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Abstract

We present a new approach to cellular automata (CA) classi%cation based on algorithmic
complexity. We construct a parameter � which is based only on the transition table of CA and
measures the “randomness” of evolutions; � is better, in a certain sense, than any other parameter
recursively de%nable on CA tables. We investigate the relations between the classical topological
approach and ours. Our parameter is compared with Langton’s � parameter: � turns out to be
theoretically better and also agrees with some practical evidences reported in literature. Finally,
we propose a protocol to approximate � and make experiments on CA dynamical behavior.
c© 2001 Published by Elsevier Science B.V.

1. Introduction

Cellular automata (CA) are often used for modeling systems consisting of many
elementary cells interacting locally with each other. The memory of cells is %nite,
their interactions are synchronous and occur at discrete time steps.
Notwithstanding the apparent simplicity of the formal de%nition of CA, they display

a wide range of interesting dynamical behaviors. And in fact, the problem of their
classi%cation is a central topic in CA theory. In [23], Wolfram heuristically observes
the following behaviors:
W1: evolution to a homogeneous state;
W2: evolution to a set of space–time patterns which are stable or periodic;
W3: evolution to an “aperiodic” or “chaotic” space–time pattern;
W4: evolution to complex localized structures, sometimes long-lived.
It is clear that this classi%cation is neither complete nor well-formalized. In fact,

many successive works on CA were an attempt to give it a formal consistency [8, 4].

∗ Corresponding author.
E-mail addresses: jcdubacq@ens-lyon.fr (J.-C. Dubacq), bdurand@cmi.univ-mrs.fr (B. Durand),

enrico.formenti@cmi.univ-mrs.fr (E. Formenti).

0304-3975/01/$ - see front matter c© 2001 Published by Elsevier Science B.V.
PII: S0304 -3975(00)00012 -8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82828024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


272 J.-C. Dubacq et al. / Theoretical Computer Science 259 (2001) 271–285

Successively, some purely topological classi%cations have been proposed. They are
based, for instance, on the structure of attractors [16, 13] or on the equicontinuity
property [16].
If the predicate “to have a classi%cation” means to have an algorithm which, given

a CA as input, decides to which class this CA belongs to, then any of the above
classi%cations is undecidable [14]. Moreover, these classi%cations take into account
neither the “information” content nor the algorithmic complexity of the evolutions. We
propose an alternative approach which is supposed to %ll this gap.
The inspiring principle of the classi%cation of Cattaneo et al. [4] is to study how the

information contained in the local rule inIuences the global behavior of the CA. We
have the same goal but we use an algorithmic approach rather than a topological one.
We introduce a parameter � which measures the information content of local rules. Its
de%nition is essentially based on concepts taken from the well-established Kolmogorov
complexity theory which allows us to prove an interesting optimality result: � is “better”
than any other computable parameter de%ned on CA local rules (see Theorem 2).
The algorithmic approach is useful in a number of practical considerations. For

instance, if one wants to understand which is the better compromise between the size of
the table and the size of the observation domain in simulations. An even more concrete
example: suppose to simulate coJee percolation using CA. In this case only a small
subset of all con%gurations represents a porous medium. This situation can be studied
using our approach, the only requirement is that the set of admissible con%gurations
has to be recursive. We underline that the approach is also easily extensible to arbitrary
dimension at the cost of small changes in the formalization.
The idea of using a parameter based on CA tables for classifying CA behavior is

not new. As far as we know it was %rst issued by Langton in [17]. Section 4 discusses
Langton’s approach; we prove that it is too rough to discriminate chaotic behavior
from simple periodic behavior. The discussion is further developed in Section 5.6,
where our approach justi%es some critics on Langton’s parameter coming from exper-
imental studies that recently appeared in literature [7].
One of the most studied dynamical behavior is chaoticity. Here we prove that topo-

logical chaos implies non randomness of CA tables (Corollary 1). This fact underlines
one of the diJerences between randomness and topological chaos.
Our study is theoretical. In order to give qualitative and quantitative evaluations of

CA evolutions, an experimental protocol which uses the parameter � is proposed in
Section 6. This protocol may be eJectively exploited by people who intend to simulate
physical systems using CA; its main advantage in this context is that it is based on a
well-established theory: the general theory of algorithms.

