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Abstract

An explicit combinatorial construction is given for cellular bases (in the sense of Graham
Lehrer) for the Birman–Murakami–Wenzl and Brauer algebra. We provide cell modules fo
Birman–Murakami–Wenzl and Brauer algebras with bases index by certain bitableaux, gene
the Murphy basis for the Specht modules of the Iwahori–Hecke algebra of the symmetric grou
bases for the cell modules given here are constructed non-diagrammatically and hence are r
amenable to computation.
 2004 Elsevier Inc. All rights reserved.

Introduction

The Birman–Murakami–Wenzl algebras, defined independently by Birman and W
in [1] and Murakami in [10], are finite dimensional algebras defined over a rational funct
field in two variables and can be consideredas deformations of the Brauer algebr
obtained by replacing the symmetric group algebras with the corresponding Iwa
Hecke algebras.

The connections between the Birman–Murakami–Wenzl and the Iwahori–Hecke
bras have led several authors, notably, Halverson and Ram in [4], Fishel and Grojnows
in [2] and Xi in [13] in to determine analogues of results about the representation
characters of the Iwahori–Hecke algebra for the Birman–Murakami–Wenzl algebras. T
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present work has similar motivation, namely we exploit the fact that the Iwahori–Hec
gebra of the symmetric group is cellular in the sense of Graham and Lehrer, to inve
the representation theory of the Birman–Murakami–Wenzl algebra.

The axioms for a cellular algebra were first formulated by Graham and Lehrer in [
where they showed that as a consequence of the axioms, a cellular algebra has
naturally defined cell representations. They related these cell representations to the id
structure of the algebra and obtained a general description of the irreducible represen
of the cellular algebra together with a criterion for the cellular algebra to be semisi
Graham and Lehrer also showed the Brauer algebras, the Ariki–Koike algebras (includin
the Iwahori–Hecke algebras), and the Temperley–Lieb algebras to be cellular and de
the cell representations of the Brauer algebras.

Subsequently König and Xi in [7] have given a general construction which prod
all cellular algebras and used this construction to show that the Brauer algebra a
Temperley–Lieb algebras are cellular.

Given that the Brauer algebras are cellular, one is naturally lead to ask whether t
Birman–Murakami–Wenzl algebras are also cellular. Xi in [13] answers this question b
showing that certain analogues of the Kazhdan–Lusztig basis for the Birman–Mura
Wenzl algebras given by Fishel and Grojnowski in [2] (see also Morton and Traczyk [9
are in fact cellular. The basis given by Xi in [13] is constructed by “blowing up,” us
certain diagrams calleddangles, a basis of the Iwahori–Hecke algebras to obtain a b
for the Birman–Murakami–Wenzl algebras.

In this paper we also study the relation between the cellular bases of the Iwahori–
algebras and the cellular bases of the Birman–Murakami–Wenzl Algebras. As in [13], w
give an explicit construction showing that a cellular basis for the Iwahori–Hecke alg
gives rise to a cellular basis for the Birman–Murakami–Wenzl algebra. Howeve
method used here produces a basis indexed by certainbitableauxand thereby gives a
explicit combinatorial description of the cellular basis and cell modules which is ame
to computation. In the special case where thecellular basis for the Iwahori–Hecke algeb
is the Murphy basis [11], our is a natural analogue for the Birman–Murakami–W
algebras of the Murphy basis. The cell modules which we construct using the ana
of the Murphy basis generalise the classical Specht modules of the symmetric grou

1. Preliminaries

We establish the basic notation and state some known results which will be use
A reference for the material presented here is [8].

1.1. The symmetric group

Let Sn denote the symmetric group acting on the integers{1,2, . . . , n} on the right. The
elementary transpositions inSn are the elements

S = {
si = (i, i + 1) | 1 � i < n

}
.
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The elementary transpositions, together with the relations

s2
i = 1 for 1� i < n,

sisj = sj si for 2� |i − j | and 1� i, j < n,

sisi+1si = si+1sisi+1 for 1� i < n − 1

give a presentation forSn as a Coxeter group. Letw be a permutation inSn. An expression
w = si1si2 · · · sik for w in terms of elementary transpositions is said to bereducedif w

cannot be written as a proper sub-expression ofsi1si2 · · · sik . In this case we sayw is a
permutation withlengthk and writel(w) = k. Note that while there are usually seve
reduced expressions forw, the length ofw will not depend on this choice. The leng
function onSn is determined by the properties

l(siw) =
{

l(w) + 1 if (i)w < (i + 1)w,

l(w) − 1 otherwise;
(1.1)

and

l(wsi ) =
{

l(w) + 1 if (i)w−1 < (i + 1)w−1,

l(w) − 1 otherwise,
(1.2)

together with the normalizing conditionl(1Sn) = 0.

1.2. Compositions and tableaux

Let k � 0 be an integer. A partition ofk is a non-increasing sequenceν = (ν1, ν2, . . .)

of integers such satisfying
∑

i�1 νi = k. We will write ν � k to denote the fact thatν is
a partition ofk. If ν is a partition it will also be convenient to write|ν| = k whenever∑

i�1 νi = k. If µ,ν are partitions ofk, then writeµ� ν and sayµ dominatesν, if

j∑
i=1

µk �
j∑

i=1

νk for all j � 0.

The fact thatµ � ν andµ �= ν will be denoted byµ � ν.
The diagram of a partitionν � k is the set of nodes

[ν] = {
(i, j) | 1 � j � νi andi � 1

} ⊂ N × N.

Let ν � k. A ν-tableau is a bijectiont : [ν] → {1,2, . . . , k}; equivalently aν-tableaut
may be regarded as a labeling of the nodes of[ν] by the integers 1,2, . . . , k. For example
if k = 7 andν = (4,2,1), then
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2 4 6 7
1 3
5

(1.3)

is a ν-tableau. Thesuper-standardtableautν is the uniqueν-tableau in which has as it
entries the integers 1,2, . . . , k appearing in increasing sequence from left to right and
to bottom. In casek = 7 andν = (4,2,1) we have

tν =
1 2 3 4
5 6
7

. (1.4)

A ν-tableaut is said to berow standardif the entries of each row oft increase when rea
from left to right and a row standardν-tableaut is said to bestandardif the entries of each
column oft increase when read from top to bottom. The tableau of (1.3) is row standa
but not standard. We will denote by Std(ν) the collection of standardν-tableaux.

Let ν � k be a partition. The symmetric groupSk acts from the right on the set o
ν-tableaux by permuting entries. Let, for example,n = 5 andν = (3,2); if t = 1 3 5

2 4
,

then

t(1,2)(4,5) = 2 3 4
1 5

.

If t is a ν-tableau, thend(t) ∈ Sk is the permutation defined by the equationtνd(t) = t.
The Young subgroup ofSν

∼= Sν1 × Sν2 × · · · × Sνk will be the row stabilizer oftν in
Sk; that is

Sν = 〈
si | i, i + 1 are in the same row oftν

〉
.

For example, whenν = (4,2,1) andtν is given by (1.4), thenSν = 〈s1, s2, s3〉 × 〈s5〉.

1.3. The Iwahori–Hecke algebra of the symmetric group

Let R be a domain andq2 be an invertible element inR. The Iwahori–Hecke algebr
HR,n(q

2) associated withSn is the unital associativeR-algebra generated by the eleme
{Xi | 1 � i < n} subject to the relations

(
Xi − q2)(Xi + 1) = 0 for 1� i < n,

XiXi+1Xi = Xi+1XiXi+1 for 1 � i � n − 2,

XiXj = XjXi for 2 � |i − j | and 1� i, j < n.

If w is a permutation inSn with reduced expressionw = si1 · · · sik , the elementXw of
HR,n(q

2) is defined by
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Xw = Xi1 · · ·Xik .

By Matsumoto’s theorem (Theorem 1.8 of [8]),Xw is a well defined element ofHR,n(q
2).

The next statement follows from (1.1) and (1.2) together with the defining relation
HR,n(q

2).

Lemma 1.1. If w ∈ Sn ands is an elementary transposition, then

XwXs =
{

Xws if l(ws) > l(w),

q2Xws + (q2 − 1)Xw if l(ws) < l(w);

and

XsXw =
{

Xsw if l(sw) > l(w),

q2Xsw + (q2 − 1)Xw if l(sw) < l(w).

The following result is well-known (Theorem 1.13 of [8]).

Theorem 1.1. The Iwahori–Hecke algebraHR,n(q
2) is free as anR-module , having for a

basis the collection{Xw | w ∈ Sn}.

The next statement is Lemma 2.3 of [11].

Lemma 1.2. Let ∗,†,# be the maps defined by:

∗ :Xw 
→ Xw−1,

† :Xw 
→ (−q2)l(w)
X−1

w ,

� :Xw 
→ (−q2)l(w)
X−1

w−1,

for eachw ∈ Sn, extended toHR,n(q
2) by linearity. Then∗ and † are R-algebra anti-

involutions ofHR,n(q
2) and� is anR-algebra automorphism ofHR,n(q

2).

1.4. The Murphy basis for the Iwahori–Hecke algebra

In [11] Murphy gives a nice basis forHR,n(q
2) indexed by pairs of standard tableau

a basis which allows him to define a filtration onHR,n(q
2) by two-sided ideals and t

describe the representations ofHR,n(q
2).

For a partitionλ � n, Murphy defines the elementmλ ∈HR,n(q
2) by

mλ =
∑

w∈Sλ

Xw,

and associates to each pairs, t of standardλ-tableaux the element
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mst = X∗
d(s)mλXd(t).

Let Nλ denote theR-submodule ofHR,n(q
2) generated by the elements

{
mst = X∗

d(s)mµXd(t)

∣∣ s, t ∈ Std(µ) andµ� λ
}

andŇλ be theR-submodule ofNλ generated by

{
mst = X∗

d(s)mµXd(t)

∣∣ s, t ∈ Std(µ) andµ � λ
}
.

The following result is due to Murphy (Theorems 4.17 and 4.18 of [11] or Theorem
of [8]).

Theorem 1.2. The Iwahori–Hecke algebraHR,n(q
2) has a freeR-basis

M = {
mst | s, t ∈ Std(λ) andλ � n

}
.

Moreover, the following hold:

(1) TheR-linear map determined bymst 
→ mts, for all mst ∈ M , is an algebra anti-
involution ofHR,n(q

2).
(2) Suppose thath ∈ HR,n(q

2) and that t ∈ Std(λ). Then there existav ∈ R, for v ∈
Std(λ), such that

msth ≡
∑

v∈Std(λ)

avmsv mod Ňλ (1.5)

for all s ∈ Std(λ).

