β to the inverse transformation matrix, before to multiply by it.
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(when σ is the complex conjugation − in K = C). The notation A
c∼B is used for consimilar

complex matrices A, B (such that A = X−1BX).
A canonical form of a square matrix under σ -similarity is known, being obtained in fact as

a direct consequence of the theory of finitely generated modules over principal ideal domains
(not necessarily commutative). For the convenience of the reader, we recall now briefly the main
scheme referring for more details and proofs to [1,3,15] (where even a more general type of
similarity is considered corresponding to pseudolinear operators). As for a more deep exposition
of the theory of non-commutative polynomials itself (used in the cited works), see also [17,20].

Let R = K[t, σ ] = {a0 + ta1 + · · · + tnan : ai ∈ K, n � 0} be the skew polynomial ring of
right polynomials over K in one variable t , with the permutation rule at = taσ for any a ∈ K .
Such a ring R is a (left and right) artinian principal ideal domain, and even an Euclidean domain
[3]. Considering the space U as a right R-module, such that ut = uB for each u ∈ U , and taking
some its K-base u1, . . . , un, we get uj t = ujB =∑

i uibij where B = [bij ] is the matrix of B
in this base.

Analogously to the case of ordinary commutative polynomial rings, two matrices B, B ′ over
K are σ -similar if and only if

P(tI − B)Q = tI − B ′

for some invertible matrices P, Q over R. Moreover, there exist invertible P, Q such that

P(tI − B)Q = diag{f1, . . . , fn},
where I is the identity matrix and the (monic) invariant factors f1, . . . , fn are such that each
fi (i � n− 1) is both a left and right factor of fi+1 and fiR ⊃ J ⊃ fi+1R (or equivalently
Rfi ⊃ J ⊃ Rfi+1) for some two-sided ideal J ⊂ R (see [15,16] or [3], Chapter 8).

These polynomials fi are unique up to some special kind of similarity for non-commuta-
tive polynomials defined in R in such a way that the cyclic modules R/fiR are unique up to
isomorphism (more precisely: non-divisors of zero a, b of any ring R are called similar8 if
R/aR � R/bR, which is equivalent to R/Ra � R/Rb).

It follows that the right R-module U also admits a unique (up to isomorphism) decomposition

U = Ws ⊕ · · · ⊕Wn,

where Wi � R/fiR are all the nonzero factors (corresponding to fi /= 1). The matrix canoni-
cal form of each given restriction Bi = B|Wi coincides in general with the ordinary Rational
Canonical Form.

Namely, supposing Wi = uR for some fixed i and some u ∈ Wi , and taking the base of Wi in
the form e0 = u, e1 = uB, . . . , em−1 = uBm−1, with uBm = −e0a0 − · · · − em−1am−1 being
the first vector among uBi depending on the previous ones, we see that the matrix of Bi is
precisely the companion matrix C(fi) of type (3) of the monic polynomial fi(t) = a0 + ta1 +
· · · + tm−1am−1 + tm. And the polynomial fi itself is a generator of the annihilator of Wi .

The R-modules Wi can be decomposed more Wi =⊕
j Wij where Wij are indecomposable

cyclic R-modules. The unique (up to the mentioned similarity) invariant factors fij of Wij are
called the elementary divisors of the semilinear operator B or its matrix B. So, almost like in the
case of classical commutative polynomial rings, two matrices B and B ′ over K are σ -similar iff
their elementary divisors are similar in pairs ([15], Theorem 9).

The elementary divisors of all possible indecomposable cyclic R-modules are precisely the
indecomposable polynomials of R in the sense of [3,15,20] where one can find some general

8 This general definition of similarity is specified for the ring R = K[t, σ ] in a concrete polynomial form (see [15,20]).
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definitions and conditions concerning these notions. It is a separate task and maybe an art to
determine indecomposable polynomials for a given polynomial ring (compare with [1,11,12,15]).
We need to recall the following result obtained in [1], Section 6 (see also [8], Lemma D). Set
R+ = {x ∈ R : x � 0}.

Proposition 6. Let R = C[t,−] be the skew polynomial ring over the field of complex numbers
C (with the automorphism σ being the usual complex conjugation −). Then the indecomposable
polynomials in R are exhausted, up to similarity, by the following pairwise non-similar ones
(n � 1):

(a) (t − α)n, for α ∈ R+,

(b) (t2 − ξ)n, for ξ ∈ (R\R+) ∪ (C\R).

For some goals, it is convenient to change in (b) the complex polynomials by real ones. In two
words, set ξ = ω2, where ω = α + iβ(α, β ∈ R) and β > 0, and also set p = ±2α, q = α2 + β2.

Then S
[

0 ξ

1 0

]
=

[
0 −q

1 −p

]
S, where S =

[±ω −q

1 ∓ω

]
, hence

[
0 ξ

1 0

]
c∼

[
0 −q

1 −p

]
c∼

[
0 −q

1 p

]
and one

can choose freely for instance α � 0 and p = −2α getting the following equivalent form of
Proposition 6.

Corollary 7. Under the assumptions of Proposition 6, the indecomposable polynomials in R are
exhausted, up to similarity, by the following pairwise non-similar ones:

(t − α)n and (t2 − 2αt + α2 + β2)n,

where α � 0 and β > 0 are real numbers and n � 1.

Remark that Proposition 6 and Corollary 7 follow also from the known results on consimilarity
of complex matrices, presented for instance in [13,19].

5. Solving the semilinear Kronecker Problem and its contragredient variant

Proof of Theorem 1. Let U = (U1, U2,A,B) be an indecomposable representation of the
(1, σ )-pencil P , with a matrix presentation (A, B) (with respect to some chosen bases in U1
and U2).

Case A. If the map A is an isomorphism, then one can assume A = In(n � 1). Hence, the
admissible transformations of B (not changing the block A = In) are precisely the transformations
of σ -similarity X−1BXσ . Therefore (see Section 4), X−1BXσ = C(f ) for some X and f ∈ 	̇n.
So, we get either the type 0 (if f (t) /= tn), or the type 1(a) (if f (t) = tn).

Case B. If the mapA is not an isomorphism, we can suppose, up to duality9, that W = ImA /=
U2. We carry out the induction on d = dimK U2. The case d = 1 is trivial and leads either to the
type 1(b) with n = 1, or to the type 2 with n = 0.

Let d > 1 and M = A B be a matrix realization of U . Assuming that the chosen base of
U2 contains a base of the image W , present M in the form

9 For λ = σ−1 and any σ -semilinear map B : U1 −→ U2 between right K-spaces, the dual λ-semilinear map B∗ :
U∗2 −→ U∗1 between left K-spaces U∗

i
= Homk(Ui , K) is defined by (B∗f )u = (f (uB))λ (where f ∈ U∗2 , u ∈ U1).

Then the natural identifications U∗∗
i
= Ui and B∗∗ = B hold.
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M = Z E

X Y W
,

where the rows of X are linearly independent (and E is any complement to W ). Then the rows of
Z are also independent, otherwise one can get a zero-row in the whole matrix M , hence (because
of indecomposability) U2 = K in contradiction to d > 1.

Therefore, reducing the block Z to the form Z = Is , s � 1, and making then (by row
additions) zeroes below Is , we transform M to the form

�

M = Is

C A′ B ′ .
(14)

Obviously, in (14), the pair (A′, B ′) is again a matrix representation of the (1, σ )-pencil P , and the
block C admits in fact arbitrary independent column transformations since the satellite changes
in Is are corrected by row transformations. Moreover, one can make also independent column
additions A′ → C since the corresponding additions of columns of B ′ to the left are neutralized
by additions of rows of Is to the down. The following is true.

Lemma 8. If a matrix representation M = (A, B) of the form (14) is free, up to equivalence, of
trivial direct summands (0, 1), then (A, B) is indecomposable if and only if (A′, B ′) is indecom-
posable.

Proof. Suppose (A′, B ′) = (A′1, B ′1)⊕ (A′2, B ′2) is a non-trivial matrix direct decomposition cor-
responding to some (possibly trivial) vector space decomposition W = W1 ⊕W2. Since the rows
of the block X = C ∪ A′ are linearly independent, its columns generate the whole space W .
Hence the matrix C can be reduced (by elementary transformations of its columns and by col-
umn additions A′ → C) to a new form C′ = C1 C2 such that the columns of each block
Ci ∪ A′i generate the whole space Wi (i = 1, 2). In other words C′ = C′1 ⊕ C′2 for some subma-
trices C′i ⊂ Ci and (C′, A′, B ′) = (C′1, A′1, B ′1)⊕ (C′2, A′2, B ′2), which means decomposability
of (A, B).

Conversely, if (A, B) = (A1, B1)⊕ (A2, B2) is a non-trivial direct sum, then by the con-
struction (A′, B ′) = (A′1, B ′1)⊕ (A′2, B ′2) where the summands to the right are non-zero because
(A, B) is (0, 1)-free. �

We are able now to finish the proof of the theorem. By the induction hypothesis, up to equiv-
alence, the indecomposable pair (A′, B ′) must be of type 0, 1, 2 or 3, and the rows of the matrix
A′ are linearly dependent (otherwise C is annihilated and indecomposability implies that s = 1,
(A, B) = (0, 1) and d = 1, a contradiction). Hence, the pair (A′, B ′) is of type 1(b) or 2 only,
A′ has exactly one zero-row and all but one elements in C can be annulated. But then (due to
indecomposability) C consists of one column only, and one can make sure trivially that M itself
has the form 1(b) or 2 respectively (better to take Jn(0) = J−n (0) in the case 1(b)).