2. Dynamical systems

A dynamical system is a continuous function f :X →X from a nonempty metric
space X to itself. The set X is called the phase space of f. For n∈N, the nth iterate
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fn :X →X is de%ned by f0(x)= x and fn+1(x)=f(fn(x)). A point x is periodic
if there exists n¿0 such that fn(x)= x; the least positive integer with this property
is called the period of x. An orbit of initial state x0, denoted by O(x0) is the set
O(x0)= {x∈X |fn(x0)= x}.
The main goal in the study of dynamical systems is to understand their long-term

behavior, that is to understand the structure of their orbits. One of the most appealing
dynamical behavior is the so-called chaotic behavior or chaos. Even if there is no
universally accepted mathematical de%nition of deterministic chaos, many properties
are recognized as possible indicators of chaotic behavior such as: sensitivity to initial
conditions, denseness of periodic orbits, transitivity, Lyapunov exponents. For a survey
see [9, 1, 15, 3, 6]. In this paper we adopt Devaney’s de%nition of chaos which says
that a dynamical system is chaotic if and only if it is transitive and its set of periodic
points is dense in the phase space [9, 1]. A dynamical system with a dense set of
periodic points is called regular.
A system (X; f) is (topologically) transitive if for any nonempty open sets U; V ⊆X ,

there exists n¿0 such that fn(U )∩V �= ∅. Intuitively, a system is transitive if for any
two points x; y, we can %nd in any arbitrary small neighborhood of x a point whose
orbit reaches any arbitrary small neighborhood of y. In particular, transitivity implies
that the system can not be split into two independent subsystems. A system (X; f) is
surjective if f is surjective.

Remark 1. It is not diNcult to see that surjectivity is a necessary property for a system
to be regular or transitive and hence for being Devaney-chaotic. This is the seminal
idea used for the proof that no chaotic CA has a random table (see Theorem 4).

3. Cellular automata

Formally, a one-dimensional CA (1-D CA) is a triple 〈S; N; f〉, where S= {0; 1; : : : ; S
− 1} is the set of states, N = {−r; : : : ; 0; : : : ; r} is the neighborhood structure with ra-
dius r, and f :S2r+1→S is the local rule. A state s∈S is quiescent if f(s : : : s)= s.
A con%guration is a “snapshot” of the state of cells, i.e. a mapping from Z to S.
Denote by SZ the set of all con%gurations. The evolution of the system from time t
to time t + 1 is given by the global function induced by f:

∀c∈SZ; Ff(ct+1)i=f(cti−r ; : : : ; c
t
i ; : : : ; c

t
i+r):

A CA is called surjective if its global function is surjective.
If SZ is endowed with the product topology induced by the discrete topology on S,

then SZ is a Cantor space (i.e. compact, perfect and totally disconnected space). It is
easy to see that the following metric induces the product topology on SZ:

∀x; y∈SZ; d(x; y)=
∞∑

i=−∞

�(xi; yi)
2|i|

;
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where �(a; b)= 1 if a �= b, 0 otherwise. CA can be seen as dynamical systems on SZ
since their global function is continuous with respect to the product topology.
A space–time diagram of initial state c∈SZ is a graphical representation of an orbit

of initial state c:

t=0 : : : c(−2) c(−1) c(0) c(1) c(2) : : : = c
t=1 : : : c1(−2) c1(−1) c1(0) c1(1) c1(2) : : : =Ff(c)
...

...
...

...
...

...
...

...
...

t= k : : : ck(−2) ck(−1) ck(0) ck(1) ck(2) : : : =Fkf (c)
...

...
...

...
...

...
...

...
...

.

The study of space–time diagrams give some hints on the global qualitative behavior
of the CA. Most of the early works on CA classi%cation follow this idea [23].
In Remark 1 we saw that surjectivity is necessary for Devaney chaos. Therefore,

when comparing chaotic CA and random evolutions we are concerned with a subclass
of surjective CA. In order to prove our results we need to reformulate surjectivity as
a property on the local rule: balance. A CA with radius r is k-balanced if

∀y∈S2r(k−1)+1; |{x∈S2rk+1 |f(x)=y}|= S2r :
The following proposition states the equivalence between balance and surjectivity.

