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Connexin molecules form gap-
junction channels in vertebrates
and there are at least 20 of them
in humans [1]. Intuitively, one
would imagine that cardinal
features of the cellular machinery,
such as gap-junctions, would be
highly conserved. Paradoxically,
however, Drosophila and
Caenorhabditis elegans do not
have connexin genes, but instead
use innexins for gap-junctional
communication, a protein family
with the same 4-transmembrane
topology but no sequence
similarity to the connexins [2,3]. In
this paper we show that the
simple diploblastic organism
Hydra appears to possess only
innexins. We conclude that
innexins are the primordial gap-
junction molecules, while
connexins evolved more recently
in the deuterostomes.

The major question is whether
the connexin-innexin dichotomy is
an extreme case of sequence
divergence from a common
ancestor or a convergent solution
to the problem of intercellular
communication. A critical
experiment was to identify gap-
junction proteins in diploblastic
organisms, e.g cnidaria. These
organisms have functional gap
junctions [4] and represent an
evolutionary grade before the
deuterostome-protostome
divergence. We focused on the
hydrozoan Hydra because the
cells that comprise its body have
large gap-junction plaques and are
electrically and dye coupled [4,5].

During a signal peptide screen,
we recovered a fragment, which
matched a set of 14 overlapping
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Figure 1. Multiple sequence alignment of innexins, from a variety of taxa.

The boxes highlight part of the predicted first and the entire second transmembrane
(TM) domains of innexins. Identical amino acids in all the sequences in a percentage
higher than 65% are highlighted in yellow while the black stars mark the invariant cys-
teines of the 1st extracellular loop. The blue dots mark the signature amino acids Y, Q,
W and P of the second TM domain. The alignment was made using the ClustalW algo-
rithm and the decorations of the identical amino acids using the SeqVue software (Uni-
versity of Washington). The proteins aligned in order are: Drosophila melanogaster
ogre, Schistocerca Inx1, D. melanogaster Shaking-B and Inx2, Schistocerca Inx2,
Homarus Inx2 and Inx1, Hirudo Inx1, Chaetopterus Inx1, Clione Inx1, Hirudo Inx2, C.
elegans Unc7, Unc 9, Inx3 and Eat5, Girardia Inx1, Ciona Inx2 and Inx1 and Hydra Inx1.

ESTs (contig number
C_CD267995, available at
http://mpc.uci.edu/
hampson/public_html/blast/jf),
which we identified as a true
innexin. The original EST
collection had 3500 distinct
sequences derived from 13,000
ESTs. The novel sequence has
396 amino acids and a predicted
molecular weight of 44.9 kDa. A
structural prediction using the
Kyte-Doolittle algorithm showed
that this molecule, named Hydra
innexin-1 (Hv-inx1), has a typical
innexin topology with 4-
transmembrane (TM) domains and
amino- and carboxy-terminal
domains on the cytoplasmic face
of the membrane. The
extracellular loops contain pairs of
invariant cysteine residues and
the transmembrane domains (TM)
contain signature residues Y, Q,
W, P (second TM) and W, F (fourth
TM) at conserved positions ([6];
Figure 1). This strongly supports
the identification of Hv-inx1 as a
true innexin despite low overall
sequence identity. Expression of a
Hv-inx1-GFP fusion protein in
Hydra revealed a punctate pattern
of GFP fluorescence along the
basal lateral membrane of

epithelial cells (Figure 2),
corresponding to known sites of
gap junctions [5].

A search of an enlarged Hydra
EST collection, containing 93,000
entries (H.R. Bode and R. Steele,
UC Irvine;
http://www.hydrabase.org)
revealed four more innexin
homologs in addition to innexin-1.
The enlarged EST collection was
also searched for connexins using
the BLAST algorithm but no
statistically significant hits (e-
value < 1) were recorded. This
suggests that an earlier report of
connexin 32 immunoreactivity in
Hydra [4] is due to cross-reaction
with a conserved epitope. In
support of this, we note that
punctate patterns of connexin 32
immunoreactivity have also been
observed in Drosophila and
C. elegans, which do not have
connexin genes (D. Becker, C.
Green, P. Phelan, unpublished
data). Thus, we conclude that
Hydra contains innexins but not
connexins.

The most parsimonious
explanation of our results is that
innexins are the primeval gap-
junction proteins. They evolved in
diploblasts and persisted in the
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protostome lineage. To resolve
the provenance of connexins, we
turned to protochordates, which
represent an intermediate point of
evolution between invertebrates
and vertebrates. Recently, 17
connexin homologs and two
presumptive innexin-like
homologs were identified in the
protochordate Ciona intestinalis
[7,8]. We also searched genomic
and EST data from the
echinorderm Strongulocentrotus
purpuratus
(www.ncbi.nlm.nih.gov/genome/s
eq/SpuBlast.html; ~50,000 ESTs)
and the cephalochordate
Branchiostoma floridae
(goblet.molgen.mpg.de/cgi-
bin/Blast-amphioxus.cgi; ~7,000
ESTs) but no positive hits were
recorded for innexins or
connexins. Presumptive innexin
homologs have also been
reported for humans and mice [9].
These proteins, named pannexins,
are expressed in the CNS and
form functional gap junctions
when expressed in Xenopus
oocytes [10]. So far, only three
such proteins appear in the
human genome, and these
proteins are completely unrelated
in sequence to the connexins.

It is now possible to propose a
solution to the conundrum of gap-
junction evolution. Diploblasts,
such as Hydra, evolved innexins
for gap-junctional communication.
These were inherited by
protostomes and deuterostomes,
while an additional class of 4-
transmembrane molecules, the
connexins, arose de novo in
deuterostomes. Gene duplications
in the early protochordate lineage
[11] may have allowed the
connexins to assume a pivotal role
in forming gap-junctions, allowing
the innexin family to diverge and
form a subfamily, the pannexins.
We conclude that the innexin
versus connexin dichotomy is a
convergent solution to the problem
of intercellular communication.

Supplemental data
Supplemental data are available

at http://www.current-
biology.com/cgi/content/full/14/20
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