The crucial point about (1.5) is that the elementsv andav depend ont andh but not
on s. Also, as a consequence of Theorem 1.2, bothNλ and Ňλ are two sided ideals o
HR,n(q

2) and the dominance order on partitions gives rise to a filtration ofHR,n(q
2) by

two-sided ideals.
The right Specht moduleSλ is defined to be theHR,n(q

2)-submodule ofNλ/Ňλ

generated by the elements

{
Ňλ + mtλt

∣∣ t ∈ Std(λ)
}
. (1.6)

By the last item of Theorem 1.2, the set (1.6) is a freeR-basis forSλ. For s ∈ Std(λ),
let ms denote the elemenťNλ + mtλs ∈ Sλ. Murphy defines a symmetric bilinear for
〈 , 〉 :Sλ × Sλ → R by setting

〈ms,mt〉mλ ≡ mtλsm
∗
λ mod Ňλ.
t t
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Since〈 , 〉 satisfies the condition〈ms,mth〉 = 〈msh
∗,mt〉 for all h ∈ HR,n(q

2), it follows
that the set rad(Sλ) = {a ∈ Sλ | 〈a, b〉 = 0 for all b ∈ Sλ} will be a rightHR,n(q

2)-module.
Consequently Murphy definesDλ = Sλ/ rad(Sλ). The first item below is Theorem 6.
of [11] while the second item is Theorem 6.3 of [11].

Theorem 1.3. LetR be a field. Then

(1) Then eitherDλ = 0 or Dλ is an absolutely irreducibleHR,n(q
2)-module.

(2) The collection{Dλ | λ � n andDλ �= 0} is a complete set of pairwise non-isomorp
absolutely irreducibleHR,n(q

2)-modules.

1.5. Cellular algebras

In this section we state the main results ofGraham and Lehrer [3] and refer the read
to the exposition in [8]. For an equivalent but basis free approach to the subject, the
is referred to a work of König and Xi [6].

Definition 1.1. Let R be a domain andA a unital associativeR algebra with a freeR basis.
Let Λ be a finite set with partial order� and suppose that for eachλ ∈ Λ there is a finite
index setI(λ) such that there exists a set

C = {
cλ
vu ∈ A

∣∣ v,u ∈ I(λ) andλ ∈ Λ
}

which is anR-basis forA. For λ ∈ Λ, let Ǎλ denote theR-submodule ofA generated by
the elements

{
c
µ
vu

∣∣ v,u ∈ I(µ) whereµ ∈ Λ andλ < µ
}
.

Then(Λ,C ) is acellular basisandA acellular algebraif

(1) theR-linear map∗ :A → A determined by∗ : cλ
vu 
→ cλ

uv for all λ ∈ Λ andu,v ∈ I(λ)

is an algebra anti-automorphism ofA; and,
(2) if λ ∈ Λ,v ∈ I(λ) anda ∈ A, then there existαt ∈ R, for t ∈ I(λ), such that

cλ
uva ≡

∑
t∈I(λ)

αtc
λ
ut mod Ǎλ (1.7)

for all u ∈ I(λ).

The essential feature of the expression (1.7) is that the elementst ∈ I(λ) and the
constantsαt are determined entirely bya andv and are independent ofu.

Examples of cellular algebras include Ariki–Koike algebras (including the Iwah
Hecke algebras), the Brauer and Temperley–Lieb algebras (Theorems 4.10 and 6.7 of [
and the Birman–Murakami–Wenzl algebras (Theorem 3.11 of [13]). Note that a cellul
algebra may have more than one cellular basis; the Murphy basis, for instance, ma
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Iwahori–Hecke algebra into a cellular algebra, as does the Kazhdan–Lusztig basis
Iwahori–Hecke algebra (see, for example, Theorem 5.5 of [3]).

For λ ∈ Λ, denote byAλ theR-submodule ofA generated by the elementsc
µ
vu where

v,u ∈ I(µ) andµ � λ. Observe thatǍλ ⊆ Aλ and thatAλ/Ǎλ has anR-basis given by
Ǎλ + cλ

vu wherev,u ∈ I(λ). The next statement is now a straightforward consequen
the definitions (Lemma 2.3 of [8]).

Lemma 1.3. Let (C ,Λ) be a cellular basis forA andλ be an element ofΛ.

(1) Suppose thatu ∈ I(λ) and thata ∈ A. Then for allv ∈ I(λ),

a∗cλ
uv ≡

∑
t∈I(λ)

αtc
λ
tv mod Ǎλ

where, for eacht, αt is the element ofR determined by(1.7).
(2) TheR-modulesAλ andǍλ are two-sided ideals ofA.
(3) If s, t ∈ I(λ), then there areαst ∈ R such that for anyu,v ∈ I(λ),

cλ
vsc

λ
tu ≡ αstc

λ
vu mod Ǎλ. (1.8)

The second item of Lemma 1.3 shows that there is a filtration ofA by the idealsAλ.
The third item shows that each of the quotientsAλ/Ǎλ is equipped with a bilinear form
this bilinear form will be defined below.

Let λ ∈ Λ be fixed. Forv ∈ I(λ), defineCλ
v to be theR-submodule ofA/Ǎλ generated

by the elements{Ǎλ + cλ
vu | u ∈ I(λ)}. By (1.7), the algebraA has a well-defined actio

onCλ
v by right multiplication. Moreover, under this actionCλ

v
∼= Cλ

u wheneverv,u ∈ I(λ).
Given the latter observation, the rightcell moduleCλ is defined to be the rightA-module
which is free as anR-module with basis{cλ

v | v ∈ I(λ)} and rightA-action given by

cλ
va =

∑
t

αtc
λ
t

where theαt are given by (1.7). Then the mapCλ
u → Cλ defined bycλ

uv + Ǎλ 
→ cλ
v is

an isomorphism of rightA-modules. The left cell moduleC∗λ is defined to be the leftA-
module which is free as anR-module with basis{cλ

v | v ∈ I(λ)} and leftA-action given
by

a∗cλ
v =

∑
t

αtc
λ
t

whereαt are once more determined by (1.7).
By Lemma 1.3 there is a bilinear form〈 , 〉 :Cλ × Cλ → R

〈
cλ
s, cλ

t

〉 = αst for all s, t ∈ I(λ),
whereαst are determined by (1.8). The following statements follow readily from the
definitions (Proposition 2.9 of [8]).
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Proposition 1.1. Letλ ∈ Λ anda ∈ A. Then

(1) 〈cλ
u, cλ

v〉 = 〈cλ
v, cλ

u〉 for all u,v ∈ I(λ).
(2) 〈cλ

ua, cλ
v〉 = 〈cλ

v, cλ
ua∗〉 for all u,v ∈ I(λ).

(3) bcλ
uv = 〈b, cλ

u〉cλ
v for all u,v ∈ I(λ) andb ∈ Cλ.

Theradical of the moduleCλ is defined to be

rad
(
Cλ

) = {
a ∈ Cλ

∣∣ 〈a, b〉 = 0 for all b ∈ Cλ
}
. (1.9)

By the second item of Proposition 1.1, rad(Cλ) is anA-submodule ofCλ, motivating the
definitionDλ = Cλ/ rad(Cλ).

Proposition 1.2. LetR be a field and letλ ∈ Λ.

(1) If Dλ �= 0, thenDλ = 0 or Dλ is absolutely irreducible.
(2) The intersection of the maximal submodules ofCλ is equal torad(Cλ).

In principle at least, the following theorem of Graham and Lehrer (Theorem 2.19 o
allows us to classify the simpleA-modules.

Theorem 1.4. Suppose thatR is a field. Then

{
Dλ

∣∣ λ ∈ Λ andDλ �= 0
}

is a complete set of pairwise non-isomorphic irreducibleA-modules.

Graham and Lehrer also give the following equivalences (Corollary 2.21 of [8]).

Theorem 1.5. Suppose thatR is a field. Then the following are equivalent.

(1) A is (split) semisimple.
(2) Cλ = Dλ for all λ ∈ Λ.
(3) rad(Cλ) = 0 for all λ ∈ Λ.

2. The Birman–Murakami–Wenzl algebras

The Birman–Murakami–Wenzl (B-M-W) algebras as defined in [1] and [10]
associative algebras over a fieldκ = C(r̂, q̂). In what follows, rather than working overκ ,
we will consider a generic version of the B-M-W algebras defined over an appro
localizationR of a polynomial ring overZ. For these generic algebras we will produ
cellular bases corresponding to cellular bases for the Iwahori–Hecke algebra an
obtain cellular bases for the B-M-W algebras overκ by appropriate specializations.
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Let r, q be indeterminates overZ andR = Z[r±1, q±1, (q −q−1)−1] be the localization
of Z[r±1, q±1] at (q − q−1) and define the elementx in R to be

x = r − r−1

q − q−1 + 1.

The generic B-M-W algebraBn(r, q) overR is the unital associativeR-algebra generate
by the elements{Ti | 1 � i < n} subject to the following relations:

(
Ti − q2)(Ti − qr−1)(Ti + 1) = 0 for 1� i < n,

TiTi+1Ti = Ti+1TiTi+1 for 1� i < n − 1,

TiTj = TjTi for 2� |i − j | and 1� i, j < n,

Ei+1T
±1
i Ei+1 = (qr)±1Ei+1 for 1� i < n − 1,

Ei−1T
±1
i Ei−1 = (qr)±1Ei−1 for 2� i < n,

EiTi = TiEi = qr−1Ei for 1� i < n,

whereEi is defined by the equation

(
q2 − 1

)
(1− Ei) = Ti − q2T −1

i for i � i < n.

In [12], Wenzl derives the following additional relations from the defining relations:

Ti±1TiEi±1 = EiTi±1Ti = q2EiEi±1,

T −1
i±1EiTi±1 = T −1

i Ei±1Ti,

Ti±1EiT
−1
i±1 = TiEi±1T

−1
i ,

Ti±1EiEi±1 = q2T −1
i Ei±1,

Ei±1EiTi±1 = q2Ei±1T
−1
i ,

EiT
±1
i = T ±1

i Ei = q±1r∓1Ei,

TiEj = EjTi if |i − j | � 2,

EiEj = EjEi if |i − j | � 2,

T 2
i = q2 + (

q2 − 1
)(

Ti − qr−1Ei

)
,

E2
i = xEi.

In each case above, the indicesi, j are chosen from all values 1� i, j < n for which the
given relation makes sense.