Proposition 1 (Hedlund [12]). A 1-D CA is surjective i8 it is k-balanced for all
k ∈N.

4. Chaos has no edges

Classifying dynamical behavior using a parameter means to have a one-to-one cor-
respondence between intervals and types of behavior. In practical situations one may
also require the parameter to be eJective, i.e. computable. For example, in the context
of CA, eJectiveness may be easily achieved if the parameter is de%ned on the %nite
objects characterizing the CA itself: the set of states and the local rule.
The %rst approach of this kind (as far as we know) is due to Langton [17]. Given a

CA 〈S; r; f〉, let s be a quiescent state and let n be the number of tuples for which f
outputs s. Langton’s parameter �s for f is �s(f)= 1− n=S2r+1 (where S denotes the
cardinality of S). Note that the value of �s(f) is strongly dependent on the choice of
s and that not all CA have quiescent states.
Analyzing data from CA evolutions, Langton remarks that there exist “critical val-

ues” of �s in which chaotic behavior is to be found. Therefore he stated the popular
hypothesis of the edge of chaos (EOC) [11]:

In its basic form this is the hypothesis that in the space of dynamical systems of
a given type, there will generically exist regions in which systems with simple
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behavior are likely to be found, and other regions in which systems with chaotic
behavior are to be found. Near the boundaries of these regions more interesting
behavior, neither simple nor chaotic, may be expected.

EOC hypothesis is very appealing for scientists but it has been criticized by many
researchers (for a survey see [7]). Moreover �s does not discriminate tightly CA dy-
namics. In fact, take the set E of all CA with local rule f such that �s(f)= 1

2 . In E
one can %nd a great variety of dynamical behaviors ranging from %xed-point behavior
to chaotic one.

5. The algorithmic complexity approach

Let us start with a practical example. Consider Conway’s Game of Life [2, 10].

sum = 0

For i in [−1; 1]× [−1; 1]
if neighbor i is alive then add 1 to sum

New state = dead

if sum = 3 then New state = alive

if sum = 4 then New state = Old state

What have we done above? We gave an algorithm which describes how to compute
the table rather than give the whole table which consists of 29 entries. Can we do
better? That is to say, are there shorter algorithms which compute the same table? To
answer these questions, we address Kolmogorov complexity, which is concerned with
information from an algorithmic point of view. 1

In the sequel, for the sake of simplicity, we make the following conventions. CA
tables are seen as words of length S2r+1 over the alphabet S, which are the images
of all blocks of size 2r + 1 over the alphabet S ordered lexicographically. A table
completely describes a CA: assuming S is known, there is no ambiguity in identifying
a CA with its table.

5.1. Some basic results on Kolmogorov complexity

Kolmogorov complexity [18], also known as algorithmic information theory [5],
studies the shortest description of words. Some words can be described by very short
programs, while other oJer no regularities and need to be fully spelled.
Let us recall the basic de%nition of Kolmogorov complexity. For any words x and y

on a %nite alphabet, the Kolmogorov complexity of x given y, according to a machine
’, is K’(x|y)= min{l(p); ’〈p; y〉= x} where l(p) denotes the length of the binary

1 For instance, it is better to consider not this program, but its compressed form, which will be really
shorter than all 29 transitions.
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word p. In particular, when y is the empty word, we can drop the “given y” part
and just write K’(x). More intuitively the Kolmogorov complexity of x knowing y
according to a machine ’ is the size of the smallest program that produces x when
applied on y via the machine ’.
A fundamental result of Kolmogorov complexity theory is that there exists a speci%c

Turing machine that yields optimal results (Kolmogorov–Solomonov theorem). More
precisely, there exists a machine ’0, called additively optimal such that ∀’′; ∃c’′ ∈N;
∀x; y;K’0 (x|y)6K’′(x|y) + c’′ : From now on, we %x any additively optimal ’0 and
drop the subscript ’0 from K’0 (x|y). It is important to note that K(x|y) is approximable
from above, but not computable.
There exist many variants of Kolmogorov complexity, for a survey, see [22]. In

our case, any version of Kolmogorov complexity can be used. Pre;x Kolmogorov
complexity (also called self-delimiting) can be used as well as the original version and
gives the same results. This variety is essential when de%ning randomness with in%nite
words. This is not our case: we are concerned with tables which are %nite objects; thus,
we can use the pre%x variety or even the monotonic one without signi%cant change in
the results (see [22]).

