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a b s t r a c t

Previous studies demonstrated safety, immunogenicity and efficacy of DNA/modified vaccinia virus
Ankara (MVA) prime/boost vaccines expressing tryparedoxin peroxidase (TRYP) and Leishmania homo-
logue of the mammalian receptor for activated C kinase (LACK) against Leishmania major challenge in
mice, which was consistent with results from TRYP protein/adjuvant combinations in non-human pri-
mates. This study aimed to conduct safety and immunogenicity trials of these DNA/MVA vaccines in dogs,
the natural reservoir host of Leishmania infantum, followed-up for 4 months post-vaccination.

In a cohort of 22 uninfected outbred dogs, blinded randomised administration of 1000 �g (high dose)
or 100 �g (low dose) DNA prime (day 0) and 1 × 108 pfu MVA boost (day 28) was shown to be safe and
showed no clinical side effects. High dose DNA/MVA vaccinated TRYP dogs produced statistically higher
mean levels of the type-1 pro-inflammatory cytokine IFN-� than controls in whole blood assays (WBA)
stimulated with the recombinant vaccine antigen TRYP, up to the final sampling at day 126, and in the
absence of challenge with Leishmania. TRYP vaccinated dogs also demonstrated significantly higher TRYP-
specific total IgG and IgG2 subtype titres than in controls, and positive in vivo intradermal reactions at
day 156 in the absence of natural infection, observed in 6/8 TRYP vaccinated dogs. No significant increases
in IFN-� in LACK-stimulated WBA, or in LACK-specific IgG levels, were detected in LACK vaccinated dogs

compared to controls, and only 2/9 LACK vaccinated dogs demonstrated DTH responses at day 156. In
all groups, IgG1 subclass responses and antigen-specific stimulation of IL-10 were similar to controls
demonstrating an absence of Th2/Treg response, as expected in the absence of in vivo restimulation or
natural/experimental challenge with Leishmania.

These collective results indicate significant antigen-specific type-1 responses and in vivo memory phase
cellular immune responses, consistent with superior potential for protective vaccine immunogenicity of

K.
DNA/MVA TRYP over LAC

. Introduction

Zoonotic visceral leishmaniasis (ZVL) caused by the sandfly-

orne intracellular protozoan parasite Leishmania infantum (=L.
hagasi) [1] is endemic in the Mediterranean basin, South Amer-
ca and parts of Asia, and is recognised as a re-emerging disease
y the World Health Organization. Development of a vaccine for
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E-mail address: c.carson@warwick.ac.uk (C. Carson).

1 Current address: Division of Genetics and Health, Telethon Institute for Child
ealth Research, PO Box 855, West Perth, WA 6872, Australia.

264-410X © 2008 Elsevier Ltd.
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Open access under CC BY license.
© 2008 Elsevier Ltd.

ZVL in the reservoir host, the domestic dog, has been identified
as a research priority by WHO/TDR [2], and mathematical mod-
els have highlighted canine vaccination as potentially the most
practical and effective means of disease control in humans [3,4].
The only commercially available Leishmania vaccine (Leishmune®)
is based on a purified parasite preparation, and is only licensed
for use in dogs in Brazil [5]. Although trials in naturally exposed
Brazilian dogs showed 80% vaccine efficacy [6], transient adjuvant-

Open access under CC BY license.
related side effects such as anorexia and local pain/swelling [7] may
reduce uptake and compliance among vets and dog owners. Devel-
opment of additional novel vaccine candidates is advisable, since
the next generation of vaccines/vaccine antigens should always be
waiting in the wings, and we should continue to improve on meth-
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ds of delivery that will safely elicit lasting immunological memory.
xperimental DNA vaccines are the subject of increasing numbers
f human and veterinary clinical trials, since they elicit the T-cell
emory required for long term protection [8], are extremely safe,

asy to standardize, and are highly stable for storage and distribu-
ion purposes in tropical environments where cold chain may be
navailable [9].