The algebraBn(r, q) has been given a geometric formulation using Kauffman’s ta
monoid (see [5]). Since this construction will not be used here, we refer the reader
and [5] for details.
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If w ∈ Sn has a reduced expressionw = si1si2 · · · sik , then

Tw = Ti1Ti2 · · ·Tik

is a well defined element ofBn(r, q). The elements{Tw|w ∈ Sn}, though a set of algebr
generators, do not generateBn(r, q) as anR-module.

The next statement is now a straightforward consequence of the defining relation

Lemma 2.1. If w ∈ Sn andsk is an elementary transposition, then

TwTk =
{

Twsk if l(w) < l(wsk),

q2Twsk + (q2 − 1)(Tw − qr−1TwskEk) if l(wsk) < l(w);
and

TkTw =
{

Tskw if l(w) < l(skw),

q2Tskw + (q2 − 1)(Tw − qr−1EkTskw) if l(skw) < l(w).

The map∗ :Bn(r, q) → Bn(r, q) defined by∗ :Tw 
→ Tw−1 and extended by linearity i
anR-algebra anti-involution.

2.1. Specializations of the generic B-M-W algebras

Let R̂ be a unital associative ring with unity. Ifφ :R → R̂ is a ring homomorphism
thenR̂ is anR-module via the actiona · â = φ(a)â so theR̂-algebraBn(r, q) ⊗R R̂ makes
sense. The algebraBn(r, q) ⊗R R̂ will be called a specialization ofBn(r, q) to R̂. Xi
in [13] considers cellular bases for Birman–Murakami–Wenzl algebras over an arb
ring, but for many applications we will be interested in the case whereR̂ is replaced by the
rational function fieldκ = C(r̂, q̂) andφ :R → κ is the ring homomorphism determined
φ : r 
→ r̂ andφ :q 
→ q̂. By this specialization we recover the usual Birman–Muraka
Wenzl algebraBn(r̂, q̂) overκ .

Proposition 2.1. Let κ = C(r̂, q̂) and φ :R → κ be the ring homomorphism determin
by φ : r 
→ r̂ andφ :q 
→ q̂. Then the homomorphism ofκ-algebrasσ :Bn(r, q) ⊗R κ →
Bn(r̂, q̂) determined byTi ⊗ 1 
→ Ti is a surjective map ofκ-algebras.

2.2. The Brauer algebras

An n-Brauer diagramis defined to be a graph withn-edges and 2n vertices arrange
in two rows ofn vertices and such that each vertex is incident to exactly one edg
example of a 5-Brauer diagram is given in Fig. 1.

Let y be an indeterminate overZ. The generic Brauer algebraBn(y) is theZ[y]-algebra
which takes as aZ[y]-basis the collection ofn-Brauer diagrams which will be multiplie
by a concatenation product defined as follows: givenn-Brauer diagramsd1 andd2, the
productd1d2 in Bn(y) is obtained by placingd1 aboved2, identifying vertices in the bottom



424 J. Enyang / Journal of Algebra 281 (2004) 413–449

s

ng

estric-
ras and

le

. In
Fig. 1. An example of a 5-Brauer diagram.

Fig. 2. The concatenation product on Brauer diagrams.

row of d1 with the corresponding vertices in the top row ofd2, deleting any closed loop
in the concatenation and multiplying the resulting graph by a factor ofy for each deleted
loop. In the example of Fig. 2, the two 5-diagrams are multiplied to give a figure containi
a single closed loop.

The number ofn-Brauer diagrams is(2n − 1)(2n − 3) · · ·3 · 1 and is equal to the
dimension ofBn(y) over Z[y]. To recover the usual Brauer algebraBn(ŷ) over C(ŷ),
let φ :Z[y] → C(ŷ) be the ring homomorphism determined byy 
→ ŷ. Then, as in
Proposition 2.1,C(ŷ) becomes aZ[y]-module and there is a surjectiveC(ŷ)-algebra
homomorphismB(y) ⊗Z[y] C(ŷ) → Bn(ŷ) given by d ⊗ 1 
→ d for each n-Brauer
diagramd .

The next theorem (Theorem 3.5 of [12]) demonstrates, under certain generic r
tions, a close relation between the Wedderburn decomposition of the Brauer algeb
the Wedderburn decomposition of the B-M-W algebras.

Thenumerical invariantsof a semi-simple algebraA are the dimensions of the simp
A-modules.

Theorem 2.1. Suppose that̂r is not an integral power of̂q, that q̂ is not a root of
unity and thatŷ is not an integer. Then the algebrasBn(r̂, q̂) = Bn(r, q) ⊗R C(r̂, q̂) and
Bn(ŷ) = Bn(y) ⊗Z[y] C(ŷ) are semi-simple and have the same numerical invariants
particular,

Bn

(
r̂, q̂

) ∼=
[n/2]⊕
f=0

⊕
λ∈Γf

Cf,λ

whereCf,λ is a full matrix ring andΓf = {λ | λ � n − 2f } for each0 � f � [n/2].



J. Enyang / Journal of Algebra 281 (2004) 413–449 425

ell
r

ft

t

on of
3. Cellular bases for the B-M-W algebras

The remainder of this paper is devoted to theconstruction of cellular bases and c
modules for the algebraBn(r, q). We will, as in Theorem 2.1, letf denote an intege
0 � f � [n/2] and setΓf = {λ | λ � n − 2f }. For the present purpose, a bipartitionν of n

will be an ordered pair of partitions(ν(1), ν(2)) whereν(1) = (2f ) andν(2) ∈ Γf for some
fixed 0� f � [n/2]. The diagram[ν] is the ordered pair of diagrams[ν] = ([ν(1)], [ν(2)])
and aν-bitableaut is a bijectiont : [ν(1)] ∪ [ν(2)] → {1, . . . , n}. By way of example, if
n = 12,f = 3 andν is the multi-partitionν = ((23), (3,2,1)), then


 1 2

3 4
5 6

,

7 8 9
10 11
12


 and


 2 7

3 9
4 11

,

1 10 5
8 12
6




are bothν-bitableaux. Ift is aν-bitableau, we writet = (t(1), t(2)) wheret(1) is identified
with the labeled diagramt[ν(1)] andt(2) is identified with the labeled diagramt[ν(2)].

Let ν = (ν(1), ν(2)) be a bi-partition as above. The bitableautν = (tν
(1)

, tν
(2)

) is the
ν-bitableau in which the integers 1,2, . . . ,2f are entered in increasing order from le
to right along the rows of[ν(1)] and, along the rows of[ν(2)], the integers 2f + 1,

2f + 2, . . . , n are entered in increasing order from left to right. For example, ifn = 7
andν(2) = (2,1), then

tν =
(

1 2
3 4

,
5 6
7

)
.

A ν-bitableaut is row standardif the entries in each row oft(i) increase read from lef
to right for i = 1,2. A row standardν-bitableaut is standardif t(1) = tν

(1)
and the entries

in each column oft(2) is an increasing sequence read from top to bottom. The collecti
standardν-bitableaux will be denoted by Std(ν).

The symmetric groupSn acts from the right on the set ofν-bitableaux by permuting

the entries of each bitableaux. For example, ift =
(

1 2
3 4

, 5 6
7

)
, then

t(2,3)(4,7,6,5) =
(

1 3
2 7

,
4 5
6

)
.

If t is aν-bitableau, we defined(t) to be the unique element ofSn such thattνd(t) = t.
For present purposes, the Young subgroup

Sν = S
ν

(2)
1

× · · · × S
ν

(2)
n

of Sn will be the row stabilizer oftν
(2)

in Sn; that is to say

Sν = 〈
si

∣∣ i, i + 1 are in the same row oftν
(2) 〉

.
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Forf > 0 we defineBf to be the subgroup ofSn

Bf = 〈s1, s2i−1s2i+1s2i | 1 � i < f 〉

and setBf = 〈1〉 when f = 0. For example, whenn = 7 and ν(2) = (2,1) we have
Sν = 〈s5〉 andBf = 〈s1, s2s1s3s2〉. Note that ifν(2) � n − 2f and f > 0, thenBf is

the subgroup ofSn which permutes the rows oftν
(1)

and thatBf is isomorphic to the
hyperoctahedral groupZ2 � Sf .

In the next proposition, we obtain a complete setDν of coset representatives forBf Sν

in Sn. In this statement, whenf = 0 andν � n, we recover the result thatDν is the
usual set of distinguished coset representatives for the parabolic subgroupSν in Sn

(Proposition 3.3 of [8]).

Proposition 3.1. Let ν(2) � n − 2f be a partition andtν = (tν(1), tν
(2)

) and

Dν =
{
d ∈ Sn

∣∣∣∣ (t(1), t(2)) = tνd is row standard and the first column oft(1)

is an increasing sequence when read from top to bottom

}
.

ThenDν is a complete set of right coset representatives forBf × Sν in Sn. Moreover, if
d ∈ Dν , thenl(wd) = l(w) + l(d) for all w ∈ Sν .

Proof. Suppose thatBf Sνv = Bf Sνw and lettνv = (v(1),v(2)) andtνw = (u(1),u(2)).
Thenv(1) andu(1) differ by a reordering of the entries of each row, and a permutation
the rows whilev(2) andu(2) differ by a reordering of the entries of each row. Theref
Dν is a complete set of coset representatives forBf Sν in Sn. Now fix d ∈ Dν ; thentνd

is row standard so,(k)d < (k + 1)d wheneverk andk + 1 are in the same row oftν
(2)

. In
particularl(skd) = l(d) + 1 wheneversk ∈ Sν .

Now suppose thatw ∈ Sν and thatl(w) > 1. Thenw = skv and l(w) = l(v) + 1 for
somesk ∈ Sν ; therefore(k)v < (k + 1)v. Now (k)v and(k + 1)v belong to the same row
of tν

(2)
, so (k)vd < (k + 1)vd and hencel(skvd) = l(vd) + 1. By induction therefore

l(wd) = l(skvd) = l(vd) + 1= l(v) + l(d) + 1 = l(w) + l(d) as required. �
We record the following useful fact for later reference.

Proposition 3.2. Let 0 � f � [n/2], µ � n − 2f and t = (t(1), t(2)) be a standardµ-
bitableau. If ν is the bi-partition withν(2) = (n − 2f ) and w ∈ Dν , then l(d(t)w) =
l(d(t)) + l(w), t(1)w = tν

(1)
w andd(t)w ∈ Dµ.

