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Abstract

An explicit combinatorial construction is given for cellular bases (in the sense of Graham and
Lehrer) for the Birman—Murakami—-Wenzl and Brauer algebra. We provide cell modules for the
Birman—Murakami—Wenzl and Brauer algebras with bases index by certain bitableaux, generalising
the Murphy basis for the Specht modules of the Iwahori-Hecke algebra of the symmetric group. The
bases for the cell modules given here are constructed non-diagrammatically and hence are relatively
amenable to computation.

0 2004 Elsevier Inc. All rights reserved.

Introduction

The Birman—Murakami—Wenzl| algebras, defined independently by Birman and Wenz|
in [1] and Murakamiin [10], are finite dimeraal algebras defined over a rational function
field in two variables and can be considerasl deformations of the Brauer algebras
obtained by replacing the symmetric group algebras with the corresponding Iwahori—
Hecke algebras.

The connections between the Birman—Murakami—Wenzl| and the Iwahori-Hecke alge-
bras have led several authors, notably, Hedee and Ram in [4], Fishel and Grojnowski
in [2] and Xi in [13] in to determine analogues of results about the representations and
characters of the Iwahori—-Hecke algebra foe Birman—Murakami—Wenzl algebras. The
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present work has similar motivation, namely we exploit the fact that the Iwahori-Hecke al-
gebra of the symmetric group is cellular in the sense of Graham and Lehrer, to investigate
the representation theory of the Birman—Murakami—Wenz| algebra.

The axioms for a cellular algebra weresfiformulated by Graham and Lehrer in [3]
where they showed that as a consequence of the axioms, a cellular algebra has certain
naturally defined cell representations. Theyatetl these cell representations to the ideal
structure of the algebra and obtained a general description of the irreducible representations
of the cellular algebra together with a criterion for the cellular algebra to be semisimple.
Graham and Lehrer also showed the Brauerlaiag, the Ariki—Koike algebras (including
the lwahori—Hecke algebras), and the Temperley—Lieb algebras to be cellular and described
the cell representations of the Brauer algebras.

Subsequently Kénig and Xi in [7] have given a general construction which produces
all cellular algebras and used this construction to show that the Brauer algebra and the
Temperley—Lieb algebras are cellular.

Given that the Brauer algebras are celtulane is naturally lead to ask whether the
Birman—Murakami—Wenzl algebras are alsdiudar. Xi in [13] answers this question by
showing that certain analogues of the Kazhdan—Lusztig basis for the Birman—Murakami—
Wenzl algebras given by Fishel and Grojrskivin [2] (see also Morton and Traczyk [9])
are in fact cellular. The basis given by Xi in [13] is constructed by “blowing up,” using
certain diagrams calledangles a basis of the lwahori-Hecke algebras to obtain a basis
for the Birman—Murakami—Wenz| algebras.

In this paper we also study the relation between the cellular bases of the Iwahori-Hecke
algebras and the cellular bases of the Binrdglurakami—Wenzl Algebras. As in [13], we
give an explicit construction showing that a cellular basis for the lwahori-Hecke algebra
gives rise to a cellular basis for the Birman—Murakami—Wenzl algebra. However, the
method used here produces a basis indexed by cesitmbleauxand thereby gives an
explicit combinatorial description of the cellular basis and cell modules which is amenable
to computation. In the special case wheredbBular basis for the lwahori—-Hecke algebra
is the Murphy basis [11], our is a natural analogue for the Birman—Murakami—WenzI
algebras of the Murphy basis. The cell modules which we construct using the analogue
of the Murphy basis generalise the classical Specht modules of the symmetric group.

1. Preliminaries

We establish the basic notation and state some known results which will be used later.
A reference for the material presented here is [8].