Analysis of expressed sequence tags from cDNA libraries of
eishmania major [10] led to the discovery and functional character-
sation [11] of tryparedoxin peroxidase (TRYP, also known as thiol
pecific antioxidant or TSA [12]), which plays a role in protection
f the parasite from oxidative damage. TRYP is tandemly repeated
nd highly conserved across Leishmania spp. (91% amino acid
dentity with L. infantum), highly represented in cDNAs libraries
rom promastigotes [10], and highly expressed at mRNA level in
romastigotes and amastigotes [13]. DNA alone or DNA/modified
accinia virus Ankara (MVA) prime/boost vaccine delivery high-

ighted TRYP as a highly effective inducer of protective immunity
gainst virulent challenge with Leishmania major in susceptible
ALB/c mice as shown by reduction in footpad lesion size fol-

owing injection of promastigotes at 16 weeks post-vaccination
14]. These findings are consistent with studies using TRYP pro-
ein/adjuvant combinations in mice and non-human primates [15].
NA/recombinant Vaccinia virus heterologous prime/boost vaccine
rotocols are now known to be superior to homologous chal-

enge with DNA, since they stimulate more robust and longer
ived synergistic cellular immune responses [16]. In mice it has
een demonstrated that although both DNA/DNA and prime/boost
NA/MVA vaccines expressing TRYP protected against L. major
hallenge in the effector phase (2 weeks post-boost), the protec-
ion induced by prime/boost TRYP delivery was superior in the

emory phase (16 weeks post-boost) [17], possibly due to stim-
lation of CD8+ T cells which are now recognised as an important
lement in maintenance of vaccine induced memory [18]. Impor-
antly, TRYP was shown to be far superior as a protective vaccine
o the previously described Leishmania homologue of the recep-
or for activated C kinase (LACK) [19], the functional correlate for
his being higher IL-10 from regulatory T cells elicited by LACK
nd a higher IFN-�:IL-10 ratio associated with TRYP (indicative
f a type-1 pro-inflammatory response driven by IFN-� secret-
ng Th1-type CD4+ cells) compared to LACK vaccination [14]. To
ate, no research has been published describing the immunological
esponses of dogs to DNA/MVA TRYP as a potential vaccine against
VL.

In dogs, previous research has shown that a prime/boost vac-
ine employing the replication competent Western Reserve strain
accinia virus expressing LACK was safe and immunogenic, and
nduced 60% protective immunity against experimental i/v chal-
enge infection with L. infantum at 2 weeks post-boost [20].
owever, superior protection against infection, and higher T-cell
roliferative responses were induced by a prime/boost vaccine
hich expressed LACK using the MVA strain [21], in line with previ-

us murine research which showed that highly attenuated vaccinia
irus strains such as MVA are associated with superior vaccine
mmunogenicity [22]. Research into prime/boost MVA canine vac-
ines is of particular importance due to safety concerns regarding
nattenuated vaccinia strains such as Western reserve. MVA is also
he current vaccinia virus strain of choice for human clinical investi-
ations, having been used in over 120,000 human patients without
ocumented adverse side effects, even in immunocompromised
umans [23,24]. The DNA/MVA approach is currently being applied

o development of prime/boost vaccines for humans, against HIV
25], malaria [26], tuberculosis [27] and tumours [28].

Following the previous successful safety, immunogenicity and
fficacy studies of the prime/boost DNA/MVA TRYP vaccine against
. major in mice [14,17], this study aimed to demonstrate safety
(2009) 1080–1086 1081

and immunogenicity of DNA/MVA TRYP and LACK in a cohort of 22
uninfected, unexposed outbred dogs followed-up for 4 months.

2. Materials and methods

2.1. Study population and experimental set-up

A cohort of 22 young (median age 18 months, range 4–24
months) uninfected outbred dogs from a ZVL endemic area (Crete,
Greece) were enrolled for vaccination with DNA/MVA TRYP, LACK
or control, and followed-up for 4 months post-prime/boost vacci-
nation between June and November 2007. Dogs were recruited with
informed consent from owners in villages of the Heraklion prefec-
ture within 15 km radius of the city of Heraklion, on the criteria
of being negative to all diagnostic tests: (1) Indirect immunoflu-
orescent antibody test (IFAT) [29], (2) Crude Leishmania parasite
antigen (CLA) ELISA [30], and (3) PCR of buffy coat to detect DNA
expressing the internal transcribed spacer 1 region of the riboso-
mal RNA gene (ITS-1 rRNA) of Leishmania spp. [31]. The sample
comprised 59% mixed breeds, the remainder including local breeds
(Cretan/Hellenic hounds) (n = 4), Belgian Shepherd (n = 2) and pit
bull terrier (n = 1), at a male: female ratio of 1.2:1.