5.2. Classi;cation parameters

The goal of this approach is to de%ne a family of classi;cation parameters for
cellular automata. Reasonable ones should ful%ll some conditions: quantify regularities
in tables, being eJectively constructible, satisfy some natural normalization properties.
A classi%cation parameter is a function that assigns to every CA a value. We introduce
a family of classi%cation parameters on which we establish general laws.
A classi%cation parameter ! is a function taking a CA table as an input, and giving

as output a mark that quanti%es the degree of complexity of the table. If a table has
many regularities, then it should get a low mark and conversely. The main idea behind
all the following de%nitions comes from the theory of Martin-LQof tests for randomness
[19, 20].
As for eJectiveness we do not ask the parameters to be recursive but we re-

quire them to be at least recursively enumerable from above, that is to say, the set
{〈x; p; q〉; !(x)6p=q} is recursively enumerable. Without any loss of generality, we
restrict the output values to rational numbers in the interval [0; 1].
Normalization is achieved by quantifying the maximum number of tables that can

get a low mark. This quanti%cation should take into account the maximum num-
ber of tables, hence the cardinality of S and the radius r. A uniform normaliza-
tion is not suNcient because two diJerent parameters, with the same intuitive mean-
ing, could have very diJerent histograms. More formally, we add the following
condition:

∀n; ∀m∈N ∑
!(x)6m=n
l(x) = n

S−n6Sm−n (1)
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or, equivalently

∀n; ∀m∈N Card|x|!(x)6m=n; l(x)= n|6Sm:
This class of parameters is quite general. Take an example with S= {0; 1}. With

small changes, Langton’s parameter � can be turned into an algorithmic classi%cation
parameter !� that ful%lls the above requirements. Let !�=1− |2�− 1|. It is maximal
when the number of 0’s and 1’s are equal, and minimal for a table which is only 0’s
or only 1’s. In Section 5.5 we will see that !� is still too rough.
Theorem 1 shows that the set of classi%cation parameters has some good recursivity

properties. These properties will be very useful to build a “maximal” (in a sense which
will be speci%ed later) classi%cation parameter.

Theorem 1. There exists an e8ective enumeration of classi;cation parameters.

Each integer can be associated with a machine that “computes” (by successive ap-
proximations) a parameter, and all parameters can be represented by at least one integer.
Remark that if we restrict the parameters to be total recursive, it is not possible to do
such an enumeration (total recursive functions cannot be enumerated). The proof of
this result is inspired by the enumeration of Martin-LQof tests.

Proof. To describe a parameter !, we have to give an algorithm which, given an
identi;er of the parameter and some table x, enumerates all possible rational values
that are greater than the actual value of !(x). Our claim is that a number n∈N is
suNcient for the identi%er and that each parameter is represented by at least one integer.
In the %rst part of the proof (step 1), we will turn partial recursive functions of

N→N3 into an eJective enumeration of partial recursive functions with the property
that if the computation %nishes with entry n, then it %nishes for entry n − 1 too.
In the second part, we turn this enumeration into an enumeration of classi%cation
parameters. The description is the enumeration of the set {〈x; p; q〉; !(x)6p=q}. The
proof is straightforward at this point, because the second part of the transformation
(step 2) leaves unchanged the functions that already co-enumerates sets corresponding
to classi%cation parameters. We are guaranteed that after step 2, only classi%cation
parameters still remain.
1. We want to turn an enumeration of partial recursive functions into an enumeration
of all partial recursive functions de%ned on initial segments [0; n]. We dovetail the
computations on the input partial recursive function f so that at step n∗(n−1)+m+1
we simulate n steps of the computation of f with input m. The %rst convergent
computation shall be de%ned as g(0), the second as g(1), and so on. Remark that
the range of g is equal to the range of f.