Proof. That l(d(t)w) = l(d(t)) + l(w) follows from the previous Proposition 3.1 in th
following manner. We note thattµw must be row standard; thereforel(vw) = l(v) + l(w)

for all v ∈ Sν ; in particular, sinced(t) ∈ Sν we havel(d(t)w) = l(d(t)) + l(w). �
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Example 3.1. Let n = 7, f = 2, µ = (2,2,1). Thenν(2) = (5) and if we take

t =

 1 2

3 4
,

5 8
6 9
7




andw = (1,3,5)(2,9,4,8,7), we observe that

tνw =
(

3 9
5 8

, 1 2 4 6 7

)

sow ∈ Dν . Now, l(d(t)w) = l(d(t)) + l(w) and

tw =

 3 9

5 8
,

1 6
2 7
4




sod(t)w ∈ Dµ.

For 0� f < [n/2], we regardHR,n−2f (q2) as the subalgebra ofHR,n(q
2) generated

by {Ti | 2f < i < n} and setHR,n−2f (q2) = R when f = [n/2]. We therefore have
decreasing family ofR-algebras

HR,n

(
q2) ⊃HR,n−2

(
q2) ⊃ · · · ⊃ R.

Similarly, regardBn−2f (r, q) as the subalgebra ofBn(r, q) generated by{Ti | 2f < i < n}
and setBn−2f (r, q) = R whenf = [n/2]; thus,

Bn(r, q) ⊃ Bn−2(r, q) ⊃ · · · ⊃ R.

For 0� f < [n/2], let If be the two-sided ideal ofBn−2f (r, q) generated byEn−1
and letBf be the two-sided ideal ofBn(r, q) generated by the elementE1E3 · · ·E2f−1. If
f = [n/2], setIf = {0} andBf = {0}. Then,

Bn(r, q) = B0 ⊃ B1 ⊃ · · · ⊃ {0} (3.1)

is a filtration ofBn(r, q) by two sided ideals.
By Proposition 3.2 of [12], the mapφ :HR,n−2f (q2) → Bn−2f (r, q)/If defined on

generators by

φ :Xi 
→ Ti + If , 2f < i < n, (3.2)

is an algebra isomorphism. Proposition 3.3 below shows that

E1E3 · · ·E2f−1If ⊆ Bf +1
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from which it follows that the map defined on generators by

ι :Xw 
→ E1E3 · · ·E2f−1 · b + Bf +1 whereφ(Xw) = b + If , (3.3)

is a well-definedR-module homomorphism,ι :HR,n−2f (q2) → Bf /Bf +1. The mapι

will allow us to produce, by passing to quotients, a cellular structure onBf /Bf +1

corresponding to a cellular structure onHR,n−2f (q2). The cellular structure onBf /Bf +1

will be used to refine the filtration (3.1), thereby obtaining a cellular basis forBn(r, q).
The two propositions below are technical statements which will be important in

calculations.

Proposition 3.3. Let 0 � f < [n/2] andb ∈ Bn−2f (r, q). If i � 2f + 1, then

E1E3 · · ·E2f−1bEi ≡ 0 mod Bf +1.

Proof. First note that

TiTi+1EiTi+1Ti = q2Ei+1EiTi+1Ti = q4Ei+1EiEi+1 = q4Ei+1,

from which it follows thatEi = qmTvE2f+1T
∗
v , wherev has a reduced expressionv =

s2f+2s2f +1s2f+3s2f+2 · · · si−1si−2sisi−1 andm is the integerm = 4(2f + 1 − i). Since
b,Ei andTv commute withEk wheneverk � 2f − 1,

E1E3 · · ·E2f−1bEi = qmbT ∗
v E1E3 · · ·E2f+1Tv ≡ 0 mod Bf+1

which proves the claim. �
Proposition 3.4. Letw ∈ Sn. If (i)w = (k) and(i + 1)w = k + 1, thenEiTw = TwEk .

Proof. For j = 1,2, . . . , n, let aj = (j)w. In the first instance, suppose thataj < k + 1
for some j > i + 1 and letm = min{j | aj < k + 1 andi < j }. Then (m − 1)w >

(m)w, so w has a reduced word beginning withsm−1; in particular w = uv where
u = sm−1sm−2sm−3 · · · si+2si+1si and l(w) = l(u) + l(v). Using the relationEiTi+1Ti =
Ti+1TiEi+1 we have

EiTw = EiTuTv = EiTm−1Tm−2 · · ·Ti+2Ti+1TiTv

= Tm−1Tm−2 · · ·Ti+2Ti+1TiEi+1Tv.

Now (i + 1)v = k, (i + 2)v = (k + 1) and l(v) < l(w) so, by induction it follows tha
Ei+1Tv = TvEk.

In the second instance, suppose thataj > k +1 wheneverj > i +1. If aj < k whenever
j < i, thenk = i andw = uv whereu is a permutation on{1,2, . . . , k − 1} andv is a
permutation on{k+2, k+3, . . . , n}; in particularTw commutes withEk. Suppose therefor
thataj > k for somej < i and letm = max{aj | aj > k andi > j }. Thenw has a reduced
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word ending insm−1 and we can writew = uv wherev = sksk+1si+2 · · · sm−2sm−1 and
l(w) = l(u) + l(v). By the relationTiTi+1Ei = Ei+1TiTi+1,

TwEk = TuTvEk = TuTkTk+1Tk+2 · · ·Tm−2Tm−1Ek

= TuEk+1TkTk+1Tk+2 · · ·Tm−2Tm−1

= TuEk+1Tv = EiTuTv

where the last line follows by induction using the fact thatl(u) < l(w). �
We now take for each 0� f < [n/2] a cellular basis(Cf ,Λf ) for HR,n−2f (q2); that

is for eachf , the collectionCf = {cλ
vu | v,u ∈ If (λ), λ ∈ Λf } is a freeR-basis for

HR,n−2f (q2) satisfying the following conditions:

(1) the map∗ : cλ
vu 
→ cλ

uv is an anti-involution ofHR,n−2f (q2); we assume that the ma
∗ coincides with the anti-involution determined byTw 
→ Tw−1 and;

(2) givenλ ∈ Λf , u ∈ Iλ andh ∈ HR,n−2f (q2), there existas, for s ∈ If (λ), such that

cλ
vuh ≡

∑
s

asc
λ
vs mod Ǎλ (3.4)

for all v ∈ If (λ), where Ǎλ is the R-module generated by the elementsc
µ
vu for

v,u ∈ If (λ) andµ > λ.

The Murphy basis forHR,n−2f (q2) given in Theorem 1.2 is one possible choice
(Cf ,Λf ). For λ ∈ Λf , we letAλ be theR-submodule ofHR,n−2f (q2) generated by the
elements

{
c
µ
vu

∣∣ v,u ∈ I(µ) andµ � λ
}
,

so thatǍλ = ∑
µ>λ Aµ. To eachcvu = cλ

vu in Cf associate an elementbvu = bλ
vu in

Bf /Bf +1 as

bvu = ι(cvu) = E1E3 · · ·E2f−1 · c̃vu + Bf +1

whereι is defined by (3.3), so that̃cvu is a coset representative forφ(cvu) whereφ is the
isomorphism (3.2). Note that iff = [n/2], thenHR,n−2f (q2) = R can be given a forma
cellular structure withΛf = {λ}, If (λ) = {v}, cvv = 1R and consequently,

bvv := E1E3 · · ·E2f−1.

SinceBf /Bf+1 is a invariant under the left and right actions ofBn(r, q), we define
Bλ ⊆ Bf /Bf +1 to be theBn(r, q)-bimodule generated by the elements
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{
bvu | v,u ∈ If (µ) andµ � λ

}

andB̌λ ⊆ Bf /Bf+1 to be theBn(r, q)-bimodule generated by the elements

{
bvu | v,u ∈ If (µ) andµ > λ

}
.

For a fixedv ∈ If (λ), we denote byCλ
v be the rightBn(r, q)-submodule ofBλ/B̌λ

generated by

{
bvu + B̌λ

∣∣ u ∈ If (λ)
}
.

The following statements are easy consequences of the definitions.

Proposition 3.5. Let 0 � f � [n/2] andλ ∈ Λf . Then

(1) Bf /Bf +1 = ∑
λ∈Λf

Bλ;

(2) B̌λ ⊆ Bλ;
(3) ι(Aλ) ⊆ Bλ andι(Ǎλ) ⊆ B̌λ.

Proof. By assumption there arecλ
uv ∈ Cf such that 1HR,n−2f (q2) = ∑

cλ
uv, whence

E1E3 · · ·E2f−1 + Bf +1 =
∑

ι
(
cλ
uv

) =
∑

bλ
uv

which proves the first item. The statements (2) and (3) follow directly from
definitions. �

In a sequence of lemmas below we establishR-bases for each of theBn(r, q)-modules
Bλ, B̌λ andCλ

v expressed, in each case, in terms ofCf andDν whereν = (ν(1), ν(2)) is
the bi-partition withν(1) = (2f ) andν(2) = (n − 2f ).

Proposition 3.6. Suppose that0 � f < [n/2], λ ∈ Λf , v,u ∈ If (λ) and letν be the bi-
partition with ν(2) = (n − 2f ). If w ∈ Dν , 2f < (k)w−1 and 2f < (k + 1)w−1, then
bvuTwEk ≡ 0 modBf +1.

Proof. Now w ∈ Dν so (i)w = k and(i + 1)w = k + 1 for somei with 2f + 1 � i < n.
By Proposition 3.4, we havebvuTwEk = bvuEiTw so, from Proposition 3.3, it follows tha
the termbvuEiTw lies in the idealBf +1. �
Lemma 3.1. Let 0 � f � [n/2], andν be the bi-partition withν(2) = (n − 2f ). If λ ∈ Λf ,
u ∈ If (λ) and w ∈ Sν , then there exists ∈ If (λ) and as ∈ R determined by(1.7) such
that

bvuTw ≡
∑
s

asbvs mod B̌λ

for all v ∈ If (λ).
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Proof. Observe thatTw ∈ Bn−2f (r, q) ⊆ Bn(r, q). Let c̃vu ∈ Bn−2f (r, q) be such tha
φ(cvu) = c̃vu + If . Sinceφ(Xw) = Tw + If andφ is a homomorphism, we have

bvuTw = ι(cvu)Tw = (
E1 · · ·E2f−1 · c̃vu + Bf +1)Tw

= E1 · · ·E2f−1 · c̃vuTw + Bf+1 = ι(cvuXw).

By (3.4), there existas, for s ∈ I(λ), andh ∈ Ǎλ, such that for allv ∈ If (λ),

ι(cvuXw) =
∑
s

asι(cvs) + ι(h) =
∑
s

asbvs + ι(h).

