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Abstract 

We shall present some relations between consistency and reflection principles which explain 
why is Gijdel’s incompleteness theorem wrongly used to argue that thinking machines are 
impossible. @ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Since its publishing, GGdel’s incompleteness theorem attracted a lot of attention 

among philosophers. In 1959, Lucas [8] presented an argument that this theorem im- 

plies that human thinking is essentially different from what any machine can do. This 

means that the ultimate goal of urtijkial intelligence cannot be achieved. The argument 

is roughly the following. A machine (nowadays we would rather say “a computer”) 

behaves according to fixed rules (a program), hence we can view it as a formal system. 

Applying GGdel’s theorem to this system we get a true sentence which is unprovable 

in the system. Thus, the machine does not know that the sentence is true while we 

can see that it is true. 

The spectrum of attitudes of various people to this argument was nicely characterized 

by Hofstadter [5, p. 4721: “Some size onto it as a nearly religious proof of the exis- 
tence of souls, while others laugh it ofs as being unworthy of comment”. Lucas’s 
argument has been criticized several times. In particular, in his famous book [5] 

Hofstadter analyzed it in details and gave several founded counterarguments. Still in 
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1989 and 1994 Penrose published two books [9, lo] where he defended the thesis 

of Lucas.2 He went even further and concluded that there must be some physical 

phenomena that our brains make use of and which we do not know yet. Especially, in 

the second book, he analyzed the argument in details and took pains to consider and 

dismiss many possible counterarguments. 

It seems that most logicians agree on that Giidel’s theorem is not relevant to the 

question whether an intelligent machine can be constructed. Curiously enough, they do 

not agree so well on what is wrong with Lucas’s argument. In his crushing review of 

the second Penrose’s book, Putnam [12] argues, loosely interpreting his argument, that 

a computer program simulating human intelligence must be extremely complex, thus 

we cannot completely appreciate it and produce a true independent sentence. However, 

one can argue that already some present programs and chips are extremely complex and 

nobody can be sure that they do not contain a serious bug. Still we (more precisely 

those who designed them) know what they were intended for. Then, assuming that 

they were produced correctly and they are supposed to prove sentences, we can easily 

produce an unprovable true sentence. 

The main argument of Hofstadter is based on the distinction between the system 

to which we apply Giidel’s theorem and the system in which we perform the argu- 

ment. This is the basic distinction between a theory and metatheory in logic, which 

is inevitable, if we do not want to run into trivial inconsistencies. A person reasoning 

about a machine knows the machine completely, thus there is nothing surprising in 

being able to produce something that the machine cannot prove. This is completely 

symmetric with respect to interchanging the roles of the mind and the machine, there- 

fore we cannot conclude that they are different. It is not possible to produce such 

statements, however, if a subject reasons about itself. 

Still, our personal experience seems to suggest that we can somehow “step out” and 

avoid Giidel’s theorem. In order to explain this, one could refer to the tremendous 

complexity of the human mind, to its inconsistency, vagueness and possibly other 

deficiencies. But let us consider just mathematical thinking. Actually Godel’s sentence 

is not just some nonsensical statement, even if it is constructed for a very complex 

system. It expresses the consistency of the system, which is a clear mathematical 

statement. In mathematics people do also a lot of mistakes, but, in principle, their 

mathematical reasoning is exact. Thus vagueness and inconsistency of human thinking 

does not explain it. The argument using complexity can be rejected as well, since the 

consistency of the system depends only on the mathematical assumptions that people 

use, not on the amount and complexity of the results they use. As far as the basic 

assumptions are concerned, almost all mathematicians use just a part of ZFC and all 

the axioms of ZFC (more precisely, axiom schemas) can be written on a single page. 

To produce an independent sentence for a human mind or a computer, we do not 

have to analyze it in its whole complexity, we only need to know the set theoretical 

assumptions that it uses. 

