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Abstract--The asymptotic behavior of the thermal equilibrium state of a bipolar quantum hydro- 
dynamic model is considered. The quantum limit L ---, 0, L denoting a characteristic device length, 
is carried out rigorously. It shows that the classical assumption of charge neutrality at the boundary 
becomes invalid for ultra small semiconductor devices, whereas the assumption of vanishing bound- 
ary quantum effects will be confirmed. Furthermore, numerical simulations are presented, which give 
insight in the quantitative behavior. © 1999 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

During the last years Quantum Hydrodynamic models (QHDs) gained considerable attention be- 

cause of their capability to simulate quantum semiconductor devices numerically very efficiently. 

QHD's were able to reproduce phenomena based on quantum effects such as tunneling of carriers 

through potential barriers [1]. 

The QHD has the advantage of dealing with macroscopic fluid-type quantities, like the particle 

densities n and p of electrons and holes, respectively. While there is the possibility to derive the 

QHD equations from a nonlinear single state SchrSdinger equation [2], there is to the author's 

knowledge no rigorous derivation of boundary conditions for the QHD from microscopic quantum 

models, especially not for the nonequilibrium problem. Instead, one uses boundary conditions, 

which proved to be valid for classical semiconductor models [3]. 

We only assume that the particle densities and the potential take on their equilibrium values 

at the boundary. For the investigation of the thermal equilibrium state we employ the variational 

approach of Unterreiter [4]. Due to the assumption of total charge neutrality of the device, there 

is no need for prescribing boundary conditions. 

The thermal equilibrium state of a bipolar, isothermic quantum fluid confined to a bounded 

smooth domain fl C R d, 1 < d < 3, is entirely described by the particle densities n and p, where 
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the pair (n, p) is a minimizer of the energy functional [4] 

e ( n , v )  = 
h2 //2 

+ k B T / H ( n ) + k B T / H ( P ) + 2 / [ V V [ n - p - C ] [ 2 .  

Here, V := V[n  - p - C] denotes the self-consistent electrostatic potential, which is a solution of 
the Poisson equation - eAV = q (n - p - C). The function H ( t )  is a primitive of the enthalpy 
function h(t)  = logt, which corresponds to the isothermal pressure function p(t)  = t by the 
relation p'( t )  = t h ' ( t ) .  For later use we define Hmin = min {H(t) : t > 0}. The physical constants 
and parameters are the reduced Planck constant h, the effective masses mn, and mp of electrons 
and holes, respectively, the elementary charge q, the Boltzmann constant kB,  the permittivity e, 
the temperature T, and the distribution of charged background ions C = C + - C- ,  with C +, 
C-  > 0, and C • L°°(ft). We define 

N:=/C +, P:=fc-, 
and seek the minimizer of £ in the set 

: n , p  > O, v ~ , v ~  • HI(FI) ,  n = N ,  p = P , 

where the constraints on the integrals over n and p correspond to the assumption of total charge 
neutrality of the device in thermal equilibrium. They insure the existence of exactly one poten- 
tial V satisfying f V = 0. 

Let L be a characteristic length of the device under consideration. A rigorous analysis of the 
limit L --* 0 will show that the classical assumption of charge neutrality at the boundary [5], 

n - p -  C = 0, on On, 

becomes invalid for ultra small devices, where quantum effects play a predominant role. On the 
other hand, we will confirm the heuristic assumption of vanishing quantum effects: 

a4o 
- -  ~ O ,  

40 
on 0~2. 

Despite this analytic investigations, we will present numerical examples, which give evidence that 
also the charge neutrality at the boundary is good approximation as long as the length of the 
device under consideration is not too small. 

The paper is organized as follows. In Section 2, we introduce a problem specific scaling, which 
enlightens the dependence on L. The quantum limit L --* 0 is investigated in Section 3 and 
numerical studies of a diode are presented in Section 4. 

2. SCALING 

For the subsequent analysis it is convenient to introduce the following scaling, where the new 
dimensionless variables are marked by a tilde: 

x --* L ~, n -* Cm fi, p --* Cm ~, 

V VT ff , C Cm O. 
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Here, L denotes a characteristic device length, Cm the maximal density of charged background 
ions, and UT = keT /q  the thermal voltage. Introducing EL = Lu-e~ and defining the constants 

h 2 h 2 e ks  T 2 = C 2 =  
ca 6kBTrnn '  c~ = 6 k s T r n  v, qCm 

yields the scaled functional 

0) 
[ [ c 2 / ,  

L u L 2 J IVVL In + s n ( " )  + J n(p) + v - p -  
c ] l  2 , 

where we omitted the tilde for notational convenience. The potential VL is the solution of 
--c2AVL = LU(n - p -  C), subject to f V n  = 0. Note that EL has the same minimizer as E. The 
following existence and uniqueness result is available [4]. 

THEOREM 1. EL possesses a unique minimizer (nL,PL) E M such that there exists a constant 
KL > 0 with 1/KL < nL, PL < KL. Furthermore, there exist Lagrange-multipliers aXL,a2L ~ R 
such that nL, PL, VL fulfill the Euler-Lagrange-equations 

--c2AvCn--L + Vr~  (L 2 log (nL) + VL + alL) = 0, (2a) 

--c2Av~-~ + ~ (L 2 log (PL) - VI. + a2/.) = O, (2b) 

--c2 AVL -- L2 (nL -- PL - -  C )  = 0. (2C) 

Additionally, n L , P L , VL satisfy homogeneous Neumann boundary conditions. 