Dogs were housed in pairs, or individually (adjacent and within
sight of each other), in kennels located at the University Hospital
of Crete, Heraklion, which were modified for the purpose to con-
form with EC regulatory standards and UK Home Office Code of
Practice for housing of laboratory dogs [32]. Prior to commence-
ment of trials, all dogs received routine vaccination for distemper,
canine parvovirus, canine adenovirus and leptospirosis (Hexadog,
Merial), in addition to oral antihelminthic treatment with prazi-
quantel/fenbendazole (Caniquantel Plus, New Vet AE). To rule out
exposure to Leishmania wild type during the transmission season
(May–October), dogs were fitted with deltamethrin-impregnated
collars (Scalibor, Intervet) and checked daily for collar loss, or
treated instead with fortnightly doses of topical 10% imidaclo-
prid/50% permethrin solution (Advantix, Bayer AG). Kennels were
monitored continuously for sandfly activity by routine light trap-
ping and sticky traps [33]. No sandflies were detected at the kennels
during the trial. After completion of trials, all dogs were returned
to their owners.

2.2. Vaccine administration

Dogs were randomized to receive intramuscular injections, from
blinded operators, in the craniolateral aspect of the right quadriceps
femoris, with DNA TRYP or LACK (100 �g; n = 4, or 1000 �g; n = 5),
or control plasmid DNA (1000 �g; n = 4) on day 0, followed 28 days
later by 108 pfu MVA TRYP or LACK vaccine (or empty MVA vehicle
as control). This prime/boost regime is similar to that employed in
previous canine studies [20,21], in which administration of plas-
mid DNA (100 �g) and recombinant Vaccinia virus (107 to 108 pfu)
were carried out 14 days apart. Safety and immunogenicity were
measured as described below.

2.3. Safety

Dogs were kept under veterinary surveillance post-“prime”
and “boost” to detect the occurrence of potential adverse reac-
tions. Safety was assessed by daily clinical examinations for 4
days post-vaccination (as detailed in European Medicines Agency

(EMeA) requirements [34]), with defined clinical end-points (local
pain on palpation; inflammation; ulceration; alopecia; apathy;
fever; diarrhoea; anorexia). Body weight was recorded weekly.
Pre- and post-vaccine haematological and biochemical parameters
were measured by collection of blood samples at 2 days before
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nd 2 days after each vaccination. Blood was collected by jugu-
ar or cephalic venepuncture in 2 ml EDTA anticoagulated and
lain serum gel tubes. Samples were sent by same day courier at
4 ◦C to a commercial laboratory (Microanalysi, Athens), and pro-
essed for routine biochemical tests (urea, creatinine, aspartate
minotransferase (AST), alanine aminotransferase (ALT), creatine
hosphokinase (CPK) and total bilirubin) using a standard Aeroset
ry chemistry analyzer (Abbott-Toshiba, USA) and red/white blood
ell counts using a PCE-210 automatic blood cell counter (Erma Inc.,
apan).