So, all matrix indecomposables of P are exhausted (up to equivalence) by the types 0, 1, 2, 3
(they really are indecomposable by Lemma 8 and obviously pairwise non-isomorphic). The proof
of Theorem 1 is complete. �

Remark 9. In fact, the given proof can be applied (practically without modifications) to the
pseudolinear bundle case affording an alternative proof to that one given in [23]. For, in [23],
pairs of matrices (A, B) over K are reduced by the transformations
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(A, B) �−→ (X−1AY, X−1(BYσ + AYδ)), (15)

where X, Y are invertible matrices over K and δ is a right σ -derivation in K (satisfying the condi-
tion (ab)δ = abδ + aδbσ ). Here left multiplications by X−1 correspond to left K-elementary row
transformations, while right column transformations are determined by the matrix Y . The reader
may check easily that in fact all the steps of our proof (including Lemma 8) remain valid in the situ-
ation (15) and are not broken by the appearance of a new additional term AYδ . Clearly, in Case A, a
canonical form of type (3) for (σ, δ)-similarity B �−→ X−1BXσ +X−1Xδ (see [3], §8.4) replaces
that one for σ -similarity. The only moment has to be pointed out is that we use (to minimize
combinatorics) the standard duality (see the footnote at the beginning of Case B), so one has to use
now its more general version. Namely, given a pseudolinear bundle (U1, U2,A,B) in the sense of
[23], i.e. a pair of additive mapsA,B : U1 −→ U2 (between right K-spaces) such thatA is linear
and B satisfies the condition (ua)B = (uB)aσ + (uA)aδ , then (for a ∈ K, u ∈ U1, f ∈ U∗2 )
the dual map B∗ : U∗2 −→ U∗1 is defined by the equality (B∗f )u = (f (uB))λ + (f (uA))∂ and
possesses the property B∗(af ) = aλB∗f + a∂A∗f where λ = σ−1 and ∂ = −δλ is a left λ-
derivation such that (ab)∂ = a∂b + aλb∂ (notice that a−δ = −aδ). We omit exhaustive details
because the pseudolinear case is out of the objectives of the present paper.

Proof of Theorem 2. Let (A, B) be a matrix realization of an indecomposable representation (11)
of the contragredient pencil (10) with (α, β) = (1, σ ). If the map A in (11) is an isomorphism,
then one has simply to repeat precisely Case A of the previous proof for Theorem 1.

Assuming that A is not an isomorphism and (up to duality) W = ImA /= U2, we again carry
out the induction on d = dimK U2. The case d = 1 again leads either to the type 1(b) with n = 1,
or to the type 2 with n = 0.

So, we suppose d > 1 and recall that the transformations (a′),(b′) of Section 3 (for (α, β) =
(1, σ )) are admissible for the matrices A, B.

Set U2 = W ⊕ E for some complement E and include a base of W into the chosen base of
U2. Then the pair (A, B) takes the form

where the rows of X are linearly independent and arrows symbolize simultaneous row and column
additions of type (a′) not changing the upper zero-block in A. Then the columns of Y are also
independent (otherwise, by indecomposability, a zero-row in Y implies U2 = K in contradiction
to d > 1).

Reducing the block Z to the form Z =
B ′ with a non-singular in rows matrix B ′ and then

annulling all the elements to the left of B ′, we get

where the matrix Y ′ is non-singular in columns and hence can be reduced to the form Y ′ =
Is

for some s � 1 (s > 0 since W /= U2). Thus the pair (A, B) takes finally the form
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(16)

with the shown by arrows possible simultaneous additions of type (a′) and (b′) between different
stripes in A and B. Here actually one gets independent column additions A′ → C → D10, and
the columns of C are linearly independent modulo the columns of A′ (otherwise a zero-column
in C implies by indecomposability (A, B) = (0, 1)). Further, the pair (A′, B ′) itself (if not to pay
attention to changes in the blocks C, D) is reduced precisely by the transformations (a′) and (b′).

Moreover, Lemma 8 remains true in the considered situation without changes, except for the
substitution the formula number (16) for (14) (its proof is entirely analogous to the previous case,
the appearance of a three-block chain A′ → C → D instead of the two-block one A′ → C is not
essential, a verification of this is left to the reader as an easy exercise).

Therefore it remains, in the induction step, to consider in (16) the pair (A′, B ′) of type 1(b) or 2
only (otherwise A′ were non-singular in rows and the block C could be annulated, in contradiction
to the independence of its s � 1 columns modulo A′). Thus A′ contains precisely one zero-row,
and one can annul by column additions A′ → C → D all but one elements in C and hence all in
D. In such a case by indecomposability the block D in reality is empty (i.e. consists of 0 columns)
but C consists of one column. So, one comes at once to the form 1(b) or 2 of the whole pair
(A, B). This completes the proof of Theorem 2. �

Now pass to some applications of the (1, σ )-pencil problem.

6. Biquadratic matrix problem

If A, B are rings and W an (A, B)-bimodule, then the AWB -problem is a matrix problem on
reducing to some canonical form one rectangular matrix M over W by elementary transformations
of its rows over A and columns over B. It means that one can apply to M combinations of
transformations of the following types:

(a) Multiplication a row to the left (a column to the right) by an invertible element from A(B).
(b) Addition of one row (column) to another one with a left (right) coefficient from A(B).

In particular, any permutations of rows or columns are admissible.
The matrix M itself is called a (matrix) representation11 of the bimodule W , or briefly a W -

representation. Representations M and M ′ are said to be (A, B)-equivalent (or simply equivalent

or isomorphic), with a notation M
(A,B)∼ M ′, if they are turned into each other by the mentioned

elementary transformations over A and B. Direct sums and indecomposability of representations
are defined naturally.

Remark 10. Due to formal reasonings, we accept (as representations of the bimodule W ) abstract
“empty matrices” with zero number of rows or columns, like for the (1, σ )-pencil problem. There

10 For instance, column additions A′ → C are simultaneous with the inverse additions of rows of the block Is to the
zero-block below which can be restored by suitable additions of columns of B ′ to the left (simultaneously with additions
of zero-rows in A to the down).
11 As for a matrix free definition of representations of bimodules, see for instance [21].
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exist (up to equivalence) precisely two indecomposable matrices of such a kind: M(1,0) and M(0,1),
having 1 row and 0 columns and 0 rows and 1 column respectively.

Our interest is to investigate one important particular case of the AWB -problem. Namely, let
F be a field admitting quadratic extensions G1, G2 (which may coincide) in the algebraic closure
F of F . Then one can consider a natural (G1, G2)-bimodule

W = G1⊗
F

G2

and define the biquadratic matrix problem over the triple (G1, F, G2), being precisely the
G1⊗

F
G2-problem. We call the biquadratic problem homogeneous if G1 � G2 over F , i.e. if

it is in fact the G⊗
F

G-problem for a quadratic extension F ⊂ G.

In general, a complete solution to the biquadratic problem is still unknown. Among the most
important situations with a complete or partial solutions one can mention the following ones.

(i) The C⊗
R

C-problem is equivalent (as we explain below) to the problem considered and

solved completely in [8].
(ii) The so-called non-homogeneous indecomposable representations (of discrete nature, em-

bracing all the non-regular and some special regular ones) are described in [7] in fact for
an arbitrary G1⊗

F
G2-problem.

In this connection, we consider below homogeneous biquadratic problems over a field F of
characteristic /= 2 (for instance, the situation (i) above is of such a kind) reducing them to the
(1, σ )-pencil problem, with a suitable σ . Using the obtained reduction, we then establish a precise
relationship between the corresponding matrix canonical forms.

The following simple reformulation of the general biquadratic G1⊗
F

G2-problem may be found

useful in various considerations.
Set Gi =F(ui) for some element ui ∈F having the minimal polynomial t2+pit + qi (i = 1,2).

Then the initial fields G1 and G2 are canonically isomorphic to the matrix fields G̃1 = F {I, U1}
and Ĝ2 = F {I, U2} respectively, where

U1 =
[

0 −q1
1 −p1

]
, U2 =

[−p2 −q2
1 0

]
and I is the identity matrix of order 2.

Let M be a representation of the bimodule W = G1⊗
F

G2, i.e. any m× n matrix over W which

has to be reduced. Representing each element x of M in the form

x = a(1⊗ u2)+ b(1⊗ 1)+ c(u1 ⊗ u2)+ d(u1 ⊗ 1)

(with a, b, c, d ∈ F ) and then replacing it by a square 2× 2 block
[

a b

c d

]
, we obtain a new

matrix M̃ over F of size 2m× 2n, which one can consider as a representation of the matrix
(G̃1, Ĝ2)-bimodule W̃ = M2(F ) formed by all 2× 2 matrices over F .

Moreover, since left G1-elementary (right G2-elementary) transformations of rows (columns)

of M correspond to left G̃1-elementary (right Ĝ2-elementary) transformations of pairs of rows
(columns) of M̃ , the following is true.
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Proposition 11. Each biquadratic G1⊗
F

G2-problem is equivalent to the G̃1
W̃Ĝ2

-problem con-

sisting in reducing to a canonical form one rectangular matrix M̃ over F (of size 2m× 2n) by
the transformations

XM̃Y,

where X and Y are invertible matrices over the matrix fields G̃1 and Ĝ2.

Example 12. Considering the C⊗
R

C-problem, we have G1 = G2 = C and can take u1 = u2 = i

(thus p1 = p2 = 0 and q1 = q2 = 1) getting matrix field

C̃ = Ĉ =
{[

α −β

β α

]
: α, β ∈ R

}
(17)

isomorphic to C. Hence, the C⊗
R

C-problem is equivalent to the C̃W̃C̃-problem, for W̃ = M2(R).

This is precisely the solved in [8] problem on reducing one real matrix (of even size) by for-
mally complex transformations of pairs of its rows and columns. It will be observed more below
(Example 46).