* Recently he published another one [ 1 l] which I had not chance to look at. 
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This shows that the relevant question is what mathematical statements we are willing 

to accept as intuitively true. This question has been considered by many logicians. It 

has been studied quite formally in proof theory and systems which should capture our 

mathematical assumptions have been proposed, [2, 3, 61. Naturally, the incompleteness 

phenomenon plays a key role there also. Hilbert [4] proposed to develop all mathematics 

using only ,jnite means. It is very difficult to characterize such jnitism. Kreisel [6] 

argued that “if’the notion qf’,finitist proof is cupahle of~jtirmalization at all, its proof 

predicate must he not recognizable as such by jinitist means”. Let us note that the 

argument demonstrating this thesis refers to GSdel’s theorem in a similar same way as 

Lucas’. 

In this note 1 will concentrate on the phenomenon, or rather illusion, that we can 

always extend our assumptions by a true independent sentence. This is something that 

should be carefully analysed independently on ones attitude to Lucas type arguments. 

(If, for instance, one believes that human mind is superior to any artificial device, 

because of some unknown phenomena, one can get at least some hints about the new 

phenomena in this way.) My explanation will be very simple: when arguing that the 

new system is consistent, we use unconsciously a stronger assumption. Still, I think 

that writing down explicitly the assumptions and relationships between them will help 

to clarify the subject. 

2. Preliminaries 

Our base theory, denoted by B, will be KC,. This particular choice of a theory is 

not essential, one can take, for instance PA (Peano arithmetic), or I& + kp (with 

some arguments slightly modified). If not stated otherwise, all theorems are claimed 

to be provable in B. 

By a theor)! we mean any recursively axiomatizable set of sentences in some lan- 

guage. In this paper we shall consider only extensions of B. If a theory is given by 

an infinite set of axioms, the way it is presented may influence provability of its con- 

sistency, etc. Thus, to be quite precise we shall identify a theory with an index of a 

recursively enumerable set. 

For a natural number n, we denote by E the numeral n, i.e. a suitable closed term 

representing n; the standard approach is to take the term S’(O), where S is the successor 

function. The godel number of a formula cp will be denoted by [cp] ; for a formula 

cp with a free variable I, we denote by [cp(X)l the godel number of cp with the free 

variable replaced by the numeral representing X. This is a formalization of the function 

II H c@el number of q(g). This function cannot be expressed by an arithmetical term 

in the usual language of arithmetic, but, for sake of simplicity of notation, we shall 

use it in formulas as a term. 1 denotes a suitable contradiction, say 0 = I. As usual, 

T + cp denotes the theory T extended by the axiom cp. 

We shall denote by P~f~(x, y) a natural formalization of the relation “‘x is a proqf’ 

of’ y in T”. Pq(y) denotes 3x Prf&~, y), i.e. the proudGlit>. predicate of T. The 



338 P. Pudlirk I Annuls of Purr trnd Applied Logic 96 (1999) 335~-342 

naturalness means that the fact that the proof predicate is closed under logical rules 

can be proved in B. In order to reduce the number of parentheses we shall abbreviate 

the formula Prr( [cp] ) by Pr7 rcpl. The formalization of the consistenq9 of T will be 

denoted by Conr, it is the formula +rr [il. 

The Rosser sentence ROT for T is the negation of a sentence p obtained by the 

following diagonalization 

(Sometimes p itself is called the Rosser sentence.) 

~J~-cOn.~i.~~e~c)~ of T, denoted by o-Con7, is the schema (therefore we use boldface 

letters) 

for every formula q(x) with only x free. This schema restricted to primitive recursive 

formulas is I-r~onsistency and it will be denoted by l-ConT. Here we shall identify 

primitive recursive formulas with those which are A, provably in B. 

The wflection principle for T, denoted by Rfnr, is the schema PYT [cpl + q for 

every sentence cp in the language of T. The reflection principle for T restricted to a 

class of sentences l7 will be denoted by r-RfnT. The uniJbrm r@ection principle for T, 

denoted by RFNT, is the schema ‘V.Y (Prr[cp(.?)l - q(x)) for every sentence cp in the 

language of T. The uniform reflection principles restricted to classes of formulas C,, and 

II,, arc equivalent to sentences (namely, the uniform reflection for the corresponding 

universal formula), therefore they will be treated as such. 