.4. Immunogenicity

.4.1. Cytokine assays
Immunogenicity was assessed by measurement of cytokine lev-

ls (IFN-�, TNF-�, and IL-10) expressed by antigen stimulated
ymphocytes in whole blood assays (WBA) [35], measured pre-
accination (day 0) and on days 26, 42, 70, 98 and 126 following first
accination. Blood collected at time points detailed above by jugu-
ar or cephalic venepuncture in heparin anticoagulant was diluted
:10 in RPMI supplemented with 100 IU/ml penicillin, 100 �g/ml
treptomycin and 2 mM l-glutamine, and incubated in 96-well flat
ottom plastic culture plates. Triplicate wells (200 �l per well)
ere incubated for each antigen or mitogen (TRYP, LACK, CLA and
oncanavalin A: 10 �g/ml), including negative control (unstim-
lated) wells, for a period of 5 days at 37 ◦C in 5% CO2 in air.
upernatants from each of the three replicate wells were pooled
nd stored at −80 ◦C until required. Measurement of cytokines
xpressed in culture supernatants was carried out by quanti-
ative ELISA using commercially available reagents. Duoset kits
R&D systems, UK) were used to detect IFN-� and TNF-�, while

atched pair monoclonal capture/polyclonal detection antibod-
es were employed for IL-10 measurement, using the supplied
ecombinant protein standards, according to the manufacturer’s
ecommendations. Background levels in unstimulated control wells
ere deducted from antigen-stimulated values to quantify antigen-

pecific cytokine production (with negative values recorded as
ero). The mean values for background levels of IFN-�, TNF-� and
L-10 were 65 pg/ml (range 0–313), 47 pg/ml (range 0–527), and
62 pg/ml (range 0–982). TRYP and LACK antigens were not avail-
ble to measure pre-vaccination (day 0) cytokine levels, therefore
ytokine measurements for these antigens commenced from day
6 onwards.

.4.2. ELISA
Serological responses to vaccination (total specific IgG, IgG1 and

gG2 subtypes) were measured by anti-TRYP and anti-LACK ELISA
n all dogs at all 6 follow-up time points (day 0–126). 96-well
olystyrene microtitre plates (Maxisorp, Nunc A/S, Roskilde) were
oated overnight at 4 ◦C with 50 �l 0.05 M carbonate/bicarbonate
oating buffer, pH 9.6 (Sigma–Aldrich, UK) containing 0.5 �g TRYP
r 0.25 �g LACK (prepared as described below) per well. Wells were
ashed three times with PBS/0.05% Tween 20 (repeated between

ach step detailed below). Blocking was performed with 2% dried
ilk powder in carbonate/bicarbonate buffer for 2 h at 37 ◦C,

nd 50 �l of the appropriate dilution of dog serum in PBS/0.05%
ween20/2% dried milk powder was added to each well. All samples
ere run in duplicate. For detection of total IgG, 50ul of anti-dog

gG conjugated to horseradish peroxidase (HRP) (Sigma–Aldrich)
as used at 1:1000 dilution for 1 h incubation at 37 ◦C, while for

ntibody subtyping, goat anti-IgG1-HRP conjugate at 1:500 dilu-

ion, or sheep anti-IgG2-HRP conjugate at 1:10,000 dilution (Bethyl
aboratories, Montgomery, TX, USA) were added. 100 �l substrate
olution (Tetramethylbenzidine (TMB); Sigma–Aldrich, UK) was
hen added, the reaction was stopped after 20 min incubation at
oom temperature using 50 �l 0.5 M H2SO4, and the optical den-
(2009) 1080–1086

sity of reaction product was read using an automated ELISA plate
reader (Multiskan EX, Thermo Fisher, UK) set at 450 nm. Positive
and negative controls were included on each plate. The sample-
to-positive ratio (s/p) [36] for each sample was calculated as the
mean raw absorbance at 450 nm of duplicate test samples relative
to a highly positive reference positive sample (from a parasito-
logically confirmed polysymptomatic Brazilian dog [30]) which
was included on every ELISA plate. For subtyping experiments, to
measure antigen-specific antibody titre in arbitrary units, titration
curves were plotted for each serum sample using doubling dilu-
tions from 1:100 to 1:3200 (IgG1) or alternate doubling dilutions
from 1:200 to 1:204,800 (IgG2). The cut-off point was calculated
as the mean s/p ratio of all dogs at time 0 (pre-vaccination). Using
maximum likelihood, a straight line was fitted to the linear portion
of the s/p ratio titration curve, and the reciprocal of the dilution rate
at the point of intersection with the cut-off value was calculated as
an estimate of antibody titre.