7. Homogeneous biquadratic problem in characteristic =/ 2

From now on, F is a field of characteristic /= 2.
Let G = F(u) be a quadratic extension of F with the minimal polynomial t2 + q of the

element u over F and the natural conjugation σ on G given by σ(α + βu) = α + βu = α − βu

(α, β ∈ F ). Consider a (G, G)-bimodule W = G⊗
F

G with the canonical base

w11 = 1⊗ 1, w1u = 1⊗ u, wu1 = u⊗ 1, wuu = u⊗ u (18)

and four special elements

e1 = w1u + wu1, e2 = wuu − qw11, e3 = w1u − wu1, e4 = wuu + qw11 (19)

which evidently are linearly independent over F (and therefore form another F -base of W ) and
satisfy the relations

ue1 = e2, e1u = e2, ue3 = e4, e3u = −e4,

ue2 = −qe1, e2u = −qe1, ue4 = −qe3, e4u = qe3.
(20)

Let M be a representation of W , i.e. a matrix over W . Considering each its element x as the
sum x = x′ + x′′ where x′ = αe1 + βe2 and x′′ = γ e3 + δe4 (α, β, γ, δ ∈ F ), one can attach to
M a pair of matrices (M ′, M ′′) formed by the summands x′, x′′.

Identifying each entry x′ = αe1 + βe2 (x′′ = γ e3 + δe4) with a formal expression α + βu

(γ + δu), one gets a pair of matrices (M ′, M ′′) over G and comes immediately (taking into
account the relations (20)) to the following conclusions:

(a) G-elementary transformations of rows of M correspond to simultaneous G-elementary
transformations of rows in M ′ and M ′′.

(b) G-elementary transformations of columns of M correspond to simultaneous conjugate
G-elementary transformations of columns in M ′ and M ′′, in the sense that a multiplication
of a column in M ′ by some coefficient α + βu ∈ G (or an addition of one column of M ′ to
another one with this coefficient) is simultaneous with the multiplication (addition) of the
same columns in M ′′ with the conjugate coefficient α − βu.
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It means that in the considered case the pair of matrices (M ′, M ′′) can be transformed into any
other pair of the form (X−1M ′Y, X−1M ′′Yσ ) with non-singular matrices X, Y over G, i.e. one
obtains the (1, σ )-pencil problem over G. We have established.

Proposition 13. For G = F(u) and σ as above, the biquadratic G⊗
F

G-problem is equivalent to

the (1, σ )-pencil problem over G.

As a consequence of Proposition 11 (applied to the case G1 = G2 = G) and Proposition 13,
we get the following result.

Corollary 14. Let G = F(u) be a quadratic extension of a field F of characteristic /= 2, with the
minimal polynomial t2 + q of the element u. Then the following matrix problems are equivalent:

(a) The homogeneous biquadratic G⊗
F

G-problem.

(b) The (1, σ )-pencil problem over G, where σ(α + βu) = α − βu is the natural conjugation
on G.

(c) The G̃W̃G̃-problem, where W̃ = M2(F ), G̃ =
{[

α −qβ

β α

]
: α, β ∈ F

}
.

Since canonical forms of indecomposables for the (1, σ )-pencil are known (Theorem 1), this
yields at once the following complete classification of indecomposables for the G⊗

F
G-problem.

Theorem 15 (The first canonical form). Let F and G = F(u) be as in Corollary 14. Then the
indecomposable representations of the bimodule G⊗

F
G are exhausted, up to isomorphism, by

the pairwise non-isomorphic ones of the following types:

(0) Ine1 + C(f )e3 = e1In + e3C(f σ ), where f ∈ 	̇n〈0〉 and n � 1.

(1) (a) Ine1 + Jn(0)e3 and (b) Jn(0)e1 + Ine3, n � 1.

(2) I
↑
n e1 + I

↓
n e3, n � 0.

(3) I→n e1 + I←n e3, n � 0.

Remark 16. In the invariant language, the arguments above mean that W = W ′ ⊕W ′′ is a direct
sum of two (G, G)-sub-bimodules

W ′ = F {e1, e2} � GGG and W ′′ = F {e3, e4} � GGG,

where GGG is the natural bimodule G and GGG is the “twisted from the right” (G, G)-bimodule
G (such that the right action of an element α + βu on it coincide with the multiplication by the
conjugate element α − βu).

We see that the homogeneous biquadratic problem is reduced easily to the (1, σ )-pencil prob-
lem. Nevertheless, the obtained first canonical form cannot be considered as a quite good one
with respect to the standard base (18) of the bimodule W because of the knotty expressions for
the special base (19) (remind that e1 = 1⊗ u+ u⊗ 1 and e3 = 1⊗ u− u⊗ 1).

Thus our goal in subsequent sections is to obtain another canonical form for the same situation.
It is expedient to present just now a general formulation of the result, still without its proof (given
in Section 11).

Theorem 17 (The second canonical form). Let F and G = F(u) be as in Corollary 14. Then the
indecomposable representations of the bimodule G⊗

F
G are exhausted, up to isomorphism, by

the pairwise non-isomorphic ones of the following types:
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(a) (1⊗ u)In + (u⊗ 1)C(g), where g ∈ �(	̇n〈−1〉) ∪ (t + 1)n and n � 1.

(b) (1⊗ u)I
↑
n + (u⊗ 1)I

↓
n , n � 0.

(c) (1⊗ u)I→n + (u⊗ 1)I←n , n � 0.

Notice that, in Theorems 3 and 4 (which are matrix versions of Theorems 15 and 17), the blocks
A, B, C, D are formed by the coefficients a, b, c, d in the presentation x = aw1u + bw11 +
cwuu + dwu1 of elements of the bimodule.

Before to prove Theorem 17, we need to introduce an integer matrix sequence �n which
expresses in a perfect way a precise relationship between polynomial invariants for the G⊗

F
G-

problem and the (1, σ )-pencil problem.

8. Integer matrix sequence �n

Let
(

n

k

)
= n!/k!(n− k)! be the ordinary binomial coefficients which usually are defined for

integers 0 � k � n. It is convenient for us to extend formally the range of definition of
(

n

k

)
to

all integers k, n ∈ Z setting
(

n

k

)
= 0 if the condition 0 � k � n is not satisfied. Then it holds, as

one checks easily,
(

n

k

)
=

(
n

n− k

)
for any k, n ∈ Z, and

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1
k + 1

)
for any k, n ∈ Z

except for the only case k = n = −1.
Denote by �n = [�ij

n ] a square matrix of order n whose elements are of the form

�ij
n =

∑
k

(−1)k
(

j − 1
k

) (
n− j

i − k − 1

)
, (21)

where k ∈ Z and obviously almost all terms of the sum are zeroes. Since i, j ∈ {1, . . . , n}, possible
non-zero summands in (21) can be met only if the inequalities 0 � k � j − 1 and 0 � i − 1− k �
n− j are satisfied, this is equivalent to the condition

max{0, i + j − n− 1} � k � min{i, j} − 1. (22)

Remark 18. The numbers �ij
n are defined only for admissible values of indices: 1 � i, j � n. So,

any formula below containing any number �ij
n is supposed to be valid only under this assumption.

The matrix �n contains some known numbers. Using (21), you get at once all the entries of
the border rows and columns

�1j
n = 1, �nj

n = (−1)j−1, �i1
n =

(
n− 1
i − 1

)
, �in

n = (−1)i−1, �i1
n =

(
n− 1
i − 1

)
(23)

meeting (in the first and the last columns) the ordinary binomial coefficients. If j = 2 and n � 2,
you get the numbers

�i2
n =

(
n− 2
i − 1

)
−

(
n− 2
i − 2

)
(24)

which, for a given n � 2 and all i � m = �n2 � (where �x� � x is the whole part of x), are precisely
the coefficients �i2

n = αi−1 of the Catalan polynomial
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Cn−2(x) = α0 + α1x + · · · + αm−1x
m−1

determined also by the known Catalan triangle (see for instance [4], Section 5.3). In particular,
for even n = 2m, you get the Catalan numbers

Cm−1 = �m2
2m =

1

m

(
2m− 2
m− 1

)
which are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . . for m = 1, 2, 3, . . . .

The elements �ij
n can be calculated in a simple recurrent way.

Lemma 19 (The recursion formulas). The following holds for admissible indices:

(a) �ij
n +�i+1,j

n = �i+1,j

n+1 , (b) �ij
n −�i−1,j

n = �i,j+1
n+1 .

Proof. (a) Since
(

n− j

i − 1− k

)
+

(
n− j

i − k

)
=

(
(n+ 1)− j

(i + 1)− k − 1

)
, you get at once, using (21), the desired

equality. (b) Shifting the summation index k→ k − 1 in the expression of type (21) for �i−1,j
n ,

you get �ij
n −�i−1,j

n =∑
k(−1)k

((
j − 1

k

)
+

(
j − 1
k − 1

)) (
n− j

i − 1− k

)
= �

i,j+1
n+1 . �

Obviously, for j = 1, the equality (a) coincides with the binomial property
(

n− 1
i − 1

)
+

(
n− 1

i

)
=(

n

i

)
, while (b) represents in fact the equality (24).

The next property is a direct consequence of (b) and (23).

Corollary 20. Let s
j
n be the sum of all elements of the j th column of �n. Then s1

n = 2n−1 and

s
j
n = 0 for j > 1.

Immediately from (a) and (b) we get the following relations valid for admissible indices (to
verify them, use (a) (resp. (b)) for the first (resp. second) summands; for i = 1 the first equality
is obvious):

2�ij
n = �ij

n+1 +�i,j+1
n+1 = �i+1,j

n+1 −�i+1,j+1
n+1 . (25)

This double property is reformulated in the matrix language as follows.

Corollary 21. �n+1(I
↓
n + I

↑
n ) = 2I

↓
n �n and �n+1(I

↓
n − I

↑
n ) = 2I

↑
n �n.

Taking into account (23) and applying any of the formulas (a) or (b), one can easily obtain
�n+1 from �n. On the other hand, substituting j + 1 for j in (a) and i + 1 for i in (b), we
get

�i+1,j+1
n+1 = �i,j+1

n +�i+1,j+1
n = �i+1,j

n −�ij
n , (26)

in particular

�ij
n +�i,j+1

n +�i+1,j+1
n = �i+1,j

n . (27)
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We have the following consequence of (27) and Lemma 19.

Corollary 22. Let a b

d c
be any square 2× 2 block of the matrix �n (belonging to adjacent

rows and adjacent columns). Then a + b + c = d, in particular, if a = �ij
n , then b + c = d −

a = �i+1,j

n+1 .