2. This part of the procedure deletes those partial recursive functions which are not
classi%cation parameters and leaves unchanged the others. For any g (obtained in
the previous step) the algorithm increasingly computes the required set, and at each
time when a new value is added, it checks whether condition 1 holds. This can
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be done since, in step 1, we have shown that at any time the number of values
for which an upper bound has been given (at least one triple 〈x; p; q〉 has been
enumerated) is always %nite.
(a) At any time, if !(x) has never been given an upper bound, set the upper bound

to 1. Take a variable i that will count all the triples produced by the function
g.

(b) Increase i and compute g(i−1). We obtain either a triple 〈xi; pi; qi〉 or nothing.
If g(i − 1) is not de%ned, then the current set of values de%nes a classi%cation
parameter, and the set is totally described.

(c) If the function !′ de%ned by all currently computed upper bounds is a classi-
%cation parameter (it is possible to check this because it is de%ned only on a
%nite domain) then jump to step 2e. Else go to 2d.

(d) Enumerate (xi; pi; qi). Memorize !(xi)6mi if the previously de%ned upper bound
was higher. Resume the computation at step 2b.

(e) The computation is stopped. The new value is discarded. The set has been
completely enumerated.

This theorem proves that classi%cation parameters can be enumerated by a class of al-
gorithms in the same way that recursive functions are enumerated by Turing machines.
In the case of Turing machines, a special machine can play the role of any other: they
are called universal machines. In the next section, we prove that there exists a classi-
%cation parameter called optimal which is better (in a certain sense) than any other.

5.3. Our parameter �

In the following section, x ∈ SS2r+1 is a CA table, given as a string of S2r+1 elements
of S.

De$nition 1. An optimal algorithmic classi%cation parameter !0 is such that for all
classi%cation parameter !

∃c∈N; ∀x∈SS2r+1 ; !0(x)6!(x) +
c
l(x)

:

Beware that we have not yet proved the existence of an optimal parameter.
This de%nition formalizes the claim that “!0 is better than any other parameter”: those

tables which get high marks with !0 also get high marks with any other parameter !.
Our thesis is that an optimal algorithmic classi%cation parameter is a good tool for
analyzing CA behavior. The key idea is that tables with many regularities can be
described by rather short programs. Thus, we can take one of these programs as a
representation of the table and consider its length as a measure of the complexity of
the table itself.
Inspired by the construction of Martin-LQof [20], we prove that there exists an optimal

parameter, and that it can be expressed in terms of Kolmogorov complexity. This is
possible with the help of the adequate normalization property imposed in the de%nition.
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Theorem 2. There exists at least one optimal classi;cation parameter. One of them
that we denote by � can be expressed by �(x) = (K(x|l(x)) + 1)=l(x).

Proof. We have to show that this function ful%lls our three conditions: approximability
from above, the normalization condition, and the one about optimality.
1. Since K is approximable from above, � is also approximable from above.
2. The cardinality of {x; l(x)= n; K(x|n)6k} is less than S k+1−1. By setting k =m−1,
we get that ard{x; l(x)= n; �(x)6m=n}6Sm − 1. Thus � is an algorithmic classi%-
cation parameter.

3. We conclude the proof by showing the optimality. Consider a parameter !y. y is
an identi%er for the parameter whose existence can be deduced from Theorem 1.
We build a description of x such that K(x|l(x))6l(x)!y(x)− 1 + cy for all y and
all x. Thus we obtain �(x)6!y(x) + cy=l(x).
First, de%ne the set of words (of the same length as x since we use K(x | l(x)))

such that !y(z)6!y(x). This set can be enumerated given !y(x), y and l(x). x can
be described by its index j in this set together with the data quoted above. An upper
bound for j is S l(x)!y(x), since ard{z; l(z)= n; !y(z)6!y(x)}6Sl(x)!y(x).

Therefore, we can write a string s of size exactly l(x)− l(x)!y(x) + 1 beginning
by 0s, then a 1, then a representation of j. In this manner, from s and l(x), we can
compute !y(x) and j. On the input 1l(y)0ys, we can compute x knowing only l(x) as
extra data. Then K(x|l(x))6l(1l(y)0ys). Therefore K(x|l(x))6l(x)− (l(x)!y(x)) +
2l(y) + 2. Since l(x)!y is nonnegative, the required constant is cy =2l(y) + 3.

From Theorem 2 one can immediately deduce that � captures all recursive regularities
of the tables.