2.4.3. Intradermal tests
Cellular immune responses in vivo were measured at day 156 by

intradermal skin testing [37] using 0.1 �g TRYP and LACK recom-
binant antigen (prepared as described below) in 0.1 ml sterile
pyrogen-free PBS (or 0.1 ml PBS alone, as a control) injected intra-
dermally at the right inner thigh, a distance of 5 cm apart. The size of
the indurated area was measured at 72 h after injection. Two mea-
surements were taken at 90◦ to each other using vernier calipers,
and the mean of the two numbers was recorded. A positive reaction
was considered as >5 mm.

2.5. DNA and MVA vaccine preparation

Production of the DNA and MVA vaccines were carried out
following GLP guidelines at the Cambridge Institute for Medical
Research (DNA) and the Centro de Biología Molecular Severo Ochoa
(MVA), respectively, as described in previous research [14]. Briefly,
plasmid DNA was purified under sterile conditions using EndoFree
Plasmid Giga kits (Qiagen) with pyrogen-free materials, and the
final product resuspended in pyrogen-free PBS. Recombinant MVA
expressing TRYP and LACK were originally prepared as described
[14]. Purified stocks of recombinant MVA grown in RK13 cells under
sterile conditions were prepared as described [38] by ultracentrifu-
gation through a sucrose cushion, resuspended in 10 mM Tris–HCl
(pH 9), stored at −80 ◦C until required, and diluted in pyrogen-free
PBS for final inoculation. Expression of protein from recombinant
MVA-infected culture lysate was checked by Western blotting using
sera from DNA-vaccinated mice, demonstrating the expected pro-
tein bands at 22 kDa for TRYP and 18 kDa for LACK.

2.6. TRYP, LACK and CLA antigen preparation

Recombinant proteins used for in vitro immunology assays, and
to test intradermal reactivity in vivo, were prepared by Novexin
Ltd. (Babraham, UK) under GLP using constructs originally pre-
pared by the Cambridge lab [14] by cloning TRYP or LACK into
the expression vector pET-15b (Novagen) and transformation into
Escherichia coli BL21 (DE3) host cells. Recombinant protein was
purified by affinity column chromatography using 1 ml HisTrap FF
columns (GE Healthcare). Immobilised target proteins were washed
with buffer containing NV polymer to dissociate and remove endo-
toxin contamination before being eluted with 10 mM Tris–HCl (pH

8.5), 0.5 M NaCl and 250 mM imidazole, and desalted into low-LPS
PBS using PD10 desalting columns (GE Healthcare). Proteins were
diluted in pyrogen-free PBS for intradermal inoculation into dogs.
Crude freeze-thawed Leishmania infantum CLA was prepared from
stationary phase promastigotes as described previously [14].
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LACK dogs’ mean IFN-� levels, in LACK-stimulated WBA (P ≥ 0.45;
Wilcoxon rank sum test). The combined results of high and low dose
groups (Fig. 3) showed that, overall, mean IFN-� levels in response
to TRYP WBA were significantly higher in TRYP vaccinated dogs than

Fig. 2. Mean IFN-� (95% C.I.) in individual vaccine groups in TRYP WBA. IFN-� levels
were measured in whole blood cytokine stimulation assays using TRYP antigen, at
the indicated time points after 1st vaccination on Day 0 with TRYP or LACK (low or
C. Carson et al. / Vac

.7. Statistical analysis

Comparison of mean cytokine levels in quantitative ELISAs, and
ntibody titres in IgG subtyping experiments, was performed using
on-parametric Wilcoxon rank sum tests. Differences between vac-
ine group biochemical and haematological parameters were tested
or using one-way ANOVA, with Scheffe multiple comparison tests
here appropriate. Statistical significance was set at P < 0.05. All

nalyses were carried out in STATA v9.