1.1. The symmetric group

Let G, denote the symmetric group acting on the inted#yg, ..., n} on the right. The
elementary transpositions &,, are the elements

S={si=@,i+1|1<i<n}.
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The elementary transpositions, together with the relations

s2=1 for1<i <n,

1
SiS; =S8 for2<|i —jland 1< i, j < n,

$iSit18i = sip18i8i41 forl<i<n—1

give a presentation fab, as a Coxeter group. Lat be a permutation i®,,. An expression
w = si;8i, - -+ 8, for w in terms of elementary transpositions is said toréaducedif w
cannot be written as a propsub-expression aof;;s;, - - - s;,. In this case we say is a
permutation withlengthk and writel/(w) = k. Note that while there are usually several
reduced expressions far, the length ofw will not depend on this choice. The length
function onG,, is determined by the properties

L Jw)y+1 if (Hw<(+Dw,
Hsiw) = {l(w) —1 otherwise; (1.1)
and
L Jiwy+1 ifOw <@+ DHw
Hwsi) = {l(w) —1 otherwise, (.2)

together with the normalizing conditidiils,) = 0.
1.2. Compositions and tableaux

Letk > 0 be an integer. A partition df is a non-increasing sequence= (v, vz, ...)
of integers such satisfyind_; ., v; = k. We will write v - k to denote the fact that is
a partition ofk. If v is a partition it will also be convenient to write| = k whenever
21;1 v; = k. If u, v are partitions ok, then writex = v and sayu dominates, if

J J

S = w forallj>0.

i=1 i=1

The fact thafw = v andu # v will be denoted by > v.
The diagram of a partition - & is the set of nodes

wl={G j)1<j<viandi >1} CNxN.

Let v+ k. A v-tableau is a bijectiont: [v] — {1, 2, ..., k}; equivalently av-tableaut
may be regarded as a labeling of the nodefapby the integers 12, .. ., k. For example,
if k=7andv=(4,2,1),then
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4767
3 (1.3)

,h
I
[a] ]

is av-tableau. Thesuper-standardableaut’ is the uniquev-tableau in which has as its
entries the integers, 2, ... ., k appearing in increasing sequence from left to right and top
to bottom. In casé = 7 andv = (4, 2, 1) we have

1]2[3[4]
t'=|5(6 .
7]

(1.4)

A v-tableaut is said to baow standardif the entries of each row dfincrease when read
from left to right and a row standardtableaut is said to bestandardif the entries of each
column oft increase when read from top to bottom.eTtableau of (1.3) is row standard
but not standard. We will denote by $idl the collection of standarg-tableaux.

Let v - k be a partition. The symmetric grou®; acts from the right on the set of
v-tableaux by permuting enés. Let, for exampley =5 andv = (3, 2); if t= ,
then

2[3[4]

t(1,2)(4,5 = 15

If tis av-tableau, thenri(t) € &; is the permutation defined by the equatidd (t) = t.
The Young subgroup 06, = &,, x 6,, x --- x &,, will be the row stabilizer ot” in
Sy thatis

S, ={s; | i,i + 1 are in the same row af).
For example, whem = (4, 2, 1) andt’ is given by (1.4), thei®, = (s1, s2, s3) X (s5).
1.3. The Iwahori—Hecke algebra of the symmetric group
Let R be a domain ang? be an invertible element i®. The Iwahori-Hecke algebra

Hr..(q?) associated witl®, is the unital associativR-algebra generated by the elements
{X; | 1<i < n} subject to the relations

(Xi —¢?)(X; +1) =0 for1<i <n,

XiXiv1Xi = Xiv1Xi X1 forl<i<n-2,

X,‘Xj:Xin for2<|i—j|and1<i,j<n.

If wis a permutation inS, with reduced expressiow = s;, - - - s;,, the elementX,, of
Hr.n(q?) is defined by
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Xy =Xi, - Xi,.

By Matsumoto’s theorem (Theorem 1.8 of [8F),, is a well defined element ik , (qz).
The next statement follows from (1.1) and (1.2) together with the defining relations for

Hr.n(q?).

Lemma 1.1. If w € G, ands is an elementary transposition, then

XX — X s if [(ws) > [(w),

YT P Xws + (@2 = DX,y if L(ws) < [(w);
and

XX — Xsw if I(sw) > l(w),

AT @2 Xgw + (@2 = DXy iflsw) <I(w).

The following result is well-known (Theorem 1.13 of [8]).