5.4. Comparison with Wolfram’s approach

In this section, we analyze the relations between the complexity of the table of a
CA and the degree of randomness of its computation triangles (see Section 3 for the
de%nition).
Recall that a word x is c-random if and only if l(x) − K(x)6c. In the sequel, for

the sake of simplicity, we will just call them random. In the proof of Theorem 3 we
shall use the following well-known inequalities for the complexity of an ordered pair
(a; b):

K(a; b)¿K(a) + K(b|a) + O(log(min(K(b); K(b))); (2)

K(a; b)6K(a) + K(b|a) + O(log(max(K(b); K(b))): (3)

It is important to remark that O(·) terms in the above inequalities are logarithmic in
K(a)+K(b) and therefore negligible in most practical cases. We also stress that these
addenda depend on the variety of Kolmogorov complexity used (see [18], for more
details).
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Theorem 3. For all CA tables x and for all random initial con;gurations I; if we
denote by T the computation triangle of x over I then

K(T)6l(x)�(x) + l(I) + O(max(l(x)�(x); l(I))):

Conversely; for all random initial con;gurations I and for all computation triangles
T (based on I) there exists a table x such that

K(T)¿l(x)�(x) + l(I) + O(min(l(x)�(x); l(I)))

(beware that the table x may be not the same as the one who generated the compu-
tation triangle T).

Proof. A triangle of computation T is obtained from the table x of the CA and the
initial con%guration I . Hence, its complexity is bounded by the sum of the complexity
of x and the one of I . More formally, for any c∈N, for any (c=2)-random table x and
any (c=2)-random initial con%guration, from inequality (3) it follows that

l(x)�(x) + K(I |l(I)) + c1¿K(T|l(T))¿l(x)�(x) + K(I |l(I))− c + c2

for some suitable constants c1; c2 ∈N; note that we have dropped the logarithmic terms
for the sake of simplicity. The left part of the inequality is the %rst part of the theorem.
In order to prove the second part of the theorem one has to note that the compu-

tation triangle T can be computed from the initial con%guration and the table of the
reference automaton. Conversely, a table x can be deduced from T and from the initial
con%guration by the following trivial “table-deduction” algorithm: consider the transi-
tion table of this new automaton is initially empty; then, for all transitions pictured in
the triangle T, set the transition in the table to its actual value and return the table.
Hence, K(T)=K(x; I) + O(1), where the O(1) term takes in account the complexity
of the “table-deduction” algorithm. As usual we drop the logarithmic terms for sim-
plicity obtaining: K(T)=K(x)+K(I |x). Since, by hypothesis, all initial con%gurations
I are random, then I is independent from x and hence K(I |x)=K(I)= l(I). Using
inequality (2) one obtains K(T)¿K(x) + l(I)¿l(x)�(x) + l(I), which completes the
proof.

We would like to re%ne the remark made at the end of statement of Theorem 3: the
table turns out to be unique provided that one has a sequence of computation trian-
gles which are suNciently large and random. This fact is formalized in the following
proposition.

Proposition 2. Let S be a ;xed number of states; ) a ;xed integer and (TCn) be a
sequence of triangles of base width n with S states indexed by N. The sequence is
such that all initial con;gurations Cn are )-random. Let us note un the number of
possible tables that generate TCn . Then limn→∞ un=1.
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Proof. The proof is straightforward. When triangles are suNciently large, all possible
words of S letters with a size of 2r+1 are bound to appear in the computation triangle.
If they do not, the blocks of size 2r + 1 can be rewritten with an alphabet of only
S2r+1−1 symbols instead of S2r+1. The complexity of such strings is upper bounded by
n logS2r+1(S

2r+1−1). Hence, the randomness de%ciency exceeds by a %xed constant for
any %xed integer ) (that is to say, the triangle is no more )-random). The construction
method leaves no ambiguity for the cellular automaton, yielding a unique table that
can generate the computation triangle.