Since the border rows and columns of �n are known (see (23)), the property a + b + c = d

allows to calculate directly �n without knowing �n−1. In Appendix, the matrices �n are presented
for n � 9.

Setting (for a given fixed n) i∗ = n− i + 1, we note that the elements �ij
n and �i∗j∗

n occupy
symmetric positions in �n with respect to the center of �n.

Lemma 23 (The (±)-symmetry of rows and columns). Each odd (even) row or column of the
matrix �n is symmetric (antisymmetric) with respect to its own center, i.e.

�ij
n = (−1)i+1�ij∗

n = (−1)j+1�i∗j
n = (−1)n+i+j+1�i∗j∗

n . (28)
In particular, if n is odd, the central element of each even row or column is zero.

Proof. Write the second and the third terms in the form (21) and then simply shift the summation
index k to i − 1− k and j − 1− k respectively. You get the expression (21) for �ij

n , up to changes

of type
(

m

l

)
=

(
m

m− l

)
for the third term. The last equality is a consequence of the previous

ones. �

Considering a diagonal matrix Dn = D−1
n = diag{1,−1, . . . , (−1)n−1} and a codiagonal per-

mutation matrix Pn = P−1
n = codiag{1, 1, . . . , 1} of order n, we get an obvious consequence.

Corollary 24. �nPn = Dn�n.

Denote by αi
n and βi

n the ith row and column respectively of the matrix �n, considered as
vector-rows of the standard euclidian space Rn (1 � i � n). For any α ∈ Rn and β ∈ Rm, let
(α, β) ∈ Rn+m be a natural row-union in which β follows α. Let 0n ∈ Rn be the zero-row. Set by
definition α0

n = αn+1
n = 0n. The following statement is a direct consequence of Lemma 19 and

of the formulas (23).

Lemma 25
(a)

αi
n+1 = (αi

n, 0)+ (αi−1
n , 0)+

(
0n, (−1)i−1

(
n

i − 1

))
= (0, αi

n)− (0, αi−1
n )+

((
n

i − 1

)
, 0n

)
for all i ∈ {1, . . . , n+ 1}.

(b)

β
j

n+1 = (β
j
n , 0)+ (0, β

j
n ) for j � n,

β
j

n+1 = (β
j−1
n , 0)− (0, β

j−1
n ) for j � 2.
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Lemma 26 (The square of �n). �2
n = 2n−1In, in particular, �−1

n = 1/2n−1�n.

Proof. Use induction on n. For n = 1 the formula is true. Suppose it is true for a given n � 1,
i.e. αi

n · βj
n = 2n−1δij , where · denotes the inner product in Rn and δij is the ordinary Kronecker

symbol. We have to prove αi
n+1 · βj

n+1 = 2nδij . In view of Lemma 23, this is true if i and j are of

different parity, so assume the contrary. Then αi
n+1, β

j
n are both symmetric or both antisymmetric

and (if j � 2) β
j−1
n is respectively antisymmetric or symmetric. Thus it holds αi

n+1 · (βj
n , 0) =

αi
n+1 · (0, β

j
n ) for j � n and αi

n+1 · (βj−1
n , 0) = −αi

n+1 · (0, β
j−1
n ) for j � 2. Then by Lemma

25 you get (use the first presentation for αi
n+1 in (a) and take into account that αi−1

n · βj
n = 0, as

well as αi
n · βj−1

n = 0, due to different parities)

αi
n+1 · βj

n+1 =
{

2αi
n+1 · (βj

n , 0) = 2αi
n · βj

n = 2nδij , if j � n,

2αi
n+1 · (βj−1

n , 0) = 2αi−1
n · βj−1

n = 2nδij , if j � 2.

The proof is complete. �

Lemma 27. det �n = (−2)
n(n−1)

2 .

Proof. Set dn = det �n. Due to (25), �n+1J
+
n+1(−1) =

[−1 0n

∗ 2�n

]
(where ∗ denotes a column

of arbitrary elements) and dn+1(−1)n+1 = −2ndn, i.e. dn+1 = (−2)ndn. Since d1 = 1, we get

dn+1 = (−2)1+2+···+n = (−2)
n(n+1)

2 . �

Using the known Vandermonde convolution formula for non-negative integers (which follows
easily from the equality (1+ x)a(1+ x)b = (1+ x)a+b)∑

i

(
a

i

) (
b

c − i

)
=

(
a + b

c

)
, (29)

one can deduce directly from the definition (21) one more very useful relation.

Lemma 28. The following holds for admissible indices:

�pq

n+m−1 =
∑

i

�ij
n �p−i+1,q−j+1

m . (30)

Proof. Denoting s = n+m− 1 and k = k(i) = p − i + 1, l = l(i) = q − j + 1, we get

A=
∑

i

�ij
n �kl

m

(21)=
∑

i

∑
α

(−1)α
(

j − 1
α

) (
n− j

i − 1− α

) ∑
β

(−1)β
(

l − 1
β

) (
m− l

k − 1− β

)

=
∑
α,β

(−1)α+β

(
j − 1

α

) (
l − 1

β

) ∑
i

(
n− j

i − 1− α

) (
m− l

k − 1− β

)
(29)=

∑
α,β

(−1)α+β

(
j − 1

α

) (
l − 1

β

) (
s − q

p − 1− α − β

)
.
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If α + β = γ , then

A=
∑
γ

(−1)γ
∑
α

(
j − 1

α

) (
l − 1
γ − α

) (
s − q

p − 1− γ

)
(29)=

∑
γ

(−1)γ
(

q − 1
γ

) (
s − q

p − 1− γ

)
(21)= �pq

s . �

The dual sequence. To each matrix �n = [�ij
n ] one can naturally attach the dual one �∗n =

[�∗ijn ] reflecting all the elements of �n with respect to its center. In other words, the rows and
columns of �n have to be written in the inverse order, i.e. (see Lemma 23)

�∗ijn = �i∗j∗
n = (−1)n+i+j+1�ij

n . (31)

Hence, �∗n = Pn�nPn where Pn is the defined above codiagonal permutation matrix. The analog
of (21) for �∗n looks as follows:

�∗ijn =
∑

k

(−1)k
(

n− j

k

) (
j − 1

n− i − k

)
, (32)

where possible non-zero summands are met only on condition that

max{0, n+ 1− i − j} � k � n−max{i, j}. (33)

Denoting Tn = DnPn = codiag{1,−1, . . . , (−1)n−1} and taking into account Corollary 24
and Lemma 26, we get �n�∗n = �nPn�nPn = Dn�2

nPn = 2n−1DnPn = 2n−1Tn and �∗n�n =
Pn�nPn�n = PnDn�2

n = 2n−1PnDn = (−2)n−1Tn. Therefore, the following lemma holds.

Lemma 29. �n�∗n = (−1)n−1�∗n�n = 2n−1Tn.

One can easily reformulate for �∗n the established above properties of �n. Some of them are
listed below (where, as before, all the formulas are supposed to be valid for admissible indices).

Corollary 30. Each matrix �∗n possesses the properties:

(a) �∗1j
n = (−1)n−j , �∗njn = 1, �∗i1n = (−1)n−i

(
n− 1
i − 1

)
, �∗inn =

(
n− 1
i − 1

)
.

(b) �∗ijn −�∗i+1,j
n = �∗i+1,j

n+1 and �∗ijn +�∗i−1,j
n = �∗i,j+1

n+1 .

(c) If s
∗j
n is the sum of all elements of the j th column of �∗n, then s

∗j
n = 0 for j < n and

s∗nn = 2n−1.

(d) 2�∗ijn = �∗i,j+1
n+1 −�∗ijn+1 = �∗i+1,j

n+1 +�∗i+1,j+1
n+1 .

(e) �∗n+1(I
↑
n − I

↓
n ) = 2I

↓
n �∗n and �∗n+1(I

↑
n + I

↓
n ) = 2I

↑
n �∗n.

(f) For the same square 2× 2 block as in Corollary 22 (considered with respect to �∗n), it
holds a = b + c + d .

(g) Each co-odd (co-even)12 row or column of �∗n is symmetric (antisymmetric) with respect
to its own center.

12 I.e. being odd (even) when counting from the last one.
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(h) (�∗n)2 = �2
n = 2n−1In and det �∗n = det �n = (−2)

n(n−1)
2 .

(i) �∗pq

n+m−1 =
∑

i �∗ijn �∗p−i+1,q−j+1
m .

9. �-transform of a polynomial

Let K be a field of characteristic /= 2 with an automorphism σ , K0 the subfield of all σ -
invariant elements and R = K[t, σ ] the observed earlier in Section 4 skew polynomial ring. It is
clear that the elements of K0 are precisely those in K which are permutable with all polynomials
in R. Set R0 = K0[t], this is the maximal commutative polynomial subring in R.

We have a disjoint union R = ∪nRn (n � −1) where Rn is the subset of polynomials of degree
n (notice that R−1 contains the only one zero polynomial having each element of K as its root).

For an arbitrary polynomial f = a0 + ta1 + · · · + tnan in Rn (n � 0), let [f ] = (a0, a1, . . . ,

an)
T be the vector-column of its coefficients. Denote by �n+1f a polynomial in R given by the

formula

[�n+1f ] = �n+1[f ], (34)

with the matrix product to the right.
Obviously, the leading coefficient of �n+1f is a0 − a1 + · · · + (−1)nan = f (−1), hence

g = �n+1f ∈ Rn if f ∈ Rn〈−1〉. Moreover, since by Lemma 26 �2
n+1 = 2nIn+1, the leading

coefficient of the polynomial �n+1g = �2
n+1f = 2nf is g(−1) = 2nan /= 0. So, f ∈ Rn〈−1〉

if and only if �n+1f ∈ Rn〈−1〉.
Thus one can define a function � : R〈−1〉 −→ R〈−1〉, which will be called the �-transfor-

mation, attaching to a polynomial f = a0 + ta1 + · · · + tnan from Rn〈−1〉 its �-transform �f

in the following way

�f = (�n+1f )
an

f (−1)
. (35)

It is clear that �(f c) = (�f )c for any c ∈ K×.
The observations above imply the following fact.