Theorem 1.1. The Iwahori-Hecke algebri( , (¢?) is free as anR-module , having for a
basis the collectiofX,, | w € &,,}.

The next statement is Lemma 2.3 of [11].

Lemma 1.2. Let %, T, # be the maps defined by

*1 Xy > X-1,
l _
t:Xy > (—¢))' ™ X,
! —
g Xy > (—612) (w)Xw}ly

for eachw € &,, extended tdHg (qz) by linearity. Then« and t are R-algebra anti-
involutions of’HR,n(qz) andi is an R-algebra automorphism Gf{R,n(qz).

1.4. The Murphy basis for the Iwahori-Hecke algebra

In [11] Murphy gives a nice basis fdx ,(¢2) indexed by pairs of standard tableaux,
a basis which allows him to define a filtration &t , (qz) by two-sided ideals and to
describe the representationsiék ,, (¢2).

For a partitionk - n, Murphy defines the element;, € Hg.,.(¢%) by

my = Z X,

U)EG)L

and associates to each pait of standard.-tableaux the element
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Met = XZ(S)mAXd(t).
Let N* denote theR-submodule oz ,(¢%) generated by the elements
{mst = Xﬁ(s)mﬂXd(t) ‘ 5, te Std(pw) andu > k}

andN* be theR-submodule ofV* generated by

{mﬁt = X;(ﬁ)mﬂxd(t) s, te Std(n) andu > )\}.

The following result is due to Murphy (Theorems 4.17 and 4.18 of [11] or Theorem 3.2
of [8]).

Theorem 1.2. The Iwahori-Hecke algebr&x ,(¢?) has a freeR-basis

M ={mgsi |5, t€Stdr) andat-n}.
Moreover, the following hold

(1) The R-linear map determined by:s¢ > mys, for all mgy € 4, is an algebra anti-
involution ofHg , (¢?).

(2) Suppose that e HR,n(qz) and thatt € Std(A). Then there exist, € R, for v €
Std(A), such that

msth = Z aymsp, mod N* (1.5)
veStd)

for all s € Std()).

The crucial point about (1.5) is that the elementanda, depend ort and/ but not
on s. Also, as a consequence of Theorem 1.2, b¥thand N* are two sided ideals of
HR,,,(qZ) and the dominance order on partitions gives rise to a filtratioH gf, (q®) by
two-sided ideals.

The right Specht modules” is defined to be thé+r,(¢?)-submodule ofN*/N*
generated by the elements

[N* +my. | teStdn)}. (1.6)

By the last item of Theorem 1.2, the set (1.6) is a fRebasis fors*. Fors e Std()),
let ms denote the elemen¥* + m, € S*. Murphy defines a symmetric bilinear form
(,):8* x §* — R by setting

(mg, mem; = mtksm:}t mod N*.
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Since(, ) satisfies the conditiotm s, m¢h) = (msh*, m¢) for all h € Hg ,(g?), it follows
that the set rad*) = {a € S* | (a, b) = 0 for all b € $*} will be a rightH_,(¢%)-module.
Consequently Murphy define®” = $*/rad($*). The first item below is Theorem 6.2
of [11] while the second item is Theorem 6.3 of [11].

Theorem 1.3. Let R be a field. Then

(1) Then eitherD* =0 or D* is an absolutely irreduciblé{ ,(¢%)-module.
(2) The collection{D* | » n and D* # 0} is a complete set of pairwise non-isomorphic
absolutely irreduciblét z_, (¢%)-modules.

1.5. Cellular algebras

In this section we state the main resultsGxaham and Lehrer [3] and refer the reader
to the exposition in [8]. For an equivalent but basis free approach to the subject, the reader
is referred to a work of Kénig and Xi [6].