By Martin-LQof randomness theorem [19], for any c-random triangle (not necessarily
a computation triangle) T of height 1+t and base width 2rt+1, K(T|l(T))¿(1+t)(1+
tr)− c. Therefore for any %xed CA, the progression of the complexity of T compared
with the one of a random triangle of same size is t compared with t2. Hence, no CA
computation is random. However, we can discuss the diJerent factors that contribute to
the %nal complexity of a triangle of computation. These factors depend on the size of
T and on the size of the CA table. Thus, if one wants to make computer simulations
of CA evolutions, one should make a trade-oJ between these quantities.
A good idea is to minimize the eJect of the initial con%guration on the global

complexity of the computation triangle, and at the same time give the CA enough
room to distinguish itself from all the others. So we should use con%gurations of height
h(S; r)¿(

√
S 2r+1=r), and of width rt. As a consequence, the order of growth of such

observations is in the range O([
√
S 2r+1=r; S 2r+1=r]). By this notation, we mean that

there exist two constants k1 and k2 such that h(S; r) veri%es the following inequalities:

h(s; r)6k1
S 2r+1

r
; k2

√
S 2r+1

r
6h(s; r):

The constants k1 and k2 represent the tolerance of the various factors for a given
analysis. We remark that almost all practical observations that we can see in literature
are in such a range, for small k1 and k2. Our thesis is that � is a good measure of the
complexity of evolutions.
Consider the following example. Suppose that our aim is to model a percolation phe-

nomenon, for instance coJee percolation. The interest of modeling such a phenomenon
by a CA is that we can implement the physical rules of interaction between particles
by a CA local rule. What turns out is a system which gives evolutions comparable
to the classical (discretised) partial diJerential equations. This approach is quite natu-
ral and more direct than numerical simulation of percolation equations. Now, suppose
we have a local rule of a CA solving the problem, it is not necessary that it makes
good simulations on the whole set of initial con%gurations, but only on a subset which
represents a Iow of particles through a porous medium.
This subset of con%gurations can be speci%ed by a computer program, i.e. a recursive

function. Hence, it makes sense to investigate CA behavior restricted to a recursive
subset of con%gurations.
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Our algorithmic complexity approach is robust with respect to this situation. The for-
malization requires only some straightforward changes on the Kolmogorov complexity
of initial con%gurations.

Proposition 3. For any CA of table x; the complexities of all its computation triangles
evolving from an enumerable set Cn of initial con;gurations of length n are bounded
by l(x)�(x) + log Card|Cn|.

5.5. An example of application: balanced CA

In case of CA, balance is a necessary property for chaoticity (since it is equivalent
to surjectivity). In the sequel we are particularly interested in the case of 1-balanced
CA, i.e. those CA tables in which the number of occurrences of all outputs a∈S are
the same: S2r+1=S = S2r (trivially 1-balance is necessary for chaoticity too).

Theorem 4. The property of 1-balance implies nonrandomness of CA tables.

Proof. If a CA is 1-balanced then one can give a description of its table which is
shorter than S2r+1 log S can be given. We need to give a description of the table which
is valid for all CA. The set of CA can be described %rst by giving for each state a∈S
the diJerence between the number of inputs giving this state |x|a and S2r+1=S = S2r .
We use self-delimited notations for these numbers. Then we add in the description
the index of the CA in the set containing all CA that are unbalanced the same way.
In the case of a 1-balanced CA, the %rst part of the description uses only K(S)+K(r)
bits (as the excess is always 0). Let us now compute the cardinality of the set of
1-balanced CA. We have to choose exactly S2r places in a range of S2r+1 for the %rst
element of S. Then we have to place S2r occurrences of the second element of S in
the remaining places, and so on. This yields a number of 1-balanced CA tables that is
exactly

S−2∏
i=0

(
(S − i)S2r

S2r

)
:

An approximation can be found using Stirling’s formula. Let A= S2r . We obtain

S−2∏
i=0

(
(S − i)A

A

)
=

S−2∏
i=0

((S − i)A)!
((S − i − 1)A)!A! ∼ SSA

√
S

(2�A)S−1 :

We would like to compute the randomness de%ciency of this class of CA rela-
tive to �. This is the diJerence between the maximal value of � for a random table
(i.e. 1) and the actual value of �. The cardinality of the class gives an upper bound
on the Kolmogorov complexity of all tables belonging to that class; which can be
turned into a lower bound on the randomness de%ciency, through a division and a
subtraction from 1. As we compute an order of equivalence, some constant terms
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and smaller-order terms can be removed. The maximal complexity is equivalent to
log(SS