.8. Ethics

Trials were undertaken to confirm safety in the target popula-
ion of genetically diverse outbred dogs following EMeA scientific
uidelines for veterinary medicinal products [34,39], EEC directive
6/609/EEC [40] and with approval from local government. Dogs
ere cared for by fully trained animal house staff under veteri-
ary supervision. Kennels were approved by Hellenic Government
eterinary Officers (Document ref: 4381) and compliance with rel-
vant legal requirements under Greek laws (160/1991) relating to
nimal welfare certified by the Hellenic Republic Ministry of Rural
evelopment & Food: General Veterinary Authority K.A.F.E. Depart-
ent ‘A’ (Document ref: 319083). Written informed consent was

ained from dog owners prior to commencement of all trials. Ani-
als remained the legal property of owners, and were returned

fter completion of the study. In the absence of a Cretan ethi-
al committee for animal procedures, protocols conformed to the
pirit of UK Home Office requirements for United Kingdom research
stablishments, and with ethical approval from the University of
arwick Biological Ethics Committee. Institutional approval for the

se and modification of kennels for the vaccine trials was granted
y the University of Crete Scientific Board (Document ref: 4/31-1-
007).

. Results

.1. Safety

.1.1. Clinical examination
Examination post-vaccination detected no adverse clinical side

ffects except transient pain on palpation of the injection site in
ne low dose LACK dog on the morning following second vacci-
ation. No swelling, alopecia or systemic signs were recorded in
ny animal. Mean body weights of all vaccine groups increased
lowly throughout the trial (Fig. 1), partly due to growth of young
ogs in each group. One female animal in the TRYP low dose
roup was vaccinated in the early stages of gestation, before the
regnancy was apparent on clinical examination. Subsequently
o discovery of the pregnancy, this bitch was monitored closely
hroughout an uneventful gestation, and delivered normal pup-
ies. Data from this animal were excluded from all subsequent
nalyses.

.1.2. Clinical biochemistry and haematology
Between group comparison of blood biochemical (AST, ALT, crea-

inine, urea, total bilirubin and CPK) and haematological parameters
total red blood cell count) pre- and post-prime and boost vaccina-
ions showed no statistically significant differences between TRYP,
ACK and control groups (ANOVA; P ≥ 0.11). Comparison between

roup mean white blood cell counts at time 0 (before 1st vaccine)
pproached significant difference (ANOVA; P = 0.053), however
o statistically significant differences between individual vaccine
roups were identified using the Scheffe multiple comparison test,
nd no subsequent post-vaccine between-group differences were
ound (P ≥ 0.20).
Fig. 1. Mean body weight (kg) of vaccine and control dog groups from time of 1st
vaccination.

3.2. Immunogenicity

3.2.1. IFN-� cytokine response
Mean IFN-� levels in response to WBA stimulation with TRYP

antigen in TRYP high dose vaccinated dogs (1000 �g DNA) were
significantly higher than controls at all time points from day 42
onwards. In the TRYP low dose (100 �g DNA) group, after removal
of an outlier IFN-� value of 3576 pg/ml at day 126, vaccinated dogs
showed higher mean IFN-� levels than controls at day 42 only
(Fig. 2). LACK-specific IFN-� responses in both high and low dose
LACK vaccine groups were not significantly different from controls
at any time point. We did not detect any significant difference in
TRYP-specific IFN-� levels between high and low dose TRYP groups
at any time point (P ≥ 0.27; Wilcoxon rank sum test). Similarly,
no significant difference was detected between high and low dose
high dose) DNA vaccine, or control placebo DNA. 2nd vaccination with MVA TRYP,
MVA LACK or placebo (as appropriate) was carried out on Day 28. For each time point,
the x-axis has been stretched to allow clear visualization of error bars. *Denotes a
significant difference between vaccine group and control (Wilcoxon rank sum test;
P < 0.05). One outlier point in TRYP low dose vaccine group at day 126 removed (IFN-
� = 3576 pg/ml); upper confidence limits are truncated at 1000 pg/ml on the vertical
scale, for clarity.
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Fig. 3. Mean IFN-� (95% C.I.) in combined high and low dose vaccine groups in
TRYP and LACK WBA. IFN-� levels were measured in whole blood cytokine stim-
ulation assays using TRYP and LACK antigen, at the indicated time points after 1st
vaccination. Results from TRYP and LACK low and high dose vaccine groups are amal-
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Fig. 5. Mean TRYP-specific IgG1 and IgG2 antibody subtype titres (95% C.I.) by vac-
cine group. TRYP-specific IgG responses were measured at the indicated time points
amated. Filled points on the graph with solid error bars represent IFN-� response
o TRYP antigen stimulation in WBA, open points with dotted error bars show IFN-

response to LACK stimulation. *Denotes a significant difference between vaccine
roup and control (Wilcoxon rank sum test; P < 0.05).