Lemma 31. The function � is an involution on R〈−1〉 preserving degrees and leading coefficients
of polynomials. If f ∈ Rn〈−1〉 and g = �f, then

f (−1)g(−1) = 2na2
n, (36)

where an is the common leading coefficient of f and g.

Lemma 32. If f ∈ R0〈−1〉 and g ∈ R〈−1〉, then it holds

�(fg) = (�f )(�g).

Therefore, the restriction of the transformation � to the subset R0〈−1〉 is a multiplicative func-
tion. In particular, a polynomial f ∈ R0〈−1〉 is irreducible if and only if its transform �f is
irreducible.

Proof. By the assumption, the coefficients of f commute with t . Hence, for f = a0 + · · · + tnan

and g = b0 + · · · + tmbm, we have fg = c0 + · · · + t s−1cs−1, where s = n+m+ 1 and cq−1 =∑q

j=1 aj−1bq−j . And (for admissible indices)�n+1f �m+1g =∑
i,j t i−1�ij

n+1aj−1
∑

k,l t
k−1 ×

�kl
m+1bl−1 =∑

i,j,k,l t
i+k−2�ij

n+1�
kl
m+1aj−1bl−1 = A. Denoting p = i + k − 1 and q = j +
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l − 1 (p, q ∈ {1, 2, . . . , s}), we get A =∑
p,l,j

∑
i tp−1�ij

n+1�
p−i+1,q−j+1
m+1 aj−1bl−1

(30)=∑
p,l,j tp−1�pq

s aj−1bl−1 =∑
p,q tp−1�pq

s

∑
j aj−1bq−j =∑

p,q tp−1�pq
s cq−1 = �s(fg).

�

Corollary 33. If σ = 1, then � is a multiplicative involution.

For any polynomial f ∈ Rn, we define the dual one f ∗ setting

f ∗(t) = (−1)nf (−t). (37)

Obviously, if f = a0 + ta1 + · · · + tnan (an /= 0) and f ∗ = a∗0 + ta∗1 + · · · + tna∗n , then a∗i =
(−1)n−iai and the correspondence f �−→ f ∗ is an involution on R preserving the co-odd coef-
ficients (in particular, the leading coefficient an) and changing signs of the co-even ones. For
example, ((t − a)n)∗ = (t + a)n for any a ∈ K . It holds also evidently:

c∗ = c for any c ∈ K ,
(fg)∗ = f ∗g∗ for any polynomials f, g in R, in particular, (f c)∗ = f ∗c,
(f + g)∗ = f ∗ + g∗ for polynomials f, g of equal parity degrees,
(f α)∗ = f ∗α for any automorphism α of K (where f α = aα

0 + taα
1 + · · · + tnaα

n ),
f (a) = 0⇔ f ∗(−a) = 0.

Moreover, the following is true.

Lemma 34. If f = a0 + ta1 + · · · + tnan ∈ Rn〈−1〉, then

(�n+1f )∗ = (−1)n�∗n+1f
∗ or equivalently �n+1f (t) = (�∗n+1f

∗)(−t). (38)

Proof. We have �n+1f =∑
t ibi where bi =∑

j �i+1,j+1
n+1 aj (with i, j ∈ {0, 1, . . . , n}). On

the other hand, if �∗n+1f
∗ =∑

t ici , then (use (31)) ci =∑
j �∗i+1,j+1

n+1 a∗j =
∑

j (−1)n+i+j ×
�i+1,j+1

n+1 (−1)n−j aj = (−1)i
∑

j �i+1,j+1
n+1 aj = (−1)ibi , i.e. �n+1f (t) = (�∗n+1f

∗)(−t). �

Lemma 34 and Corollaries 20 and 30(c) lead to some more consequences.

Corollary 35. If f = a0 + ta1 + · · · + tnan ∈ Rn〈±1〉, then

(a) (�n+1f )(−1) = (�∗n+1f
∗)(1) = 2nan,

(b) (�n+1f )(0) = (�∗n+1f
∗)(0) = f (1) = (−1)nf ∗(−1),

(c) (�n+1f )(1) = (�∗n+1f
∗)(−1) = 2na0 = 2nf (0) = (−2)nf ∗(0).

Symmetrically to the�-transform (35), one can consider the dual�∗-transform of a polynomial
f =∑

t iai ∈ Rn〈1〉 setting

�∗f = (�∗n+1f )
an

f (1)
. (39)

It follows from (38) and (39) that

�∗f ∗ = (�f )∗, (40)

therefore complete analogs of Lemmas 31 and 32 for the function �∗ hold. It means that �∗ :
R〈1〉 −→ R〈1〉 also is an involution preserving degrees and leading coefficients of polynomials,
multiplicative on R0〈1〉, with the property



50 A.G. Zavadskij / Linear Algebra and its Applications 425 (2007) 26–62

f (1)g(1) = 2na2
n (41)

for each polynomial f ∈ Rn〈1〉 and g = �∗f .
Remark that evidently �2(t − a) = (1− a)− t (1+ a) and �∗2(t − a) = (1+ a)+ t (1− a)

for any a ∈ K . Therefore, due to the multiplicative property of � (resp. �∗) with respect to
polynomials in R0〈−1〉 (resp. R0〈1〉), for any n � 0 and any a ∈ K0 it holds

(a) �(t − a)n =
(

t − 1− a

1+ a

)n

if a /= −1,

(b) �∗(t − a)n =
(

t − a + 1

a − 1

)n

if a /= 1, (42)

(c) �(t − a)n = �∗(t + 1/a)n if a /= 0,−1.

In particular

�(t − 1)n = �∗(t + 1)n = tn. (43)

10. �-Transform and pencil representations

In this section, K is a field of characteristic /= 2. Denote by M = ∪nMn the set of all non-
constant right monic polynomials over K (with Mn being formed by polynomials of degree
n � 1).

Let, as before, C(f ) be the companion matrix of type (3) of a polynomial f ∈Mn. Since for
the considered above diagonal matrix Dn = diag{1,−1, . . . , (−1)n−1} it holds DnC(f )Dn =
−C(f ∗), we have an ordinary similarity (over the prime subfield) of square matrices

C(f ) ∼ −C(f ∗). (44)

Let α, β be any automorphisms of K and g = b0 + tb1 + · · · + tn−1bn−1 + tn a polynomial
in Mn. Denote by �(g) = �(g, α, β) a matrix representation of the (α, β)-pencil over K of the
form

�(g)= (In + C(gα), In − C(gβ))

=

1 −bα
0 1 b

β

0
1 1 −bα

1 −1 1 b
β

1
. . .

. . .
...

. . .
. . .

...

1 1 −bα
n−2 −1 1 b

β

n−2

1 1− bα
n−1 −1 1+ b

β

n−1

(45)

where the shown inside the blocks single vertical lines simply separate the last columns. Sym-
metrically set

�̃(g)= (In − C(gα), In + C(gβ))

=

1 bα
0 1 −b

β

0
−1 1 bα

1 1 1 −b
β

1
. . .

. . .
...

. . .
. . .

...

−1 1 bα
n−2 1 1 −b

β

n−2

−1 1+ bα
n−1 1 1− b

β

n−1

(46)
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Since (44) is a similarity over the prime subfield (which is stable under automorphisms of K),
an equivalence of representations of the (α, β)-pencil holds

�(g) ∼ �̃(g∗). (47)

Our key statement is as follows.

Theorem 36. If g = �f is a polynomial in Mn〈−1〉, then

(a) �(g) ∼ �̃(g∗) ∼ (In, C(f β)) ∼ (In,−C(f ∗β)),

(b) �̃(g) ∼ �(g∗) ∼ (C(f α), In) ∼ (−C(f ∗α), In).

Proof. Due to symmetry and (44), the formulas (a) and (b) are equivalent, hence it suffices to
prove (a).

Set g = b0 + tb1 + · · · + tn−1bn−1 + tn and g1 = b0 + tb1 + · · · + tn−1bn−1. Clearly, one
can rewrite the matrix �(g) as follows (the symbol | again symbolizes the shown in (45) separation
of the last columns)

(A, B) = �(g) = (I
↓
n−1 + I

↑
n−1|en − [gα

1 ], I↓n−1 − I
↑
n−1|en + [gβ

1 ]), (48)

where en = (0, . . . , 0, 1)T. Using the matrix Xn =
[

2�n−1 0T
n−1

0n−1 1

]
(with X1 = I1), we get by

Corollary 21 (let ξn be the last column of �n)

(�nAX−1
n , �nBX−1

n ) = (A′, B ′) = (I
↓
n−1|ξn − vα, I

↑
n−1|ξn + vβ),

wherev = (v1, . . . , vn)
T = �n[g1], in particularv1 = b0 + b1 + · · · + bn−1 andvn = b0 − b1 +

· · · + (−1)n−1bn−1.

Let Yn =
[

In−1 w

0n−1 1

]
where w = (v1 −�1n

n , . . . , vn−1 −�n−1,n
n )T (with Y1 = I1). Then

(A′Yα
n , B ′Yβ

n ) =

1 c
β

0
1 1 c

β

1
. . .

. . .
...

1 1 c
β

n−2

−cα
n 1 c

β

n−1

, (49)

where, as one checks easily by the recursion formulas of Lemma 19, for the polynomial f1 = c0 +
tc1 + · · · + tncn it holds precisely f1 = �n+1g and cn = g(−1). Since by Lemma 31 g(−1) /= 0,
the coefficients of the polynomial

f = f1 · (1/cn) = (�n+1g) · (1/g(−1)) = �g

are ai = ci/cn. Dividing the last columns of the blocks in (49) by −cα
n and −c

β
n respectively, we

come finally to the equivalence

�(g) ∼

1 −a
β

0
1 1 −a

β

1
. . .

. . .
...