2r+1√
S=(2�S2r)S−1). If we divide this by log SS2r+1 and subtract this from 1, we

obtain that the randomness de%ciency in terms of � is lower bounded by

log(2�)(S − 1) + 2r(S − 1) log S − 1=2 log S
S2r+1 log S

:

After a tedious computation, and using the fact that S¿2, we obtain that the ran-
domness de%ciency relative to � (i.e. the quantity 1 − K(x|l(x))=l(x)) is greater than
T(r=S2r). 2

Corollary 1. The following properties imply nonrandomness of CA tables: topological
chaos; surjectivity and injectivity.

Therefore topologically chaotic CA have a � which is reduced by a certain amount,
and hence is not maximal. This means that, compared with the maximal complexity
of CA, those that are surjective are not random. This amount is relatively signi%cant
when r and S are small but tends to 0 when r and S grow.

5.6. Relations with Langton’s parameter

In this section, we investigate which CA have high Kolmogorov complexity. The
preceding section shows that cellular automata with �s=1−1=S are not random, because
their randomness de%ciency is at least T(r=S2r). However, in a random string the
number of occurrences of each state should be about equal but not exactly equal
[21, 18].
A precise evaluation of Langton’s �s(x) for a c-random table x gives

1− ��s(x)=
(
1− 1

S

)
− �s(x)=O

(
1√
l(x)

)
:

In Langton’s original point of view, �s was used to measure the intrinsic level of
chaos in CA. Crutch%eld et al. pointed out in [7] that experimentally, �s=1 − 1=S
seems to be a local minimum (instead of a global maximum) for chaoticity in CA, but
they agree that most chaotic CA have �s not far from 1−1=S. This result is compatible
with our parameter, since it corresponds to the fact that 1-balanced CA have a � that
is not maximum. At the same time, CA with maximum � are not far from being
1-balanced.
If the experimental study reported in the previously cited paper [7] is sound, then

the behavior of � is a possible mathematical explanation of these outcomes.

2 This quantity is relative to �. It is a randomness de%ciency of T(Sr) in terms of Kolmogorov complex-
ity K.
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6. Protocol proposition

Let us consider a simple example which illustrates very clearly the diJerences be-
tween our algorithmic approach and the topological one. Consider the two cellular
automata “identity” and “xor” (elementary rule 204 and 90, respectively). For us, both
of them are “simple” because their tables can be drastically compressed. This corre-
sponds to some intuition: the dynamics of both these cellular automata can be easily
recognized, their regularities are clear and easy to understand. On the other hand, from
a topological point of view, these automata are very diJerent: “xor” is expansive,
it is transitive, and hence topologically chaotic, according some of the most popular
de%nitions of topological chaos. But this chaoticity does not correspond to the fact
that evolutions are algorithmically complex; this last fact is taken into account by our
approach.
The reader could object that we have considered only a %nite number of cellular

automata as an example and this is not correct since our parameter is not absolute;
we should have considered an in%nite family of cellular automata. This can be done
by replacing “identity” and “xor” by the in%nite family of additive cellular automata.
For us all these CA are simple because their tables are compressible, and experimen-
tally their evolutions are very special and can be recognized, having simple regularities.
On the other hand, in the topological sense, we can %nd many diJerent dynami-
cal behaviors inside the family of additive CA. It can be very interesting to %nd
out which CA are at the same time topologically chaotic and algorithmically com-
plex. This requires to make practical calculations using �. Here is the problem: �
is not computable but only approximable by above. We suggest to overcome this
problem using an approximation of � and propose the following experimental
protocol.

Experimental protocol. We suggest to replace the evaluation of � (de%ned via
Kolmogorov complexity) by the compression ratio of its table; we propose to use
any practically eNcient compression algorithm.
We plan to apply this method in some practical cases, and check if the above

approximation of algorithmic chaos agrees with intuitive observations.
Finally, because of the small value of the randomness de%ciency, practical experi-

mentations on large tables will probably fail to detect the small value of the logarithmic
gap. Nevertheless, when experimentations are made on rather small tables, we think
that it is possible to apprehend it.
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