n controls at 3/4 time points post-vaccination (P < 0.05: Wilcoxon
ank sum test), whereas no significant difference was seen between
ACK vaccinated dogs and controls in LACK WBA.

Mean IFN-� responses to CLA antigen in all vaccine groups
ere consistently low (≤120 pg/ml) or below background (data not

hown), showing no significant association with vaccine group.

.2.2. IL-10 cytokine response
No significant differences were observed between high and

ow dose TRYP (P ≥ 0.10) or LACK (P ≥ 0.09) vaccine group IL-10
esponses, therefore results from the two dose rates were combined
or further analysis. Mean IL-10 levels in vaccinated dogs were not
ignificantly different from controls, showing no obvious change
ver time apart from a transient increase in mean IL-10 levels at Day

0 in both TRYP and LACK vaccinated dogs (not significantly differ-
nt from controls: P ≥ 0.12; Wilcoxon rank sum test), in response
o both TRYP (Fig. 4) and LACK antigens (similar results, data not
hown). Mean IL-10 responses to CLA antigen were consistently

ig. 4. Mean IL-10 (95% C.I.) in TRYP WBA. IL-10 levels were measured in whole
lood cytokine stimulation assays with TRYP antigen, at the indicated time points
fter 1st vaccination. Results from TRYP and LACK low and high dose vaccine groups
re amalgamated.
by ELISA using HRP conjugated antisera to detect IgG1 and IgG2 subtypes. Dogs were
vaccinated with DNA TRYP or control placebo at Day 0. MVA TRYP or placebo was
administered at Day 28. N.B. * denotes a significant difference between mean IgG
levels in vaccinated and control dogs (Wilcoxon rank sum test: P < 0.05).

low (≤62 pg/ml) or below background (data not shown), showing
no significant association with vaccine group.

3.2.3. TNF-˛ cytokine response
None of the vaccinated groups showed significant differences in

mean TNF-� level compared with controls at any time point (data
not shown).

3.2.4. Intradermal tests
A positive skin test response to TRYP antigen (>5 mm) was

observed in 4/5 TRYP high dose dogs and 2/3 TRYP low dose dogs at
day 156. The TRYP low dose dog with a negative skin test result cor-
responded to an animal which had consistently low IFN-� cytokine
assay responses to TRYP, whereas the skin test negative animal
in the high dose TRYP group paradoxically showed high IFN-�
responses to TRYP throughout the trial. In LACK vaccinated dogs,
there was a positive skin test response to LACK antigen in 2/5 high
dose dogs and 0/4 LACK low dose dogs.

3.2.5. ELISA IgG1/IgG2 subtyping
High TRYP-specific total IgG s/p ratios were seen in dogs

post-TRYP vaccination, however LACK-specific total IgG in LACK
vaccinated dogs remained at baseline levels. Measurement of TRYP-
specific IgG1 and IgG2 subtypes demonstrated significantly higher
levels of IgG2 in both high and low dose TRYP dogs compared to
controls at all time points post-vaccination (P < 0.05; Wilcoxon rank
sum test). No difference in IgG2 levels was detected between high
and low dose TRYP dogs, therefore data were combined (Fig. 5).
Data from LACK vaccinated dogs are not shown due to absence of
specific antibody response in these dogs. IgG1 levels in TRYP vacci-
nated dogs were uniformly low, and not significantly different from
controls at any time point (Fig. 5).