We shall use some well-known results on reflection principles. 

Lemma 1 (Smorynski [ 131). ( 1) Cl -completeness of’ B : cp - PrB [cpl, Ji)r et;ery Cl 

sentence cp; 

(2) Conr SE II,-RfnT E lII-RFNT; 

(3) l-ConT s Cl-RfnT. 

Let us recall that Gddel’s first incompleteness theorem asserts that for every CO- 

consistent T, there is an independent sentence. The sentence y is defined by 7 = 

1Pr~ [yl . The (u-consistency is needed only to prove that my is unprovable, and, in fact, 

one needs only l-consistency, while for unprovability of :J the plain consistency suffices. 

The second incompleteness theorem extends this by showing that y is equivalent to 

Cons. This can be expressed formally by 

Con r --f Con7.+7(.o,,, , (‘1 

l-Con7 t CO~~+_~,,,,,. (2) 

Rosser sentence for T is clearly implied by y, thus (1) implies that it is not provable in 

T assuming T is consistent. Moreover +OI is unprovable using only Conr; formally 

con i- + Con7 / Ror. (3) 



Note that Rosser sentence, the consistency and X1 reflection arc of incrcahing strength 

and this hierarchy can be extended by taking ‘3,! reflection schemas for II := 2.3. 

.3. The illusion of perpetual adding consistency 

Giidcl’s theorem implies that the rule 

is not conbistcnt with any sufflcicntly strong thcorg. S. More precisely. we n~:d that .‘; 

prol’cs the consistency of some theory for which It proves Gtidcl’s theorem Thrb i:, 

true, say, for /!I i, which proves Cm,\,, [_, ,‘, but also for wcakcr theorics. io rro‘; 

this claim, let r,, be a theory for which we have .i’ t Corri,,. Pakc 7 .-- ii, Cc,tr’ 

it is consistent by G6dcl.s theorem But T -t- Co~r, is not consistent, since 7‘ pr!)\I:\ 

that a subtheory of T is not consistent. Let us stress that (3) has the ucakcst possibic 

form. since we apply it only for explicit theories. 

By the same argument such a rule is inconsistent also for stronger sentences (Note. 

however, that it does not make sense for schemas. such as Rfn,-. since the correspond- 

ing rule would have infinitely many assumptions. ) Namely, 111 case of (‘cut NC ha\ c 

derived a contradiction using ( I ). To prove that the above rule is contradictor! li)~ 

\:,,-RFN I . we shall check that the corrcspondin, o sentcncu is true for ?I:,,--RF/V, 

Lemma 2. Yl,,-RF/VI -? ‘3,,-RF,YT. \ ,_Ki L 

t/.x- (P/-, ; -Z,,-RFNr - <p(i)] - (p(r)). 

L.ct .Y be given. instead of Pr, ~.TC,,-RF!V’: ~- q(.i.)! we shall use a weaker assumption 

by taking only one special case of C,,-RF,Y,. namely 

Pt., -h Pt., vql(.f)l * ‘P(i)) - q,(.U) 

The thrmula within the outer 1 1 reduces (using propositional calculus) so that M I: get 

By Lijb’s theorem (cf. [ 13]), it implies PQ r(p(.Y)j. Now we can apply our assumption 

C,,-RFN, and conclude V(X) as required. C 

Let us analyze now the intuitive argument that we can add the consistency CWI! ( (,,,, 

when we already know Conr. The usual argument goes roughly as follows: 

Suppose -~CWZ~-+(,,,~, , i.c. T proves XorrT. Since r is true, there is an actual prooi 

of contradiction from the axioms T. But this is in contradiction with our assumption 

C’ot7, 
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It is clear that this argument uses an additional assumption that T is “true”, whatever 

it means. This word appears in Lucas’ argument [S, p. 1171, while Penrose uses “sound” 

[ 10, pp. 75, 941. The way these words are used shows that their meaning is some 

version of the reflection principle for T. The weakest reflection principle (of those 

we have considered) which suffices for this argument is Ci -Rfnr. Since Ci -RfnT is 

equivalent to 1-ConT, the argument is simply showing a half of Giidel’s theorem, as 

expressed by the formula (2). 