Therefore, by the inclusions (3) of Proposition 3.5, we have shown that for allv ∈ If (λ),

ι(cvuXw) ≡
∑
s

asbvs mod B̌λ.

This completes the proof of the lemma.�
Lemma 3.2. Let 0 � f � [n/2], λ ∈ Λf andν be the bi-partition withν(2) = (n − 2f ).
If u ∈ If (λ) and w ∈ Sn, then there exist elementsv ∈ Sn, wheretνv is row standard,
together withas ∈ R, for s ∈ If (λ), such that

bvuTw ≡
∑
s

asbvsTv mod B̌λ

for all v ∈ If (λ).

Proof. Suppose that the tableautν
(2)

contains more than one entry. If 2f < j < n and
(j + 1)w < (j)w, then bvuTw = bvuTjTsj w where l(sjw) + 1 = l(w). Repeating this
procedure, by Lemma 3.1, we may write

bvuTw = bvuTv′Tw′ ≡
∑

s∈I(λ)

asbvsTw′ mod B̌λ (3.5)

where(j)w′ < (j + 1)w′ whenever 2f < j < n, andas ∈ R depends only onu andv′.
Now suppose thattν

(1)
is not empty. If 1� j � f and (2j − 1)w′ < (2j)w′, then

l(s2j−1w
′) + 1= l(w′). From the relationE2i−1T2i−1 = qr−1E2i−1 it follows that

bvsTw′ = bvsT2i−1Ts2i−1w
′ = qr−1bvsTs2i−1w

′ .

Repeating this procedure if necessary, we may rewrite each summand on the righ
side of (3.5) as ∑

s

asbvs Tw′ = qkr−k
∑
s

asbvsTv

wheretνv is row standard. This completes the proof of the lemma.�
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The next statement is the first step in rewritingbvuTw as anR-linear combination of
termsbvuTv , wherev ∈ Dν .

Proposition 3.7. Let 1 � j < f � [n/2], λ ∈ Λf , v,u ∈ If (λ) and w ∈ Sn. If ν is the
bi-partition with ν(2) = (n − 2f ) and tνw is row standard with(2j + 1)w < (2j − 1)w,
then

bvuTw =




bvuTu if (2j + 2)w > (2j)w > (2j − 1)w;

q4bvuTu if (2j)w > (2j − 1)w > (2j + 2)w;

q2bvuTu + (q2 − 1)bvuTv

− q2(q2 − 1)bvuTv′ if (2j)w > (2j + 2)w > (2j − 1)w,

where u,v and v′ are given byu = s2j s2j+1s2j−1s2jw, v = s2j s2j−1s2jw and v′ =
s2j+1s2j−1s2jw. Moreover,tνu, tνv andtνv′ are row standard bitableaux.

Proof. Sincetνw is row standard and(2j − 1)w > (2j + 1)w we use (1.2) to observ
that l(s2j−1s2jw) = l(w) − 2. Letu′ = s2j−1s2jw and consider the following three mino
cases.

Case 1. Suppose that(2j + 2)w > (2j)w > (2j − 1)w > (2j + 1)w; then it is verified
using (1.1) thatl(s2j s2j+1u

′) = l(u′) + 2. From the relationEiTi±1Ti = q2EiEi±1,

E2j−1E2j+1Tw = E2j−1E2j+1T2j T2j−1Tu′ = q2E2j−1E2j+1E2j

= E2j−1E2j+1T2j T2j+1Tu′ = E2j−1E2j+1Tu

whereu = s2j s2j+1u
′ andtνu is row standard.

Case 2. Suppose that(2j)w > (2j − 1)w > (2j + 2)w > (2j + 1)w; then it is verified
using (1.1) thatl(s2j s2j+1u

′) = l(u′) − 2. Hence,

E2j−1E2j+1Tw = E2j−1E2j+1T2jT2j−1Tu′ = E2j−1E2j+1T2j T2j−1T2j+1T2j Tu

= q2E2j−1E2j+1E2jT2j+1T2jTu = q4E2j−1E2j+1E2jE2j+1Tu

= q4E2j−1E2j+1Tu

where u = s2j s2j+1u
′ and tνu is row standard, and we have applied the relati

q2EiEi±1 = EiTi±1Ti andEiEi±1Ei = Ei .

Case 3. If (2j)w > (2j + 2)w > (2j − 1)w > (2j + 1)w, then l(s2j+1u
′) = l(u′) − 1,

l(s2ju
′) = l(u′) + 1 andl(s2j s2j+1u

′) = l(s2j+1u
′) + 1. Thus
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E2j−1E2j+1Tw = E2j−1E2j+1T2jT2j−1Tu′ = E2j−1E2j+1T2j T2j+1Tu′

= E2j−1E2j+1T2j

[
q2Tv′ + (

q2 − 1
)
Tu′ − qr−1(q2 − 1

)
E2j+1Tv′

]
= E2j−1E2j+1

[
q2Tu + (

q2 − 1
)
Tv − q2(q2 − 1

)
Tv′

]

whereu = s2j s2j+1u
′, v = s2ju

′, v′ = s2j+1u
′ andtνu, tνv andtνv′ are row standard. �

Corollary 3.1. Let0< f � [n/2] andν be the bi-partition withν(2) = (n−2f ). If λ ∈ Λf

andw ∈ Sn and tνw is row standard, then there exist elementsav ∈ R, for v ∈ Dν , such
that

bvuTw =
∑
v

avbvuTv

for all v ∈ If (λ).

Proof. Now the preceding Proposition 3.7 describes precisely an algorithm which allow
us to reorder the entries oftνw while rewritingbvuTw as a sum in the required form.�
Example 3.2. Let n = 6, f = 3 andw = (1,3,2,4,6,5). Then

ν(2) = (0), tν
(1)

w =
3 4
2 6
1 5

andtν
(2)

is the empty tableau.
Now apply the procedure given in Proposition 3.7, withj = 2:

bvvTw = q2bvvTu + (
q2 − 1

)
bvvTv − q2(q2 − 1

)
bvvTv′ (3.6)

where

tν
(1)

u =
3 4
1 5
2 6

, tν
(1)

v =
3 4
1 6
2 5

, tν
(1)

v′ =
3 4
1 2
5 6

andtν
(2)

u, tν
(2)

v, tν
(2)

v′ are the empty tableau.
To expressbvvTw as a sum

∑
v∈Dν

bvvTv , one repeatedly applies Proposition 3.7
each of the terms on the right-hand side of (3.6), as in Example 3.3 below.

Note that in Corollary 3.1 we have expressedbvuTw as a linear combination o
bvuTv where, for eachv, the sequence(1)v, (3)v, . . . , (2f − 1)v is increasing. While we
could have equally specified, for instance, that the sequence(1)v, (3)v, . . . , (2f − 1)v be
decreasing, our convention is consistent with the choice of coset representatives m
Proposition 3.1.
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The following special case of Proposition 3.7, which shows that the subalgeb
Bn(r, q) generated by the elements{Tw | w ∈ Bf } stabilizesbuv, may be of interest in
its own right.

Corollary 3.2. Let 1 � j < f � [n/2], λ ∈ Λf , v,u ∈ If (λ) andw ∈ Sn. If tνw is row
standard,(2j − 1)w = k, (2j)w = k + 1 and(2j + 1)w < k, then

bvuTw =
{

bvuTu if (2j + 2)w > k;
q4bvuTu if k > (2j + 2)w,

whereu = s2j s2j+1s2j−1s2jw, tνu is row standard andk, k + 1 are in the same row of th
bitableautνu.

Proof. Observe that if(2j − 1)w = k and (2j)w = k + 1, the third case(2j)w >

(2j +2)w > (2j −1)w of Proposition 3.7 cannot occur. Observe also thats2j s2j+1s2j−1s2j

interchanges thej andj + 1 rows oftν
(1)

. �
Example 3.3. Let n = 6, f = 3 and w = (1,3,2,4,6,5) as in Example 3.2. The
Corollary 3.2, allows us to rewrite the expression (3.6) as

bvvTw = q2bvvTu′ + (
q2 − 1

)
bvvTw′ − q6(q2 − 1

)
bvvTv′′

where

t
ν(1)

u′ =
1 5
3 4
2 6

, t
ν(1)

w′ =
1 6
3 4
2 5

, t
ν(1)

v′′ =
1 2
3 4
5 6

andtν
(2)

u′, tν
(2)

w′, tν
(2)

v′′ are the empty tableau.

Lemma 3.3. Let 0 � f � [n/2] andν be the bi-partition withν(2) = (n − 2f ). If λ ∈ Λf ,
u ∈ If (λ) and w ∈ Sn, then there exist elementsav, as ∈ R, for v ∈ Dν and s ∈ If (λ),
such that

bvuTw ≡
∑
v

av

∑
s

asbvsTv mod B̌λ

for all v ∈ If (λ).

Proof. By Lemma 3.2 there areas ∈ R, for s ∈ If (λ), andu ∈ Sn, such thattνu is row
standard and

bvuTw ≡
∑
s

asbvsTu mod B̌λ

for all v ∈ If (λ). Now, if 0 < f then, Corollary 3.1 allows us to rewrite eachbvsTu as
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ur
bvsTu ≡
∑
v

av

∑
s

asbvsTv mod B̌λ

wherev ∈ Dν , thus completing the proof of the lemma.�
The next two propositions are technical statements which will play an important p

establishing the multiplicative properties of our cellular basis.

Proposition 3.8. Let 0 � i < f � [n/2], w ∈ Sn and suppose that(2i − 1)w = k and
(2i)w = k + 1. If i < j � f andη = ±1, ε ∈ {0,±1}, then there existav ∈ R, for v ∈ Sn,
such that

E2j−1T
η

2j T
ε
2j−1Tw =

∑
v

avE2j−1Tv.

Moreover, the sum is overv ∈ Sn with (2i − 1)v = k and(2i)v = k + 1.

Proof. The proof of the proposition will then be byinspecting six possible cases and fo
possible subcases. We first suppose thatε �= 0.

Case 1. If ε = 1 and l(s2j−1w) > l(w) or if ε = −1 and l(s2j−1w) < l(w), then
E2j−1T

η
2j T

ε
2j−1Tw = E2j−1T

η
2j Tv wherev = s2j−1w.