Definition 1.1. Let R be a domain and a unital associativ® algebra with a fre basis.
Let A be a finite set with partial ordeg and suppose that for eaghe A there is a finite
index setZ(A) such that there exists a set

¢ ={ch,eA|v,ueZ() andre A}

which is anR-basis forA. For i € A, let A* denote theR-submodule of4 generated by
the elements

{cou | 0, we (1) wherep € A andi < u}.
Then(A, ¥) is acellular basisand A acellular algebraif

(1) theR-linear map«: A — A determined byt : ¢}, + % forall A € A andu, v € Z(1)
is an algebra anti-automorphism a4f and,
(2) if x € A,veZ()) anda € A, then there exist; € R, fort € Z(1), such that

ci‘ma = Z ottcﬁt mod A* a.7)
teZ(h)

forallue Z(A).

The essential feature of the expression (1.7) is that the elentenfs()) and the
constantsy; are determined entirely hyandv and are independent of

Examples of cellular algebras include Ariki—Koike algebras (including the lwahori—
Hecke algebras), the Brauer and Temperlaégblalgebras (Theorems 4.10 and 6.7 of [3])
and the Birman—Murakami—Wenzl| algebra$héorem 3.11 of [13]). Note that a cellular
algebra may have more than one cellular basis; the Murphy basis, for instance, makes the
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Iwahori-Hecke algebra into a cellular algebra, as does the Kazhdan-Lusztig basis for the
Iwahori-Hecke algebra (see, for example, Theorem 5.5 of [3]).

For . € A, denote byA* the R-submodule ofA generated by the element$, where
v,u e Z(w) andu > A. Observe thati* € A* and thatA*/A* has anR-basis given by
A + cﬁu wherev, u € Z(A). The next statement is now a straightforward consequence of
the definitions (Lemma 2.3 of [8]).

Lemma 1.3. Let (¥, A) be a cellular basis fod and be an element ofl.

(1) Suppose that € Z(1) and thata € A. Then for allo € Z(3),

a*ci‘m = Z ottci‘u mod A*
teZ(r)

where, for each, ay is tr]e element oR determined by1.7).
(2) TheR-modulesA’ and A* are two-sided ideals of.
(3) If s, t e Z(X), then there arevs¢ € R such that for any, v € Z(1),

ckoch, = asch, mod A (1.8)
The second item of Lemma 1.3 shows that there is a filtratioa bfy the idealsA*.
The third item shows that each of the quotients’ A is equipped with a bilinear form;

this bilinear form will be defined below.

Let i € A be fixed. Fom € Z(1), defineC}, to be ther-submodule ofd/A* generated
by the element$A* + cﬁu |ueZ)}. By (1.7), the algebrat has a well-defined action
on C} by right multiplication. Morever, under this actio@ = C: wheneven, u € Z(1).
Given the latter observation, the rigtell moduleC* is defined to be the right-module
which is free as aiR-module with basigc? | v € Z(1)} and rightA-action given by

A )
cya= E aeCy
t

where thew; are given by (1.7). Then the ma@, — C* defined byc’, + A* > ¢} is
an isomorphism of righ#t-modules. The left cell modul€** is defined to be the left-
module which is free as aR-module with basigc | v € Z(1)} and left A-action given

by
* A A
ac,= Z“tct
t

wherea are once more determined by (1.7).
By Lemma 1.3 there is a bilinear forfn): C* x C* - R

(cé, ci‘) =as¢ foralls,teZ()),

whereas¢ are determined by (1.8). The follomg statements follow readily from the
definitions (Proposition 2.9 of [8]).
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Proposition 1.1. LetA € A anda € A. Then

() (ct chy=(ch,c )for all u,v e Z(1).
) ¢ ﬁ ety =(ck, cha*) forall u,v € Z(1).
(3) bch, = (b, cl)ch for all u, v eZ(x) andb e C*.

Theradical of the moduleC* is defined to be
rad(C*) = {a € C* | (a, by =0forallb e C*}. (1.9)

By the second item of Proposition 1.1, (ad) is an A-submodule oC*, motivating the
definition D* = C*/rad(C?).

Proposition 1.2. Let R be a field and lek € A.

(1) If D* 0, thenD* =0 or D* is absolutely irreducible.
(2) The intersection of the maximal submodule€bfis equal torad(C*).

In principle at least, the following theorem of Graham and Lehrer (Theorem 2.19 of [8])
allows us to classify the simplé-modules.