1 1 −a
β

n−2

1 1 −a
β

n−1

(50)

In other words �(g) ∼ (In, C(f β)). The proof is complete. �
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We shall write sometimes I instead of In, if no confusions.
Taking into account trivial facts that (for any square matrices A, B)

(I, A)
(α,β)∼ (I, B)⇔ A∼α−1βB and (A, I)

(α,β)∼ (B, I )⇔ A
β−1α∼ B

and also

A
λ∼B ⇔ (Aμ)

μ−1λμ∼ (Bμ),

we get the following immediate consequence of Theorem 36.

Corollary 37. Let α, β be arbitrary automorphisms of the field K.

(a) If f = �g and f ′ = �g′ are polynomials in M〈−1〉, then

�(g)
(α,β)∼ �(g′) ⇔ C(f )

βα−1

∼ C(f ′),

�̃(g)
(α,β)∼ �̃(g′) ⇔ C(f )

αβ−1

∼ C(f ′).
(b) If f = �∗g and f ′ = �∗g′ are polynomials in M〈1〉, then

�(g)
(α,β)∼ �(g′) ⇔ C(f )

αβ−1

∼ C(f ′),

�̃(g)
(α,β)∼ �̃(g′) ⇔ C(f )

βα−1

∼ C(f ′).

For an abstract set with an equivalence relation (S,∼), denote by [x] = [x]∼ the equivalence
class of an element x ∈ S. For a subset X ⊂ S, set [X] = [X]∼ = {[x] : x ∈ X}.

For a set of polynomials X ⊂M, denote C(X) = {C(f ) : f ∈ X} and analogously define
�(X) and �̃(X). For an element a ∈ K , set for short C〈a〉 = C(M〈a〉) and similarly define �〈a〉
and �̃〈a〉.

The main consequence of Theorem 36 and Corollary 37 is as follows.

Corollary 38. The involutions � and �∗ induce the bijections (a) and (b) between equivalence
classes of representations

(a) [�〈−1〉](α,β) � [C〈−1〉]βα−1 and [�̃〈−1〉](α,β) � [C〈−1〉]αβ−1 ,

(b) [�̃〈1〉](α,β) � [C〈1〉]βα−1 and [�〈1〉](α,β) � [C〈1〉]αβ−1 ,

as well as the bijections (a′) and (b′) between equivalence classes of indecomposable represen-
tations

(a′) Ind[�〈−1〉](α,β) � Ind[C〈−1〉]βα−1 , Ind[�̃〈−1〉](α,β) � Ind[C〈−1〉]αβ−1 ,

(b′) Ind[�̃〈1〉](α,β) � Ind[C〈1〉]βα−1 and Ind[�〈1〉](α,β) � Ind[C〈1〉]αβ−1 .

Next we want to investigate the structure of matrix indecomposables of the (α, β)-pencil P .
First pay attention to square block indecomposables.

Let σ be an automorphism of K and K0 ⊂ K , R = K[t, σ ] and R0 = K0[t, σ ] the same as
in Section 9.

For any a ∈ K0, denote by 	a = 	\	〈a〉 the subset of all polynomials in 	 having a root a.
Set
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Pa = [(I, C(f )) : f ∈ 	a](α,β), P̃a = [(C(f ), I ) : f ∈ 	a](α,β).

The structure of the sets P0 and P̃0 is clear. Since each similar to t monic polynomial in R

coincide with t (see for instance the equality (1.3.3) in [17]) and t is bounded in the sense of
[3,15,16], in view of Theorem 6.5.4 in [3] we get 	0 = {tn : n � 1} and so

P0= [(In, Jn(0))] = [�((t − 1)n)] = [�̃((t + 1)n)],
P̃0 = [(Jn(0), In)] = [�((t + 1)n)] = [�̃((t − 1)n)],

where n runs through the positive integers inside the brackets.
Further, if a ∈ K0\{0} then 	a ∩ 	0 = ∅ and, for a polynomial f ∈ 	a of degree n with the

constant term c0, the matrix C(f ) is non-singular. Then (C(f ))−1 = C∗(f ′) := (C(f ′))∗ where
f ′ = tnf (1/t)c−1

0 and X∗ denotes the dual matrix to a matrix X (defined just after Lemma 28
above for �n).

Since an ordinary similarity C(f ′) ∼ C∗(f ′) over the prime subfield holds (realized by simul-
taneous row and column permutations), we get (I, C(f )) ∼ (C∗(f ′), I ) ∼ (C(f ′), I ). Hence
Pa = P̃1/a , so P−1 = P̃−1 and P1 = P̃1.

Let IndsqP(α, β) be the set of all isomorphism classes of indecomposable matrix representa-
tions (A, B) of the (α, β)-pencil P with square blocks A, B. Since det(In ± C(gα)) = 0 if and
only if g(∓1) = 0, Theorems 1 and 36 yield the following statement.

Corollary 39. There hold equalities

(a) Ind[�〈−1〉](α,β) = Ind[�̃〈1〉](α,β),

(b) IndsqP(α, β) = Ind[�〈−1〉] ∪ P−1 ∪ P̃0 = Ind[�̃〈1〉] ∪ P̃1 ∪ P0,

(c) (Ind[�〈−1〉] ∪ P−1) ∩ P̃0 = (Ind[�̃〈1〉] ∪ P̃1) ∩ P0 = ∅.

It may happen P−1 ⊂ Ind[�〈−1〉] and P̃1 ⊂ Ind[�̃〈1〉] (see Section 11).
As for the non-square block indecomposables of the (α, β)-pencil (of type 2 and 3 in Theorem

1), they can be represented in some special form as well. Corollary 21 and the matrix transpose
T imply

I↓n = �n+1(I
↓
n + I↑n )(2�n)

−1, I→n = ((2�n)
T)−1(I→n + I←n )�T

n+1,

I↑n = �n+1(I
↓
n − I↑n )(2�n)

−1, I←n = ((2�n)
T)−1(I→n − I←n )�T

n+1,

leading to the following fact (the permutation property of which is checked easily directly).

Lemma 40. For an arbitrary (α, β)-pencil P it holds

(I↓n , I↑n ) ∼ (I↓n + I↑n , I↓n − I↑n ) and (I→n , I←n ) ∼ (I→n + I←n , I→n − I←n ),

where one can permute the coordinates inside any bracket separately, as well as permute simul-
taneously the orientations of all arrows inside any bracket separately.

We resume the considerations above by the following statement.

Theorem 41. For an arbitrary (α, β)-pencil P, the set Ind P(α, β) is a disjoint union

Ind P(α, β) = E0 ∪ E− ∪ E+,
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where E0 = IndsqP(α, β) is described in Corollary 39 and

E− = [(I↑n + I↓n , I↑n − I↓n ) : n � 0], E+ = [(I→n + I←n , I→n − I←n ) : n � 0].

11. Second canonical form

We return to the homogeneous biquadratic G⊗
F

G-problem, with a quadratic extension G =
F(u) of the basic field F of characteristic /= 2, the minimal polynomial t2 + q of the element u

and the conjugation σ(x) = x on G given by σ(α + βu) = α + βu = α − βu (here G0 = F ).
We would like to obtain a simplified (in comparison with Theorem 15) canonical form for

the G⊗
F

G-problem with respect to the canonical base (18) w11, . . . , wuu of the bimodule W =
G⊗

F
G. Recall (see Section 6) that the notation X

(G,G)∼ Y is used for equivalent G⊗
F

G-represen-

tations X, Y .
For any polynomial g ∈Mn over K = G, denote by �(g) a G⊗

F
G-representation of the form

�(g) = w1uIn + wu1C(g) = (1⊗ u)In + (u⊗ 1)C(g). (51)

Representing C(g) in the form C(g) = X + Yu, where X, Y are over F , and taking into account
the relations (19) and (20), we have

2�(g) = (e1 + e3)I + (e1 − e3)(X + Yu) = e1(I +X)+ e2Y + e3(I −X)+ e4Y.

(52)

Denote M = 2�(g), then due to (52), for the attached pair of matrices (M ′, M ′′) (defined in
Section 7 and corresponding to the (1, σ )-pencil problem over G), one gets an equivalence of
(1, σ )-pencil representations

(M ′, M ′′) ∼ (I + C(g), I − C(ḡ)) = �(g). (53)

Hence it holds.

Proposition 42. The correspondence �(g)↔ �(g) induces mutually inverse bijections

Ind[�(M)](1,σ ) � Ind[�(M)](G,G).

As a consequence, owing to Corollary 38(a′), one obtains two pairs of mutually inverse bijec-
tions

Ind[C〈−1〉]σ � Ind[�〈−1〉](1,σ ) � Ind[�〈−1〉](G,G) (54)

given by the correspondences

[C(f )] ↔ [�(�f )] ↔ [�(�f )].
The second pair of bijections in (54) is complemented by one more

P̃0 � [�((t + 1)n) : n � 1](G,G) (55)

(clearly, �((t − a)n)
(G,G)∼ (1⊗ u)In + (u⊗ 1)Jn(a) for any a ∈ F ).

Similarly, by Corollary 38(b′) we have bijections
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Ind[C〈1〉]σ � Ind[�̃〈1〉](1,σ ) � Ind[�〈1〉](G,G) (56)

induced by the correspondences

[C(f )] ↔ [�(�∗f )] ↔ [�(�∗f )].
The last pair of bijections in (56) is complemented by an additional one too (compare with

Corollary 39)

P0 � [�((t − 1)n) : n � 1](G,G). (57)

Further, since in the considered situation σ is an involution, for the matrix Hn = uDn =
diag{u,−u, . . . , (−1)n−1u} we get H−1

n = (u/q)Dn. Hence, as one checks trivially, for any

f ∈Mn it holds HnC(f )H−1
n = C(f ∗) and thus (In, C(f ))

(1,σ )∼ (In, C(f ∗)) as well as (C(f ),

In)
(1,σ )∼ (C(f ∗), In).
In particular, Pa = P−a for any a ∈ F . So, P1 = P−1 is a subset of both Ind[�〈−1〉] and

Ind[�〈1〉], due to the following fact.