Case 2. If ε = 1 andl(s2j−1w) < l(w), then

E2j−1T
η

2jT2j−1Tw = E2j−1T
η

2j

[
q2Tv + (

q2 − 1
)
Tw − qr−1(q2 − 1

)
E2j−1Tv

]
= E2j−1T

η

2j

[
q2Tv + (

q2 − 1
)
Tw

] − q1+ηrη−1(q2 − 1
)
E2j−1Tv

where v = s2j−1w and the last line is obtained from the relationE2j−1T
η
2jE2j−1 =

(qr)ηE2j−1.

Case 3. If ε = −1 andl(s2j−1w) > l(w), then we expressT −1
2j−1 in terms ofT2j−1 and

E2j−1 to obtain

E2j−1T
η
2j T

−1
2j−1Tw = q−2E2j−1T

η
2j

[
T2j−1 − (

q2 − 1
) + (

q2 − 1
)
E2j−1

]
Tw

= q−2E2j−1T
η
2j

[
Tv − (

q2 − 1
)
Tw

] + qη−2rη
(
q2 − 1

)
E2j−1Tw

wherev = s2j−1w and the last line is again obtained from the relationE2j−1T
η
2jE2j−1 =

(qr)ηE2j−1.

In each case above we have demonstrated how the termT ε
2j−1 can be eliminated from

the product. To complete the proof ofthe proposition, we show that the termT η
2j can be

similarly eliminated from the resulting expressions which are of the formE2j−1T
η

2jTw

wherew satisfies(2i − 1)w = k and(2i)w = k + 1.
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Case 4. If η = 1 andl(s2jw) > l(w) or η = −1 andl(s2jw) < l(w), then, as in the firs
case,E2j−1T2j Tw = E2j−1Tv wherev = s2jw.

Case 5. If η = 1 andl(s2jw) < l(w), then

E2j−1T2jTw = E2j−1
[
q2Tv + (

q2 − 1
)
Tw − qr−1(q2 − 1

)
E2jTv

]
= E2j−1

[
q2Tv + (

q2 − 1
)
Tw − (qr)−1(q2 − 1

)
T2j T2j−1Tv

]
(3.7)

wherev = s2jw and the last line follows from the relation

E2j−1E2j = q−2E2j−1T2jT2j−1.

Now from Case 5, two subcases arise.

Subcase 5A. If l(s2j−1v) > l(v), it follows thatl(s2j s2j−1v) > l(s2j−1v), so (3.7) become

E2j−1T2j Tw = E2j−1
[
q2Tv + (

q2 − 1
)
Tw − (qr)−1(q2 − 1

)
Tv′

]

wherev′ = s2j s2j−1v andl(v′) = l(v) + 2.

Subcase 5B. If l(s2j−1v) < l(v), then (3.7) becomes

E2j−1T2j Tw = E2j−1
[
q2Tv + (

q2 − 1
)
Tw

] − (qr)−1(q2 − 1
)
E2j−1T2j

× [
q2Tv′ + (

q2 − 1
)
Tv − qr−1(q2 − 1

)
E2j−1Tv′

]
= E2j−1

[
q2Tv + (

q2 − 1
)
Tw

]
− (qr)−1(q2 − 1

)
E2j−1T2j

[
q2Tv′ + (

q2 − 1
)
Tv

]
+ r−2(q2 − 1

)2
E2j−1T2jE2j−1Tv′

= E2j−1
[
q2Tv + (

q2 − 1
)
Tw + qr−1(q2 − 1

)2
Tv′

]
− (qr)−1(q2 − 1

)
E2j−1T2j

[
q2Tv′ + (

q2 − 1
)
Tv

]
= E2j−1

[
q2Tv + (

q2 − 1
)[

1− r−1(q − q−1)]Tw + qr−1(q2 − 1
)2

Tv′
]

− qr−1(q2 − 1
)
E2j−1T2j Tv′

wherev′ = s2j−1v and we have exploited the relationE2j−1T2jE2j−1 = (qr)E2j−1.
Now the only term in the last expression forE2j−1T2jTw above which containsT2j is

the productE2j−1T2j Tv′ ; we note thatl(s2j−1v
′) > l(v′) so this term can be disposed

by applying either Case 4 whenl(s2j v
′) > l(v′) or Subcase 5A whenl(v′) > l(s2j v

′).
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Case 6. If η = −1 andl(s2jw) > l(w), then

E2j−1T
−1
2j Tw = q−2E2j−1

[
T2j − (

q2 − 1
) + (

q2 − 1
)
E2j

]
Tw

= q−2E2j−1
[
Tv − (

q2 − 1
)
Tw + q−2(q2 − 1

)
T2jT2j−1Tw

]
(3.8)

wherev is given byv = s2jw and we have used the relationE2j−1E2j = q−2E2j−1T2jT2j−1
We again have two subcases.

Subcase 6A. If l(s2j−1w) > l(w), then l(s2j s2j−1w) > l(s2j−1w), by (1.1); thus (3.8)
becomes

E2j−1T
−1
2j Tw = q−2E2j−1

[
Tv − (

q2 − 1
)
Tw + q−2(q2 − 1

)
Tv′

]

wherev′ = s2j s2j−1w.

Subcase 6B. If l(s2j−1w) < l(w), then (3.8) becomes

E2j−1T
−1
2j Tw = q−2E2j−1

[
Tv − (

q2 − 1
)
Tw

]
+ q−2(q2 − 1

)
T2j

[
q2Tu + (

q2 − 1
)
Tw − qr−1(q2 − 1

)
E2j−1Tu

]
= q−2E2j−1

[
Tv − (

q2 − 1
)
Tw − q2(q2 − 1

)2
Tu

]
+ q−2(q2 − 1

)
T2j

[
q2Tu + (

q2 − 1
)
Tw

]

whereu = s2j−1w. To complete the proof of the proposition, we note thatE2j−1T2jTw

andE2j−1T2jTu can be eliminated from last expression, as was done in Case 5, w
reintroducing any terms involvingT −1

2j . �
The next proposition is similar to Proposition 3.8 except that here we work modu

idealBf +1.

Proposition 3.9. Let 0 � i � f � [n/2], w ∈ Sn and suppose that(2i − 1)w = k and
(2i)w = k + 1. If 2f < j < n andε = ±1, then there existav ∈ R, for v ∈ Sn, such that

E1E3 · · ·E2f−1T
ε
j Tw ≡

∑
v

avE1E3 · · ·E2f−1Tv mod Bf +1.

Moreover, the sum is overv ∈ Sn with (2i − 1)v = k and(2i)v = k + 1.

Proof.

Case 1. If ε = 1 andl(sjw) > l(w) or ε = −1 andl(sjw) < l(w), thenT ε
j Tw = Tv where

v = sjw.
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Case 2. If ε = 1 andl(sjw) < l(w), then

E1E3 · · ·E2f−1TjTw

= E1E3 · · ·E2f−1
[
q2Tv + (

q2 − 1
)
Tw − qr−1(q2 − 1

)
EjTv

]
≡ E1E3 · · ·E2f−1

[
q2Tv + (

q2 − 1
)
Tw

]
mod Bf+1

wherev = sjw and the last line follows from Proposition 3.3.

Case 3. If ε = −1 andl(sjw) > l(w), then, by Proposition 3.3, we again have

E1E3 · · ·E2f−1T
−1
j Tw

= q−2E1E3 · · ·E2f−1
[
Tj − (

q2 − 1
) + (

q2 − 1
)
Ej

]
Tw

≡ q−2E1E3 · · ·E2f−1
[
Tv − (

q2 − 1
)
Tw

]
mod Bf +1

wherev = sjw. �
We now consider termsE1E3 · · ·E2f−1TwEk for (k)w−1 < (k + 1)w−1 � 2f .

Lemma 3.4. Let 0 < f � [n/2] andν be the bi-partition withν(2) = (2f − 1). Suppose
that λ ∈ Λf , u ∈ If (λ), and w ∈ Dν . If (k)w−1 < (k + 1)w−1 � 2f , then there exis
av ∈ R, for v ∈ Dν , such that

bvuTwEk =
∑
v

avbvuTv (3.9)

for all v ∈ If (λ). Moreover, in the expression(3.9), av = 0 wheneverk andk + 1 are not
in the same row oftνv.

Proof. In the bitableaut = tνw, k and k + 1 occur as entries in the same row oft(1)

precisely when(2i − 1)w = k and(2i)w = k + 1 for somei with 1 � i � f . Thus, when
k andk + 1 are in the same row oft(1), by Proposition 3.4, we have

bvuTwEk = bvuE2i−1Tw = xbvuTw.

Now suppose that(2i)w = k and(p)w = k + 1 where 1< 2i < p � 2f . Then

bvuTwEk = bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 TuEk

whereu = s2i+1s2i+2 · · · sp−1w and

εj =
{1 if (j)w > k + 1;
−1 otherwise
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for j = 2i+1,2i+2, . . ., p−1. But since(2i)u = k and(2i+1)u = k+1, Proposition 3.4
implies that

bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 TuEk = bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 E2iTu.

Now E2i−1 is a factor of bvu which commutes withTj whenever j = 2i + 1,

2i + 2, . . . , p − 1, so using the relationq2E2i−1E2i = E2i−1T2iT2i−1 we see that

bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 TuEk = bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 E2iTu

= q−2bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 T2iT2i−1Tu.

Since(2i − 1)u < k = (2i), it is verified using (1.1) thatl(s2i s2i−1u) = l(u) + 2; thus

bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 E2iTu = q−2bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 T2iT2i−1Tu

= q−2bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 Tu′

whereu′ = s2is2i−1u and l(u′) = l(u) + 2. Since(2i − 1)u′ = k and (2i)u′ = k + 1,
Proposition 3.8 allows us to write

bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 Tu′ =
∑
v′

av′bvuTv′

wherev′ ∈ Sn, k, k + 1 are entries in the same row oftν1v
′ andtν

(2)
v′ = tν

(2)
w for eachv′.