4. Discussion

This study shows that uninfected, unexposed outbred endemic
dogs vaccinated with DNA/MVA TRYP prime/boost vaccine pro-
duced higher antigen-specific levels of the signature type-1
cytokine IFN-� in whole blood cytokine stimulation assays than

placebo vaccinated dogs. LACK vaccinated dogs showed a simi-
lar trend that was not statistically significant. A majority of TRYP
and a minority of LACK vaccinated dogs exhibited in vivo delayed-
type hypersensitivity responses to intradermal inoculation with
the appropriate recombinant vaccine antigen at day 156, indicative
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f antigen-specific cellular memory recall responses. The elevated
ntigen-specific IFN-� level in TRYP vaccinated dogs compares
ith the reported high levels of IFN-� associated with protection

n murine models against L. major [14,17] and L. donovani infec-
ion [41–43], and in dogs against L. infantum infection and disease
44–46], and is thus indicative of vaccine-induced protective type-1
mmunity and memory phase response.

TRYP vaccinated dogs were also characterized by an IgG2 sub-
lass dominated response, whereas IgG1 subclass levels remained
ow and were not significantly different to control dogs at any time
oint. In our hands, despite previous evidence of seroconversion
o LACK antigen after DNA/MVA LACK prime/boost vaccination in

urine trials [14], LACK-specific IgG did not increase measurably
rom baseline levels. Taking IgG2/IgG1 ratio as a proxy measure of
h1/Th2 polarization of the immune response following previous
esearch [44,46–48], these results are further evidence of a type-

dominated response in the TRYP vaccine group, despite some
ontroversy over the association between canine IgG subclass ratio
nd protective cellular immune response [49], different to the clear
atterns observed in mice [14,17]. The absence of significant IgG1
Th2) responses in the currently described vaccinated dogs was as
xpected due to the absence of challenge infection or restimulation
ith Leishmania antigens, in contrast with previous canine trials of
NA/rVV prime/boost vaccines in which humoral responses were
easured post-experimental challenge [20,21]. For the same rea-

on, we detected no antigen-specific increases in IL-10 levels in
ither vaccine or control groups, making analysis of IFN-�:IL-10
atios uninformative until natural challenge experiments are con-
ucted. In murine models vaccinated with the same TRYP vaccine, a
igh ratio of pre-challenge IFN-�:IL-10 in draining lymph node cells
fter in vivo crude parasite antigen restimulation was a clear indica-
or of vaccine success, whereas a low ratio (due to elevated IL-10 lev-
ls) predicted failure [14]. In dogs, the existence of the Th1/Th2/Treg

aradigm in relation to L. infantum infection as observed for L. major
n mice [50–52] is not completely resolved (as reviewed [53]), and
here are conflicting results regarding the role of IL-10, with some
tudies demonstrating IL-10 elevation in symptomatic naturally or
xperimentally infected dogs [46,54], whereas other work failed to
how any association between IL-10 and clinical disease [55–57].

We did not detect specific cytokine responses to CLA in the
resent study, however this does not preclude vaccine efficacy,
s indicated elsewhere, for example in mice, where protection
fforded by sterol 24-c-methyltransferase vaccine against L. infan-
um correlated with high levels of antigen-specific IFN-�, but by
omparison only very low levels IFN-� were induced by CLA [58].
oreover, a canine trial of HASPB1/H1 vaccine, in which lym-

hoproliferative responses to CLA were absent post-vaccination,
ubsequently demonstrated partial protection against high dose
xperimental challenge with L. infantum [59].

In conclusion we have shown that vaccination of the impor-
ant reservoir host of ZVL, the domestic dog, with prime/boost
NA/MVA TRYP vaccine is free from adverse side effects and shows
ppropriate immunogenicity consistent with protective efficacy.
he combination of in vitro and in vivo test results clearly demon-
trates that DNA/MVA TRYP vaccine induces a type-1 dominated
ro-inflammatory cellular immune response which is necessary for
rotection against Leishmania challenge, and that immune mem-
ry persists for at least 4 months post-vaccination in the absence
f restimulation or infection. Field trials are now required to test
NA/MVA TRYP vaccine efficacy for prevention of ZVL infection and
isease in naturally exposed dogs in Leishmania endemic areas.
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