Theorem 1.4. Suppose thar is a field. Then
{D* | » € AandD* #0}

is a complete set of pairwise non-isomorphic irreduciAlenodules.

Graham and Lehrer also give the following equivalences (Corollary 2.21 of [8]).
Theorem 1.5. Suppose thar is a field. Then the following are equivalent.
(1) A is(split) semisimple.
(2) c* =D forall A € A.
(3) radC*) =0forall 1 € A.
2. The Birman—-Murakami—Wenzl algebras

The Birman—-Murakami-Wenzl (B-M-W) algebras as defined in [1] and [10] are
associative algebras over a figld= C(7, ¢). In what follows, rather than working over,
we will consider a generic version of the B-M-W algebras defined over an appropriate
localization R of a polynomial ring ovetZ. For these generic algebras we will produce

cellular bases corresponding to cellular bases for the lwahori-Hecke algebra and then
obtain cellular bases for the B-M-W algebras owvdyy appropriate specializations.
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Letr, g be indeterminates ov&randR = Z[r*1, g1, (¢ — g~ 1)~1] be the localization
of Z[r*1, g*1] at (¢ — ¢~—1) and define the elementin R to be
r— r_l

—+1

X=————"
q9—49

The generic B-M-W algebr&, (r, g) overR is the unital associativ@-algebra generated
by the element$T; | 1 < i < n} subject to the following relations:

(T; —qz)(Ti —qr’l)(T,' +1)=0 forl<i<n,

IiTiaTi =Ti41Ti Tiya forl<i<n-—1,

I,T,=T;T; for2<|i —jland 1< i, j <n,
EiaTF Ei1 = (qr) P Ei forl<i<n-—1,
EiaTHE;i_1= (g Ei4 for2<i <n,

EiT,=TE; =qr 'E; for1<i <n,

wherekE; is defined by the equation

(¢>-1)Q-E)=T —¢°T* fori<i<n.

1

In [12], Wenzl derives the following additional relations from the defining relations:

TisaTi Eiv1 = E;TiaT; = q°E; Ei 11,
TiEiTizr =T 'EinT;,

TinEiT ) =T Eina T,
Tix1EiEix1 = qui_lEiﬂ,
Eip1EiTiv1= quiilT,-_l,

o
LEj=E;T; if]i—jl>2,
E;E;=EE; ifli—jl>2,

T2 =q%+(q* = 1)(Ti — gr E).
E? = xE;.

1
In each case above, the indigeg are chosen from all values<i, j < n for which the
given relation makes sense.
The algebras,, (r, g) has been given a geometric formulation using Kauffman’s tangle
monoid (see [5]). Since this construction will not be used here, we refer the reader to [4]
and [5] for details.
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If we &, has areduced expression= s;;s;, - - - s, , then
TwZTilTiz"'Tik

is a well defined element d¥, (r, ¢). The element$T,,|w € G, }, though a set of algebra
generators, do not generdig(r, ¢) as ankR-module.
The next statement is now a straightforward consequence of the defining relations.

Lemma 2.1. If w € G, ands; is an elementary transposition, then

o Tws, if l(w) < l(wsy),
T 2T + (@2 = DTy — qr 2 Tug Ex)  if Lwsy) < L(w);

and

T T, — Tskw if l(w) < l(Skw),
0T ¢ T + (@2 = D(Tw — gr Y ETy) i lskw) <I(w).
The mapx: B, (r, g) — B, (r, q) defined by« : T, — T,,-1 and extended by linearity is
an R-algebra anti-involution.

2.1. Specializations of the generic B-M-W algebras

Let R be a unital associative ring with unity. §f: R — R is a ring homomorphism,
thenR is anR-module via the action -a = ¢(a)a so theR-algebraB, (r, q) ®r R makes
sense. The algebr8,(r, q) ®r R will be called a specialization oB,(r, q) to R. Xi
in [13] considers cellular bases for Birman—Murakami—-Wenz| algebras over an arbitrary
ring, but for many applications we will be interested in the case wResereplaced by the
rational function fieldc = C(7, ¢) and¢ : R — « is the ring homomorphism determined by
¢:r—> 7 and¢:q — ¢. By this specialization we recover the usual Birman—Murakami—
Wenzl algebraB,, (7, §) overk.