3. T H E  Q U A N T U M  L I M I T  L ~ 0 

Letting L tend formally to zero in (1) yields the functional 

2 

We assume without loss of generality that #d(f~) = 1, where #d denotes the d-dimensional 
Lebesgue measure. One easily verifies that (n0,P0) := (N, P) E M is the unique minimizer 
of Eo in M, since there are no other constants in M. 

We establish weak convergence of the densities by deriving a priori estimates independent of L; 
then we will use properties of the functional to get even strong convergence. 

THEOREM 2. Let (r~L,PL) be the unique minimizer o[E L with corresponding potential VL. Then, 
for L ~ 0 

--* el-N, v/-PL --* V~ ,  VL [nL -- PL -- C] --, O, strongly in H 1 (f~). 

PROOF. Since (nL,PL) is the minimizer of EL in M, we have 

EL (nL,PL) <_ EL(N,P). 

This implies 

f f 2 

f ~ [ IVVL[N - P - C]l 2 _< L 2 (/'/'(N) +/-/ '(P) - 2/-/rain) + 2 J 

L---+0 
~ 0.  
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Since all summands are nonnegative, we get for L -~ 0 

/ ,VVf~-i2--* 0, / I V V ~ ] 2 - - *  0, / ] V V L [ n L - - p L - - C ] [ 2 - - * O .  

From Poincard's inequality we can immediately deduce that VL[nL -- PL -- C] --+ O, strongly in 
HI(~).  Furthermore, we have for L > 0 and some positive constant c 

_< ¢. 

Thus, we might extract a subsequence such that v/h-~ ~ p. and ~ --- a .  weakly in HI(~).  
The embedding Hl(fl)  '-* La(fl) is compact up to three space dimensions, such that n i  --* p2. 

and PL --~ a2. strongly in L2(fl). Employing the weak lower semicontinuity of Co we get 

Co (p.2,~r.2) _< liminf £0 (nL ,pL)  L--,0 
_< liminf (~L (nL ,P5)  -- 2 L2Hmin) L--*O " 
< liminf EL(N, P) = C0(N, P). L--*0 

2 = p,  from which the assertion Hence, the uniqueness of the minimizer implies p.2 = N and a.  
follows. | 

Theorem 2 can be interpreted as follows. Assuming that either C + ~ const or C-  ~ const, we 
have N - P - Clan ~ O, such that the classical charge neutrality assumption (n - p - C)[o~ = 0 

cannot be fulfilled for ultra small devices. But this is only an asymptotic result and we present 
in the next section numerical simulations, which will give some quantitative ideas. 

Next, we investigate the assumption of vanishing boundary quantum effects, which will be 
confirmed by the following result. 

THEOREM 3. Let the same notat ions  as in the previous  theorem hold. Then,  

Av/-n-L * O, AVrffL --* O, s trongly  in L2(ft). 

PROOF. We only consider the sequence (Av/-h~/v/-nT), since for (Av/~-~-/vr~), one may use the 
same arguments. Following the proof of Theorem 2, we deduce 

I / , V V ~ I 2  < _ f H(nL) < 
for some positive constant c independent of L. Multiplication of (2a) with v/-ff~/L2 and integra- 
tion gives 

/ 1/ / 
N L2 -- L--- ~ IVv/'n-~l 2 + ( H  (nL)  -- Hmin) + ~-5 nLVL -- ( N  - Hmin), 

from which OtlL = O(L 2) for L ~ 0 follows due to 

1/ 
L-- ~ nL VL <cllnLIIL, IInL --PL --CIIL~. 

These bounds can be used to derive the existence of a uniform bound K > 0 such that 1 / K  < 

nL < K holds for all L > 0 (cf. [4,6]). Taking the square of (2a) and integration yields 

Thus, the quantum Bohm potentials Avfh~/vfh~ and Av/~-~ /v~  converge to zero almost 
everywhere. 

REMARK 1. The Lagrange-multipliers a l l  and a2L can be interpreted as the equilibrium values 
of the corresponding quantum quasi Fermi levels [4], which accordingly also vanish asymptotically. 
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4. N U M E R I C A L  S T U D I E S  

We consider a one-dimensional n+-n-n+-diode fabricated of GaAs with maximal doping density 
C m  -- 1024m - 3  at temperature T = 77K. For the values of the physical parameters, we refer 
to [5]. The equilibrium solutions for different lengths L (= 20, 100, 200 nm) of the device were 
computed by a gradient projection method (cf. [7]). 

Figure 1 shows the computed electron densities for various lengths of the device and also the 
doping profile for reference. Clearly, one verifies the convergence predicted in Theorem 2. In 
Table 1, we present some values of the relevant quantities at the left boundary point of the 
device, which give evidence that the results hold only asymptotically. Charge neutrality at the 
boundary is still valid for ultra small devices (100nm), whereas there seems to be a range in 
which the assumption of vanishing quantum effects does not hold. Also the equilibrium values 
of the potential and the quantum quasi Fermi level cannot be neglected. Note that they almost 
coincide if the device is sufficiently large. 
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Figure 1. Equilibrium' densities. 
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Table 1. Numerical results. 

L n(0) 

20 nm 0.83 

100 nm 0.999 

200 nm 0.999 

AvQ~ v(0) 

-4.3 -0 .6  

-0•03 -0.868 

0.07 -1.113 

-0.46 

-0 .87 

-1.115 
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