Thus, we may use Corollary 3.1 to rewrite each of the termsbvuTv′ in the last expressio
as a sum

bvuTv′ =
∑
v

avbvuTv

wherev ∈ Dν andk, k + 1 are in the same row oftν
(1)

v.
To complete the proof of the lemma, suppose that(2i − 1)w = k, and(p)w = k + 1

where 0< 2i < p � 2f . Now sincew ∈ Dν , we must havep = 2i+1; therefore,l(s2iw) <

l(w), and applying Proposition 3.4 together with the relationE2i−1T2iE2i−1 = (qr)E2i−1,

bvuTwEk = bvuT2iTvEk = bvuT2iE2i−1Tv = (qr)bvuTv

wherev = s2iw, (2i − 1)v = k and(2i)v = k + 1. Using Corollary 3.1, as before, the ter
bvuTv can be rewritten as a sum of the form required by the lemma.�

In the next example we illustrate the above calculations forn = 6 andf = 3.
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Example 3.4. Let n = 6, f = 3 andw = s2s4. Then

ν(2) = (0), w ∈ Dν, t
ν(1)

w =
1 3
2 5
4 6

and tν
(2)

w is the empty tableau. We letu = s3s4w and proceed as in the proof
Proposition 3.8;

bvvTwE3 = E1E3E5TwE3 = E1E3E5T4T
−1
3 TuE3

= E1E3E5T4T
−1
3 E2Tu = E3E5T4T

−1
3 E1E2Tu,

and by the relationEkEk+1 = q−2EkTk+1Tk,

bvvTwE3 = q−2E1E3E5T4T
−1
3 T2T1Tu = q−2E1E3E5T4T

−1
3 Tu′

where

tν
(1)

u′ =
3 4
1 2
5 6

andtν
(2)

u′ is the empty tableau. Nowl(s3u
′) = l(u′) + 1 so we use the relations

T −1
3 = q−2T3 + q−2(q2 − 1

)
(E3 − 1) and E3T3E3 = (qr)E3

to obtain

bvvTwE3 = q−4bvv

[
T4T3Tu′ + (

q2 − 1
)
T4E3Tu′ − (

q2 − 1
)
T4Tu′

]
= q−4bvv

[
T4T3Tu′ + qr

(
q2 − 1

)
Tu′ − (

q2 − 1
)
T4Tu′

]
.

Now, sincel(s4s3u
′) = l(u′) + 2 andl(s4u

′) = l(u′) + 1, we have shown that

bvvTwE3 = q−4bvvTv + q−3r
(
q2 − 1

)
bvvTu′ − q−4(q2 − 1

)
bvvTv′ (3.10)

where

t
ν(1)

v =
3 4
2 5
1 6

, t
ν(1)

v′ =
3 4
1 5
2 6

and tν
(2)

v, tν
(2)

v′ are the empty tableau. Using Corollary 3.1, the right-hand side o
expression (3.10) may be rewritten as
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bvvTwE3 = q−4bvvTv′′ + qr
(
q2 − 1

)
bvv − q−4(q2 − 1

)
bvvTw′

where

tν
(1)

v′′ =
1 6
2 5
3 4

, tν
(1)

w′ =
1 5
2 6
3 4

and tν
(2)

v′′, tν(2)
w′ are the empty tableau. We have therefore expressed the pr

bvvTwE3 as a sum
∑

v avbvvTv wherev ∈ Dν .

The next lemma is vacuous in casef = [n/2] andn is even.

Lemma 3.5. Let 0 � f � [n/2], andν be the bi-partition withν(2) = (n − 2f ). Suppose
that λ ∈ Λf , u ∈ If (λ) andw ∈ Dν . If (k)w−1 � 2f and 2f < (k + 1)w−1, then there
existav, as ∈ R, for s ∈ If (λ) andv ∈ Dν , such that

bvuTwEk ≡
∑
v

av

∑
s

asbvsTv mod B̌λ (3.11)

for all v ∈ If (λ). Moreover, in the expression(3.11), av = 0 wheneverk andk + 1 are not
in the same row oftνv.

Proof. Suppose in the first instance that(2i − 1)w = k and that(p)w = k + 1 where
1 � i � f and 2f < p � n. Then

bvuTwEk = bvu, T
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i

2i TuEk

= bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i

2i E2i−1Tu

= (qr)ε2i bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i−1

2i−1 Tu

whereu = s2is2i+1 · · · sp−1w, (2i−1)u = k and(2i)u = k+1. Now Proposition 3.8 allow
us to rewrite the above expression as a sum

bvuTwEk =
∑
u′

au′bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2f +1

2f+1 Tu′

where(2i − 1)u′ = k and(2i)u′ = k + 1 wheneverau′ �= 0. By Proposition 3.9, each of th
summandsbvuT

εp−1
p−1 T

εp−2
p−2 · · ·T ε2f+1

2f+1 Tu′ in the preceding can in turn be rewritten, modu

the idealBf +1, as a sum

bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2f +1

2f+1 Tu′ =
∑

′
av′bvuTv′ mod Bf +1
v
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wherev′ ∈ Sn, (2i − 1)v′ = k and (2i)v′ = k + 1. Finally, sinceBf+1 ⊆ B̌λ, using
Lemma 3.3 to rewrite each summand in the preceding expression, we have shown t

bvuTwEk ≡
∑
v∈Dν

av

∑
s∈If (λ)

asbvsTv mod B̌λ

whereav andas, do not depend onv, andav = 0 wheneverk, k + 1 are not in the sam
row of tνv.

In the second instance suppose that(2i)w = k and(p)w = k + 1 where 1� i � f and
2f + 1 � p � n. Then, from the relationq2E2i−1E2i = E2i−1T2iT2i−1, we have

bvuTwEk = bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 TuEk

= bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 E2iTu

= q−2bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 T2iT2i−1Tu

whereu = s2i+1s2i+2 · · · sp−1w. Let u′ = s2i s2i−1u; using (1.1), it is verified thatl(u′) =
l(u) + 2 and therefore,

bvuTwEk = q−2bvuT
εp−1
p−1 T

εp−2
p−2 · · ·T ε2i+1

2i+1 Tu′ .

Since(2i − 1)u′ = k and(2i − 1)u′ = k + 1, we may write, using Propositions 3.8 and 3
and Lemma 3.3, the preceding as a sum

bvuTwEk ≡
∑
v∈Dν

av

∑
s∈If (λ)

asbvsTv mod B̌λ

of terms of the form required by the lemma.�
We now have the necessary ingredients to giveBf /Bf +1 a filtration byBn(r, q)-mo-

dules. Recall thatCλ
v is the rightBn(r, q)-submodule ofBλ/B̌λ generated bybvu + B̌λ for

u ∈ If (λ).

Proposition 3.10. Let 0 � f � [n/2] andν be the bi-partition withν(2) = (n − 2f ) and
suppose thatλ ∈ Λf .

(1) If w ∈ Dν , u ∈ If (λ) and b ∈ Bn(r, q), then there existav, as ∈ R, for v ∈ Dν and
s ∈ If (λ) such that

bvuTwb ≡
∑
v∈Dν

av

∑
s∈If (λ)

asbvsTv mod B̌λ

for all v ∈ If (λ).
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required

first
(2) The elements

{
bvuTw + B̌λ

∣∣ u ∈ If (λ),w ∈ Dν

}

generateCλ
v as anR-module.

(3) If v, s ∈ If (λ), thenCλ
v andCλ

s are isomorphic as rightBn(r, q)-modules.

Proof. Let w ∈ Dν andt = tνw. The preceding lemmas show thatbvuTwEk andbvuTwTk

can be expressed as a sum of the form stated in item (1) above whenever(k)w−1 <

(k + 1)w−1. If (k)w−1 > (k + 1)w−1, then k, k + 1 are not in the same row oft or
both in the first column oft(1). Thuswsk ∈ Dν and by (1.1),Tw = TwskTk sobvuTwEk =
bvuTwskTkEk = qr−1bvuTwskEk. Now, since(k)wsk < (k + 1)wsk andwsk ∈ Dν , we can
expressbvuTwskEk as a sum of the required form. Similarly, if(k)w−1 > (k +1)w−1, then

bvuTwTk = q2bvuTwsk + (
q2 − 1

)
bvuTw − qr−1(q2 − 1

)
bvuTwskEk

where we have shown that each term on the right-hand side can be expressed in the
form.

The second and third items of the lemma now follow directly from the
statement. �
Lemma 3.6. Let 0 � f � [n/2] andν be the bi-partition withν(2) = (n − 2f ). If λ ∈ Λf ,
then the set

{
T ∗

wbvuTv + B̌λ
∣∣ v,u ∈ If (λ) andw,v ∈ Dν

}

generatesBλ/B̌λ as anR-module.

Proof. SinceHR,n−2f (q2) is finite dimensional, we initially takeλ to be a minimal
element in(Λf ,�), in which caseB̌λ = {0}. Now letv ∈ If (λ). Since

{
bvuTu + B̌λ

∣∣ u ∈ If (λ) andu ∈ Dν

}

generatesCλ
v as a rightBn(r, q)-module, wheneverb ∈ Bn(r, q), we have

(
bT ∗

wbvuTv

)∗ = T ∗
v buvTwb∗ =

∑
u∈Dν

au

∑
s∈If (λ)

asT
∗
v busTu.

Therefore, using the anti-involution∗ once more,

bT ∗
wbvuTv =

∑
u∈D

au

∑
s∈I (λ)

asT
∗
u bsuTv.
ν f
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to
Having shown the lemma to hold true for any minimal element in(Λf ,�), using
Proposition 3.10 and arguing by induction on�, the result now follows. �

It is a consequence of the proofof our next proposition that theR-algebra homomor
phismσ of Proposition 2.1 is in fact anR-algebra isomorphism.

Proposition 3.11. Let 0 � f � [n/2] and letν be the bi-partition withν(2) = (n − 2f ). If
(Cf ,Λf ) is a cellular basis forHR,n−2f (q2), then the collection

{
T ∗

wbvuTv

∣∣ v,u ∈ If (λ), λ ∈ Λf andw,v ∈ Dν

}

is a freeR-basis forBf /Bf +1.

Proof. Forλ ∈ Λf andv,u ∈ If (λ), let aw
vu ∈ R, for w ∈ Sn, be elements satisfying

cλ
vu =

∑
w∈Sn

aw
vuXw.

Then, for eachv,u ∈ If (λ), the element̂bvu ∈ Bf defined by

b̂vu = E1E3 · · ·E2f−1

∑
w∈Sn

aw
vuTw (3.12)

will satisfy ι(cλ
vu) = b̂vu + Bf+1; that isb̂vu will be a coset representative forbvu in Bf .

Now observe that, sinceBf /Bf+1 = ∑
λ∈Λf

Bλ, the collection

{
T ∗

wbvuTv

∣∣ v,u ∈ If (λ), λ ∈ Λf andw,v ∈ Dν

}

generatesBf /Bf +1 as anR-module by Lemma 3.6. Therefore, the collection

C = {
Twb̂vuTv

∣∣ v,u ∈ If (λ), λ ∈ Λf , v,w ∈ Dν, 0 � f � [n/2]}

will generateBn(r, q) as anR-module. To prove the Proposition, it will now suffice
show that the elements ofC are linearly independent overR.