The fact (2) does not suffice to continue with adding more and more consistencies, 

but it is not difficult to prove a slightly stronger statement (we shall prove it formally 

below) 

I-ConT k l-ConT+Cc,,,,nr-. (5) 

This explains the illusion that we have the power to add consistencies forever. If we 

start with some theory TO and assume 1-ConTo, then we can prove ConF,, ConT,+cOw,,,, 

con T”-cCOf++,,,,” 9.. . 1 but, of course, using the assumption 1-ConTO which is stronger 

than all these statements. I conjecture that assuming a little more, namely Cl-RFNT, 

we can extend this process to transfinite autonomous progressions (in the sense of [l]). 

A possible source of misunderstanding may also be the fact that similar implications 

hold on various levels. For instance (3) is of this form. It enables us to iterate Rosser 

sentences, assuming the consistency of the initial theory. So the difference between the 

Rosser sentence, consistency (the Godel sentence), w-consistency and other possible 

variations is important, if we want to avoid false conclusions. This distinction is often 

disregarded in informal descriptions of Godel’s theorem. 

Let us state and prove such implications for some principles that we have considered. 

The general form of these statements is 

X,- + XT-U, (6) 

where X is the stronger and Y is the weaker principle. It is plausible that similar 

relations hold for other principles. 

Proposition 3. (1) ConT ---f Coiz~.++~~~~, 

(2) %+I-RFNT + ~nr~-~N~+~,,-rwv',> 

(3) l-ConT k l-ConT+&ni, 

(4) u-ConT E w-Con7.+&lr. 

Proof. (1) is just a part of Rosser’s theorem. (2) is proved in [13, Corollary. 4.1.121. 

To prove (3) first observe that l-Conr implies Conr. We shall use the fact that 

I-Conr is equivalent to C1-RfnT. Assume Cl-RfnT and suppose PYT+c~,,~ [cpl for some 

9 in Ci . This means PrT [ConT + ~1. The sentence inside is also C 1, hence we get 

ConT + cp. Now, using Conr we get cp. 

To prove (4) assume o-Conr and suppose Prrl&nr [%q(x)l. This means 

Prr[ConT + 3xcp(x)l. We shall rewrite this formula as 

PrT [3x(prfT(x3 111) v (ConT A dx)))l. 
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Applying tu-consistency of T to this formula we get 

(7) 

Fix such an s. The consistency of T implies ~f+f;.(~, r-11 ). By Cl -completeness WC 

get PY.I. [yPr.f~(z, ii1 )I. Thus (7) reduces to 

3.rlP1.7 i-( Conr A cp(X))l. 

The formula inside is equivalent to Cot17 - lcp(i), thus the whole formula is 

This proves that (u-consistency holds for T + Cons. -I 

4. Conclusions 

If we always justify a weaker principle by a stronger one, we are inevitably lead to so 

strong principles their truth is not evident to us. Consider, for instance, the hierarchy 

of the reflection principles C,,-RFNr. The next step after all these principles is the 

uniform reflection principle for all arithmetical formulas Xi,-RFNt.. In order to state 

this principle we need to be able to define the truth for all arithmetical formulas, which 

cannot be done in first order arithmetic. We need at least a fragment of the second 

order arithmetic. This is a big step. Natural numbers seem much more accessible to out 

intuition than subsets of natural numbers. The problem of the truth of the Continuum 

Hypothesis and several other problems about the continuum have not been resolved yet. 

Though these undecidable sentences are not directly linked with the reflection principle. 

it shows that we cannot be so confident anymore. As this is only a tiny part of the 

Zermelo-Fraenkel set theory, most people would go on, but at some stage everybody 

has to admit that the next principle is less likely to be true than the previous ones 

One of the arguments that Penrose uses is that whenever we accept T as our belief 

wc accept also the soundness of T. He does not specify what exactly he means by 

the soundness, The only way to state it precisely that I see is to use some rcflcction 

principles. There is no theory which is closed off with respect to extensions by sotnc 

reflection principle. As explained above we can expand T by taking stronger and 

stronger reflection principles, but at sotne point the principles will become too strong 

to be considered as obvious extensions of T. In the same way as people disagree 

on which set theory is safely consistent, people may disagree what extensions of an 

accepted theory T should be considered safe. 