Lemma 43. If an automorphism σ of some field K is of finite order, then an indecomposable
polynomial in R = K[t, σ ] cannot have different roots in K0.

Proof. By Theorem 15 of Chapter 3 in [16], each non-zero polynomial in R is bounded in the sense
of [3,15,16]. Hence, by Corollary 2 of Proposition 6.5.7 in [3], each (left and right) non-constant
factor of an indecomposable polynomial f ∈ R is indecomposable.

Assume that f (a) = f (b) = 0 for different a, b ∈ K0. Since a, b commute with t and a /= b,
we get f (t) = g(t)(t − b) = h(t)(t − a)(t − b) obtaining a contradiction with the mentioned
property since the factor (t − a)(t − b) of f obviously is decomposable accordingly to the stan-
dard definitions in [3,15,16] (for R(t − a) ∩ R(t − b) = R(t − a)(t − b) and R(t − a)+ R(t −
b) = R). �

We conclude (see Corollary 39(b)) that the set IndsqP(α, β) is presented in the considered
case as disjoint unions

IndsqP(α, β) = Ind[�〈−1〉] ∪ P̃0 = Ind[�〈1〉] ∪ P0. (58)

Turning now to discrete representations, denote (for each n � 0)

�−n = (1⊗ u)I↑n + (u⊗ 1)I↓n , �+n = (1⊗ u)I→n + (u⊗ 1)I←n (59)

and

�− = [�−n : n � 0](G,G), �+ = [�+n : n � 0](G,G). (60)

It can be easily shown that, for M = 2�−n , the mentioned above attached pair of matrices (M ′, M ′′)
takes the form (M ′, M ′′) = (I

↑
n + I

↓
n , I

↑
n − I

↓
n ), i.e.

(M ′, M ′′) ∼ (I↑n + I↓n , I↑n − I↓n ).

Analogously, for N = �+n , one gets

(N ′, N ′′) ∼ (I→n + I←n , I→n − I←n ).

Therefore, in the notations of Theorem 41, we have evident natural bijections

E− � �− and E+ � �+.
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We obtain finally, as a consequence of Corollaries 14, 38 and 39, Proposition 42 and the formula
(58), the desired (simplified with respect to the base (18)) classification of indecomposables for
the considered G⊗

F
G-problem.

Theorem 44. Let G = F(u) be a quadratic extension of a field F in characteristic /= 2, with
u2 ∈ F, and σ the natural involution on G given by σ(a + bu) = a − bu (a, b ∈ F). Then the
set IndG⊗

F
G of all isomorphism classes of indecomposable G⊗

F
G-representations is a disjoint

union
Ind G⊗

F
G = �0 ∪ �− ∪ �+,

where �−, �+ are defined by (59), (60) and �0 is presented as disjoint unions

�0 = [�(�f ) : f ∈ 	〈−1〉] ∪ [�((t + 1)n) : n � 1]
= [�(�∗f ) : f ∈ 	〈1〉] ∪ [�((t − 1)n) : n � 1].

We have just proved simultaneously Theorem 17 which obviously is a part of Theorem 44 (the
last one contains also the dual variant of Theorem 17 with respect to the dual sequence �∗n).

To present an example, we first repeat, for the convenience of the reader, the formulation and
proof of one simple elementary fact from [27].

Lemma 45. The relations{
a = x2 − y2,

b = 2xy,

{
p = 2(x2 + y2 − 1)/((1+ x)2 + y2),

q = ((1− x)2 + y2)/((1+ x)2 + y2),

establish bijections between the values of three pairs of real parameters

(a, b) � (x, y) � (p, q)

satisfying respectively the restrictions (1) b > 0 or b = 0 and a < 0; (2) x � 0 and y > 0; (3)

p2 − 4q < 0 and q � 1.

Proof. Since a + bi = (x + yi)2, using polar coordinates a = r cos ϕ, b = r sin ϕ (0 < ϕ � π

and r > 0), we get r = |a + bi| = x2 + y2, hence p = 2(r − 1)/(1+ r + 2x), q = (1+ r −
2x)/(1+ r + 2x). One checks easily that 0 < q � 1 and p2 − 4q < 0 and x = √r cos(ϕ/2) =√

r(1+ cos ϕ)/2 = √(r + a)/2, analogously y = √(r − a)/2. Using convenient notations α =
1− q, β = √

4q − p2, γ = 1+ q − p, one gets a = (α2 − β2)/γ 2, b = 2αβ/γ 2, x = α/γ and
y = β/γ obtaining the desired bijections. Note that γ > 0, due to α � 0 and β > 0. �

Example 46. Consider the bimodule C⊗
R

C. Here σ is the ordinary complex conjugation, u = i,

and �0 = [�(�f ) : f ∈ 	〈−1〉] ∪ [�(t + 1)n : n � 1]. To find �0, one has to know the set
	〈−1〉 described by Proposition 6. Due to its equivalent form (Corollary 7), �0 = �′0 ∪ �′′0 ∪ �′′′0
where

�′0 = [�(�(t − α)n) : α ∈ R+], �′′0 = [�(t + 1)n : n � 1],
�′′′0 = [�(�(t2 − 2xt + x2 + y2)n) : x � 0, y > 0].

From (42) we get �(t − α)n = (t + q)n where q = (α − 1)/(α + 1) and q ∈ [−1, 1)⇔ α ∈
R+. Hence �′0 = [�((t + q)n) : q ∈ [−1, 1), n � 1], so �′0 ∪ �

′′
0 = [�((t + q)n) : |q| � 1, n �

1].
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Further, �(t2 − 2xt + x2 + y2) = t2 + pt + q where p, q are related with x, y as in Lemma
45. Thus �

′′′
0 = [�((t2 + pt + q)n) : n � 1, p2 − 4q < 0, q � 1] and (since the condition p2 −

4q < 0 is equivalent to irreducibility of a polynomial)

�0 = [�(f ) : f ∈ S],
where S is the set of all polynomials of the form f = gn, for n � 1 and g being monic real
irreducible polynomial (having automatically the form t + q or t2 + pt + q) with the constant
term q satisfying the restriction |q| � 1. We obtain the following result (its purely matrix version
is Theorem 5).

Theorem 47. The indecomposable C⊗
R

C-representations are exhausted, up to isomorphism, by

the pairwise non-isomorphic representations of the following types corresponding to the sets
�0, �−, �+ respectively:

(a) (1⊗ i)I + (i⊗ 1)C(f ), f ∈ S,

(b) (1⊗ i)I↓n + (i⊗ 1)I
↑
n , n � 0,

(c) (1⊗ i)I←n + (i⊗ 1)I→n , n � 0.

Notice, the case n = 0 in (b) and (c) corresponds to the formal “empty matrices” M(1,0) and
M(0,1) mentioned in Remark 10.

Theorem 47 is equivalent to the main theorem in [8], as demonstrated earlier by the author par-
tially (for the main type (a)) in [27] using some technical arguments (based on the results from [8]).

Recall that there were obtained in [8] the four types (i)–(iv) of matrix indecomposables for the
C⊗

R
C-problem, and it appeared (as shown in [27]) that the types (iii) and (iv) can be united and

(taken together) are equivalent to the type (a) of Theorem 47. Meanwhile the types (i) and (ii)
correspond to the types (b) and (c).

While it was used originally in [8] a special functorial approach (based in particular on the
results and methods developed in [7,21]), we have just managed (through the �-transformation
and solution to the semilinear Kronecker Problem) to deduce Theorem 47 from the available
description of indecomposable non-commutative polynomials over the ring C[t,−] (Proposition
6 and Corollary 7). Moreover, in view of (54), (56), there exists a possibility to realize the
inverse procedure (and in more general situations) if one knows the indecomposables for the
given G⊗

F
G-problem.

12. Applications to the representation theory

We are going to sketch now briefly, how the main results on representations of equipped posets
(and also of equipped posets with involution) over the pair (R, C), obtained in [26,28,29], can be
extended to the case of an arbitrary quadratic extension in characteristic /= 2.

Let F ⊂ F(u) = G be the same quadratic field extension as in Section 11, with the conjugation
σ(α + βu) = α − βu, where u2 + q = 0. Notice that the fields F, G automatically are infinite
(charF /= 2).

Let P be an equipped poset in the sense of [28] (with single and double points and weak and
strong order relations between them). Then one can define representations of P over the pair
(F, G) in fact precisely as in [28], substituting the pair (F, G) for (R, C) (see in [28] the matrix
definition on page 391 and the invariant one in Section 2).
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Further, since in the proof of the main results in [28], a wider notion of representations of
equipped posets with involution (in particular, with primitive involution) over the pair (R, C) is
used, one can extend it naturally and analogously to [28] to the considered pair (F, G).

Then the definitions of equipped posets and equipped posets with involution of various rep-
resentation types (tame, wild, of finite growth, m-parametric, etc.) are introduced analogously to
[26,28,29] by formal substituting the pair (F, G) for (R, C) (in particular real and complex series
of indecomposables are defined as in [28]).