To this end, letBn(q̂, r̂) denote the specialization ofBn(r, q) to κ = C(q̂, r̂) via the
specialization homomorphismσ defined in Proposition 2.1. SinceC generatesBn(r, q) as
anR-module andσ is surjective, it follows thatσ(C ) generatesBn(q̂, r̂) as anκ-module.
Thus, noting that|C | = |σ(C )|, the linear independence ofC overR will follow once we
have shown thatσ(C ) is linearly independent overκ . Counting we have,

∣∣σ(C )
∣∣ =

[n/2]∑
f =0

|Dν |2
∑

λ∈Λ

∣∣If (λ)
∣∣2 =

[n/2]∑
f =0

(
(2f )!
2f · f !

)2(
n

2f

)2

(n − 2f )!

f
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of

e

where, for 0� f � [n/2], ν is the bi-partition withν(2) = (n − 2f ). Now each summan
in the latter expression simply evaluates the number of Brauer diagrams with 2f horizontal
bars. Thus, from Theorem 2.1 it follows that|σ(C )| = dimκ(Bn(q̂, r̂)) which completes
the proof of the lemma. �

In the course of proving the previous Proposition 3.11, we showed the collection

C = {
Twb̂vuTv

∣∣ v,u ∈ If (λ), λ ∈ Λf , v,w ∈ Dν, 0 � f � [n/2]}

to be a freeR-basis forBn(r, q). We now wish to show that, with an appropriate choice
index set and partial order,C is in fact a cellular basis forBn(r, q) in the sense of Graham
and Lehrer.

We set

Λ =
[n/2]⋃
f=0

Λf

and giveΛ a partial order by writingλ � µ in (Λ,�) if either (i) λ ∈ Λf andµ ∈ Λg

wheref < g or, (ii) λ,µ ∈ Λf andλ � µ in (Λf ,�). For eachλ ∈ Λf , I(λ) is the set of
ordered pairs

I(λ) = {
(v,w) | v ∈ If (λ) andw ∈ Dν

}

whereν is the bi-partition withν(2) = (n − 2f ). Write

b̂(v,w)(s,u) = T ∗
wb̂vsTu (3.13)

for all v, s ∈ If (λ) andu,w ∈ Dν . Let B̌λ be theR-module generated by the elements

{
b̂(v,w)(u,v)

∣∣ for (v,w), (u, v) ∈ I(µ) andµ > λ
}
.

We are now able to state and prove the main theorem of this section.

Theorem 3.1. For 0 � f � [n/2], let (Cf ,Λf ) be a cellular basis for the Iwahori–Heck
algebraHR,n−2f (q2). Then the collection

C = {
b̂(v,w)(u,v)

∣∣ for (v,w), (u, v) ∈ I(λ) andλ ∈ Λ
}

is a freeR-basis forBn(r, q). Furthermore, the following hold.

(1) TheR-linear map determined bŷb(v,w)(u,v) 
→ b̂(u,v)(v,w) for all b̂(v,w)(u,v) ∈ C is an
anti-involution ofBn(r, q).
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(2) If λ ∈ Λ, (u, v) ∈ I (λ) andb ∈ Bn(r, q), then there exista(s,u) ∈ R, for (s, u) ∈ I(λ),
such that

(
b̂(v,w)(u,v)

)
b ≡

∑
(s,u)∈I(λ)

a(s,u)b̂(v,w)(s,u) mod B̌λ

for all (v,w) ∈ I(λ).

Consequently(C ,Λ) is a cellular basis forBn(r, q).

Proof. By Proposition 3.11, we know thatC is anR-basis forBn(r, q). Sinceb̂(v,w)(u,v) =
T ∗

wb̂vuTv , we observe from the definition of̂bvu given in (3.12), that the map define
by Tw 
→ Tw−1, Ei 
→ Ei is an algebra anti-involution ofBn(r, q) which, applied to the
basisC , mapsb̂(v,w)(u,v) 
→ b̂(u,v)(v,w). Hence we have the first item.

The second item is now a simple restatement of Proposition 3.10.�

4. A Murphy basis for the B-M-W algebras

As an application of Theorem 3.1 we use the cellular basis constructed by M
in Theorem 1.2 to give an explicit cellular basis forBn(r, q) indexed by bitableaux. I
0 � f < [n/2], we identify HR,n−2f (q2) with the subalgebra ofHR,n(q

2) generated
by the elements{Ti | 2f < i < n} and setHR,n−2f (q2) = R when f = [n/2]. Let
Λf = {λ | λ � n − 2f } andIf (λ) = Std(λ). Write

Mf = {
muv | u,v ∈ Std(λ)

}
,

where

muv = T ∗
d(u)mλTd(v)

and forλ ∈ If (λ), mλ is the element

mλ =
∑

w∈Sλ

Tw. (4.1)

Then(Mf ,Λf ) is a cellular basis forHR,n−2f (q2). Define

Λ = {
λ | λ � n − 2f for f = 0,1, . . . , [n/2]}

and extend the dominance order toΛ by writing λ � µ if either (i) λ � n − 2f and
µ � n−2g wheref < g or, (ii) µ,λ are both partitions ofn−2f and

∑k
i=1 λi �

∑k
i=1 µi

for all k � 0.
The cellular basis forBn(r, q) will be indexed by ordered pairsI(λ) = {(v,w) |

v ∈ If (λ) and w ∈ Dν} where ν is the bi-partition withν(2) = (n − 2f ). Each pair
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top

–

(v,w) ∈ I(λ) corresponds to a uniqueλ-bitableau

(v,w) ↔ t = tλd(v)w

whered(t) = d(v)w ∈ Dλ and each column oft(2) is an increasing sequence read from
to bottom (cf. Proposition 3.2 and Example 3.1). Thus, for a partitionλ � n − 2f , it will
be convenient to identifyI(λ) with the bitableaux

I(λ) =
{

λ-bitableauxt with d(t) ∈ Dλ and each column oft(2)

an increasing sequence read from top to bottom

}
.

We now set

b̂λ :=
∑

w∈Sλ

Tw · E1E3 · · ·E2f−1

and forλ-bitableauxv,u ∈ I(λ) define

b̂uv = T ∗
d(u)b̂λTd(v).

Let B̌λ be theR-submodule ofBn(r, q) generated by{b̂vu | v,u ∈ I(µ) for µ � λ}.

Theorem 4.1. For 0 � f � [n/2], let (Mf ,Λf ) be the Murphy basis for the Iwahori
Hecke algebraHR,n−2f (q2). Then the collection

M = {
b̂vu

∣∣ v,u ∈ I(λ) andλ ∈ Λ
}

is a freeR-basis forBn(r, q). Furthermore, the following hold.

(1) TheR-linear map determined by

b̂vu 
→ b̂uv

for all b̂vu ∈ M is an anti-involution ofBn(r, q).
(2) If λ ∈ Λ, u ∈ I (λ) andb ∈ Bn(r, q), then there existas ∈ R, for s ∈ If (λ), such that

b̂vub ≡
∑

s∈I(λ)

asb̂vs mod B̌λ

for all v ∈ I(λ).

Consequently(M ,Λ) is a cellular basis forBn(r, q).
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5. Specht modules for the B-M-W algebras

In this section we specialize to the B-M-W algebraBn(r̂, q̂) over κ = C(r̂, q̂) and
construct for eachλ ∈ Λ, a moduleSλ which will generalize the classical Specht mod
from the representation theory of the symmetric groups. Let

M = {
b̂vu

∣∣ v,u ∈ I(λ) andλ ∈ Λ
}

be the specialization of the Murphy basis forBn(r, q) given in Theorem 4.1. Forλ ∈ Λf ,
let Nλ be theκ-module with basis

{
b̂vu

∣∣ v,u ∈ I(µ), µ � λ
}

andŇλ = ∑
µ�λ Nµ. DefineSλ to be the rightBn(r̂, q̂)-submodule ofNλ/Ňλ generated

by Ňλ + b̂λ. Being isomorphic to the right cell module,Sλ has aκ-basis

{
Ňλ + b̂λTd(v)

∣∣ v ∈ I(λ)
}
.

For v ∈ I(λ), let b̂v denote the elemenťNλ + mλTd(v) in Sλ. As in Lemma 1.3, there is
symmetric bilinear form〈 , 〉 :Sλ × Sλ → R defined by

〈
b̂v, b̂u

〉
b̂λ ≡ b̂tλvb̂utλ mod Ňλ

for all bitableauxv,u ∈ I(λ). Since〈 , 〉 is associative,

radSλ = {
b ∈ Sλ

∣∣ 〈
b, b′〉 = 0 for all b′ ∈ Sλ

}

is a Bn(r̂, q̂)-submodule ofSλ. Naturally, we defineDλ to be the rightBn(r̂, q̂)-module
Sλ/ radSλ. We now have the following consequences of Theorems 1.4 and 1.5 respe
(see also [13]).

Theorem 5.1. The set

{
Dλ

∣∣ λ a partition ofn − 2f such thatDλ �= 0
}

is a complete set of non-isomorphic absolutely irreducibleBn(r̂, q̂)-modules.

Theorem 5.2. The algebraBn(r̂, q̂) is semisimple if and only ifDλ = Sλ for all λ ∈ Λ.

Example 5.1. Let n = 4. Corresponding tof = 2 is the partitionν(2) = (0). In this case
theκ-moduleNν is spanned by the elementsE1E3Td(u) whereu is one of

(
1 2
3 4

,−
)

,

(
1 3
2 4

,−
)

,

(
1 4
2 3

,−
)

.
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.
87)

2–383.
Corresponding tof = 1 are the partitionsλ = (2) and µ = (1,1). For λ = (2), the
κ-moduleNλ is spanned by elementsE1(1+ T3)Td(u) whereu is one of the bitableaux

(
1 2 , 3 4

)
,

(
1 3 , 2 4

)
,

(
2 3 , 1 4

)
,(

1 4 , 2 3
)
,

(
2 4 , 1 3

)
,

(
3 4 , 1 2

)
.

For the partitionµ = (1,1), Nµ is spanned byE1Td(u) whereu is one of the bitableaux

(
1 2 ,

3
2

)
,

(
1 3 ,

2
4

)
,

(
2 3 ,

1
4

)
,

(
1 4 ,

2
3

)
,

(
2 4 ,

1
3

)
,

(
3 4 ,

1
2

)
.

Sinceν � λ � µ, we see that asBn(q̂, r̂)-modules,Sν = Nν , Sλ = (Nν + Nλ)/Nν and
Sµ = (Nν + Nλ + Nµ)/(Nν + Nλ).
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