Thus, it seems that our mathematical assumptions have a hierarchical structure like 

any other knowledge that we use. On the bottom there are statements that we believe 

are true without any doubts, while on the top there are doubtful statements which we 

have not been able to refute yet. WC use less secure knowledge as a heuristic to guess 

the truth where WC arc not able to deduce it from more secure knowledge and data. (In 
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real life we mostly trust our vision; when we cannot see the thing ourselves we may 

trust somebody’s report on it etc.) There are only a few, rather extravagant, logicians 

who doubt the consistency of Peano Arithmetic. On the opposite end the strongest 

assumptions are studied in set theory as lurye cardinals. The consistency of the largest 

ones is definitely more doubtful than the consistency of Peano Arithmetic, as at least 

in one case a proposed seemingly natural cardinal assumption had to be rejected as 

inconsistent. 

The strong principles arc rarely used directly, but we often use them unconsciously. 

Namely, the fact that no contradiction has been found for a strong principle strengthens 

our belief into a weak principle. For instance, inaccessible, Mahlo and even measur- 

able cardinals seem very safe, as no contradiction has been derived from consider- 

ably stronger principle in spite of extensive research. We also use stronger principles 

to produce “safe extensions” of weaker principles. We have demonstrated it on the 

example of the consistency principle and the reflection principle. The stronger one, the 

reflection principle, enables us to iterate extensions by the consistency. If we are too 

cautious, we do not have to accept a priori the reflection principle, but we may allow 

some consequences of it, namely, iterated consistencies. The feeling that we can always 

progress and make our assumptions stronger does not reflect our special ability, it is 

simply caused by the slow gradual decrease in our belief in their truth. Thus, after all, 

vagueness is present in our mathematical thinking, but not in the deduction process, it 

is in the decision which axioms we should accept. 

References 

[I] S. Feferman, Transfinite recursive progressions of axiomatic theories. J. Symbolic Logic 27 (1962) 

259-316. 

[2] S. Feferman, Theories of finite type related to mathematical practice, in: J. Barwise (Ed.), Handbook 

of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 913-971. 

[3] S. Feferman, Giidel’s program for new axioms: why, where. how and what? in: P. Hijek (Ed.), Gtide1’96, 

Springer, Berlin. 1996. pp. 3-22. 

[4] D. Hilbert, P. Bemays, Gnmdlagen der Mathematik I, Springer, Berlin, 1970. 

[5] D.G. Hofstadter, Giidel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979. 

[6] G. Kreisel, Ordinal logics and the characterization of informal concepts of proof, in: J.A. Todd (Ed.), 

Proc. Internat. Congress of Mathematicians, Cambridge Univ. Press, Cambridge, 1960, pp. 289-299. 

[7] G. Kreisel, A. L&y, Reflection principles and their use for establishing the complexity of axiomatic 

systems, Z. Math. Logik 14 (1968) 97-142. 

[8] J.R. Lucas, Minds, machines and Giidel, Philosophy 36 (1961) 112-127. 

[9] R. Penrose, The Emperor’s New Mind, Concerning Computers, Minds, and the Laws of Physics, Oxford 

Univ. Press. Oxford, 1989. 
[lo] R. Penrose, Shadows of the Mind, A Search for the Missing Science of Consciousness, Oxford Univ. 

Press. Oxford, 1994. 

[I l] R. Penrose, The Large, the Small and the Human Mind, Cambridge Univ. Press, Cambridge, 1997. 

[12] H. Putnam, A review of [IO] in Bull. AMS 32(3) (1995) 370-373. 

[ 131 C. Smorynski, The incompleteness theorems, in: J. Barwise (Ed.), Handbook of Mathematical Logic, 

North-Holland, Amsterdam, 1977, pp. 821-865. 