Analyzing the system of the main differentiation algorithms VII–XVII for nontrivially equipped
posets with involution over the pair (R, C) (used in [28] together with several more simple
additional operations), as well as the main results obtained in [28,29] with help of them, one can
conclude that they remain valid in the (F, G)-situation as well, with inessential modifications.
This is confirmed by the following arguments:

• Various standard linear-algebraic considerations over the pair (R, C) are extended easily (actu-
ally without changes) to the case (F, G), if one substitutes F, G, u for R, C, i respectively.
• Each non-singular Jordan block over C, involved in certain matrix considerations, has to be

replaced by the non-singular companion matrix of type (3), while Jordan blocks of type Jn(0)

can be left without changes.
• The available classification of representations of the critical equipped poset M1 = {⊗⊗} over

the pair (R, C) (used essentially in the construction of the algorithms XI, XIII, XV, XVI)
is reduced easily to the C⊗

R
C-problem and therefore, as shown above, to the (1, σ )-pencil

problem over the complex field C. Analogously to this, one can get like the same classification
of representations of M1 over the generalized pair (F, G), by reducing it to the (1, σ )-pencil
problem over the field G, or equivalently, to the problem of type (c) in Corollary 14. Hence
there exists a firm base for extending the algorithms XI, XIII, XV, XVI to the case (F, G).
• The notion of the classical consimilarity over C, used in the description of the algorithm XVII,

is replaced by the generalized consimilarity over G, i.e. the task is reduced in fact to the
(1, σ )-pencil problem over G.
• As for the rest of the algorithms VII–XVII, they are based (besides of standard linear-algebraic

and matrix constructions) on using at most the ordinary pencil representation classification (for
instance, representations of the critical equipped poset L1 = {⊗ ◦ ◦}, figured in the description
of the algorithm XII, are reduced to representations of the ordinary pencil). Clearly, that
classification is available over an arbitrary field.

Following the outlined scheme, one can obtain, verifying details, natural generalizations of
the main Theorems A–D from [28] to the case of the pair (F, G) (actually without changing
their formulations, due to a completely similar to the case (R, C) chosen system of definitions,
as explained above). The combined result may be presented in the following way (supposing to
be known the main definitions and notations in [28]).

Theorem 48. Let F ⊂ F(u) = G be a quadratic field extension in characteristic /= 2. Then the
following holds:

(a) An equipped poset P is tame (wild) over the pair (F, G) if its evolvent P̂ is tame (wild).

(b) A reduced equipped poset with primitive involution P is tame (wild) over the pair (F, G)

if its evolvent P̂ (with respect to the subset of all small points P0) is tame (wild).
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(c) A reduced equipped poset with involution P is tame over the pair (F, G) if it satisfies two
conditions:
(1) each its bidouble point is comparable with all other points;
(2) the evolvent P̂prim of the subset Pprim (with respect to the subset of its small points) is

tame.
Otherwise P is wild over (F, G).

(d) An equipped poset with involution P is tame over the pair (F, G) if each its bidouble point
is comparable with all other points and the subset Pprim is tame. Otherwise P is wild over
(F, G).

Analogously, the main results from [29] (Theorems 1.1–1.3) and [26] (Theorems 1–3) can be
extended to the case (F, G). In particular, the following result is expected.

Theorem 49. Let F ⊂ F(u) = G be a quadratic field extension in characteristic /= 2 and P an
equipped poset. Then P is of finite growth (m-parameter) over the pair (F, G) if and only if its
evolvent P̂ (with respect to the subset of small points) is so.

It should be mentioned that there are two inessential (for the whole proof) gaps in the description
of the differentiation algorithms X and XI in [28]. While a correction to the algorithm XI was
given in [29], we would like, using an opportunity, to correct now the algorithm X.

Correction to Differentiation X. We outline here a modified corrected version of Differenti-
ation X. Let (P, �) be an equipped poset with involution. It means (see [28] for basic definitions
and notations) that a poset P is given, and on the set of all its points an involution ∗ is defined,
with � being the set of the equivalence classes of points with respect to this involution.

A pair of incomparable points (a, b) in P , where a is big and b is double, is called X-suitable
(i.e. suitable for Differentiation X) if P = a� + b�. The derived equipped poset with involution
(P ′, �′), with respect to the pair (a, b), is obtained from (P, �) in the following way:

(a) the point a∗ is replaced by a three-point chain a∗ < q < a0 where a∗, a0 are big points and
q is double;

(b) the point b is replaced by a two-point chain b0 < b where b0 is big and b is double;
(c) an order relation a < b0 is added;
(d) �′ is obtained from � by adding two new classes: a non-trivial one {a0, b0} and a trivial

one {q}.

Naturally, all the order relations induced by those in P and by the mentioned above are added
as well.

Set A = a�\a, B = b�\b in P and â = a�\a, B ′ = P ′\a� in P ′. Let U = (U0;UK : K ∈ �)

be a representation of the set (P, �), where U0 is a finite-dimensional R-space. Considering an
ordered direct sum U2

0 = U0 ⊕ U0, one can define (similarly to the definitions in [28]) the coupling
of a sequence of n subspaces X1, . . . , Xn ⊂ U2

0 being a subspace in U2
0 of the form

[X1 −X2 − · · · −Xn] = {(t0, tn) : (ti−1, ti) ∈ Xi for some ti}.
Denote R = {(P, �)− sp : a+ ⊂ b+, b− = B+} (in the conditional notations of [28]) and

R′ = {(P ′, �′)− sp : a+ ⊂ (B ′)+, a−0 = q+, b− = b+0 }. The action of the differentiation func-
tor ′ : R −→ R′ is then defined for an object U ∈ R by the formulas
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U ′0 = U0, U ′b = Ub + Ũ+a ,

U ′(a0,b0)
= [U(a∗,a) − Ub] + (0, U+a ),

U ′q = [U(a∗,a) − Ub − U(a,a∗)],
U ′(a,a∗) = U(a,a∗) ∩ (U+B , U0),

U ′K = UK for the remaining classes K ∈ �′,

(61)

and also by the equality ϕ′ = ϕ for any morphism ϕ : U0 → V0 (considered as a linear map).
If (E0, W0) is a complementing pair of subspaces in U0, with respect to the pair (U+a , U+B ), then

the reduced derived representation U↓ is defined (uniquely up to isomorphism) by the equality
U ′ = U↓ ⊕ P m(̂a), where m = dim E0 = dim(U+a + U+B )/U+B . Its evident form is U↓ = W ,
with W0 taken from the complementing pair, and WK = U ′K ∩WK

0 .

Obviously G′1(b, a) = P (̂a)⊕ P(b0) and G′2(b, a) = P 2(̂a), hence G
↓
1 (b, a) = P(b0) and

G
↓
2 (b, a) = 0.
Let W be an object in R′. To construct the primitive object W↑ ∈ R′, represent the spaces

W(a0,b0), Wq, Wb respectively in the form

W(a0,b0) = W(a0,b0)
⊕ F1, F1 = {(f11, f

′
11), . . . , (f1p1 , f

′
1p1

)},
Wq = W̃+a∗ ⊕ F2, F2 = {(f21, f

′
21), . . . , (f2p2 , f

′
2p2

)},
Wb = W̃+b0

⊕H,

(62)

where Fi, H are some complements with the shown bases for Fi . Consider a new R-space E0
with a base {e11, . . . , e1p1} ∪ {e21, e

′
21, . . . , e2p2 , e

′
2p2
} of dimension m = p1 + 2p2. Then set

W↑ = U where

U0 = W0 ⊕ E0,

U̇K = WK ⊕ EK∩A
0 f or K /= {a, a∗}, {b},

U̇(a,a∗) = W(a,a∗) + {(e11, f11), . . . , (e1p1 , f1p1)}+ {(e2j , f2j ), (e
′
2j , f

′
2j ) : j = 1, . . . , p2},

U̇b = W̃+
B ′ + {(e11, f

′
11), . . . , (e1p1 , f

′
1p1

)} +H.

(63)

The desired isomorphisms (U↓)↑ � U for a reduced object U ∈ R (not having direct summands
G2(b, a)) and (W↑)↓ � W for a reduced object W ∈ R′ (not having direct summands P (̂a)) can
be verified by standard linear-algebraic considerations analogous to those used for other algorithms
in [28]. When verifying, one can be helped by the matrix interpretation of the algorithm (in the style
of [28]) obtained by complete reducing the horizontal stripe, corresponding to some complement
to U+B , at points a, b (that matrix form reflects a decomposition of an arbitrary representation
of the subset {a, b} = {◦⊗}, satisfying the restrictions of the category R, into a direct sum of
possible indecomposables of types P(∅), D(b), G1(b, a), G2(b, a)).

This way leads to the following result (which corrects and improves Theorem 7.1 in [28]).

Theorem 50. In the case of Differentiation X, the operations ↓ and ↑ induce mutually inverse
bijections

Ind R\G2(b, a)}� Ind R′\P (̂a).

Notice that the described correction has none negative after-effects to the rest of considerations
in [28], due to Lemmas 16.4 and 16.5 there (compare with the combinatorial definition (a)–(d) of
the derived poset (P ′, �′) above).
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Appendix A. Matrices �n for n ��� 9

1

1

2

1 1
1 −1

3

1 1 1
2 0 −2
1 −1 1

4

1 1 1 1
3 1 −1 −3
3 −1 −1 3
1 −1 1 −1

5

1 1 1 1 1
4 2 0 −2 −4
6 0 −2 0 6
4 −2 0 2 −4
1 −1 1 −1 1

6

1 1 1 1 1 1
5 3 1 −1 −3 −5

10 2 −2 −2 2 10
10 −2 −2 2 2 −10
5 −3 1 1 −3 5
1 −1 1 −1 1 −1

7

1 1 1 1 1 1 1
6 4 2 0 −2 −4 −6
15 5 −1 −3 −1 5 15
20 0 −4 0 4 0 −20
15 −5 −1 3 −1 −5 15
6 −4 2 0 −2 4 −6
1 −1 1 −1 1 −1 1

8

1 1 1 1 1 1 1 1
7 5 3 1 −1 −3 −5 −7
21 9 1 −3 −3 1 9 21
35 5 −5 −3 3 5 −5 −35
35 −5 −5 3 3 −5 −5 35
21 −9 1 3 −3 −1 9 −21
7 −5 3 −1 −1 3 −5 7
1 −1 1 −1 1 −1 1 −1

9

1 1 1 1 1 1 1 1 1
8 6 4 2 0 −2 −4 −6 −8
28 14 4 −2 −4 −2 4 14 28
56 14 −4 −6 0 6 4 −14 −56
70 0 −10 0 6 0 −10 0 70
56 −14 −4 6 0 −6 4 14 −56
28 −14 4 2 −4 2 4 −14 28
8 −6 4 −2 0 2 −4 6 −8
1 −1 1 −1 1 −1 1 −1 1
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