Proposition 2.1. Letx = C(7,q) and¢: R — « be the ring homomorphism determined
by¢:r— 7 and¢:q — ¢. Then the homomorphism efalgebraso : B, (r, q) Qg k —
B, (7, ¢) determined byf; ® 1+ T; is a surjective map of-algebras.

2.2. The Brauer algebras

An n-Brauer diagramis defined to be a graph with-edges and 2 vertices arranged
in two rows ofn vertices and such that each vertex is incident to exactly one edge. An
example of a 5-Brauer diagram is given in Fig. 1.

Let y be an indeterminate ovér. The generic Brauer algebi# (y) is theZ[y]-algebra
which takes as &[y]-basis the collection oi-Brauer diagrams which will be multiplied
by a concatenation product defined as follows: giueBrauer diagramsgl; anddo, the
productdids in B, (y) is obtained by placing; aboveds, identifying vertices in the bottom
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o—— o

Fig. 1. An example of a 5-Brauer diagram.

O——0

O——0 fo]

Fig. 2. The concatenation product on Brauer diagrams.

row of d1 with the corresponding vertices in the top rowddf deleting any closed loops
in the concatenation and multiplying the resulting graph by a factgrfof each deleted
loop. In the example of Fig. 2, the two 5-diagns are multiplied to give a figure containing
a single closed loop.

The number ofn-Brauer diagrams i§2n — 1)(2n — 3)---3- 1 and is equal to the
dimension ofB,,(y) over Z[y]. To recover the usual Brauer algehBa(y) over C(3),
let ¢:Z[y] — C(y) be the ring homomorphism determined by— y. Then, as in
Proposition 2.1,C(y) becomes &[y]-module and there is a surjectivé(y)-algebra
homomorphismB(y) ®z;,) C(3) — B, (9) given by d ® 1+ d for eachn-Brauer
diagramd.

The next theorem (Theorem 3.5 of [12]) demonstrates, under certain generic restric-
tions, a close relation between the Wedderburn decomposition of the Brauer algebras and
the Wedderburn decomposition of the B-M-W algebras.

The numerical invariantf a semi-simple algebra are the dimensions of the simple
A-modules.

Theorem 2.1. Suppose thaf is not an integral power of, that g is not a root of
unity and thaty is not an integer. Then the algebrds (7, §) = B, (r, q) ®& C(7, §) and

B, (9) = Bu(y) ®z1y) C(9) are semi-simple and have the same numerical invariants. In
particular,

[n/2]

B.(7.4) =P P Cra

f=0xrely

whereCy, is a full matrix ring andl"y = {A | A F=n — 2f} for eachO < f < [n/2].
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3. Cellular basesfor the B-M-W algebras

The remainder of this paper is devoted to temstruction of cellular bases and cell
modules for the algebr&,(r,q). We will, as in Theorem 2.1, lef denote an integer
0< f<[n/2]and setl’s = {1 | L F-n — 2f}. For the present purpose, a bipartitioof n
will be an ordered pair of partitions' ™™, 1) wherev® = (21) andv® e I for some
fixed 0< f < [n/2]. The diagranjv] is the ordered pair of diagranfis] = ([vP], [v@])
and av-bitableaut is a bijectiont: [v®P]U V@] — {1,...,n}. By way of example, if
n =12, f =3 andv is the multi-partitiorv = ((23), (3, 2, 1)), then

1[2] [7]8]9] 2[ 7] [1]10]5]

3|4],|10|11 and 3191, (8]|12
(5 6| [12 ) (4 11| [6 )
are bothv-bitableaux. Ift is av-bitableau, we write = (t@, @) wheret? is identified
with the labeled diagrartiv] andt® is identified with the labeled diagrativ®].

Let v = v, v@) pe a bi-partition as above. The bitablegiu= (", '?) is the
v-bitableau in which the integers 2, ..., 2f are entered in increasing order from left

to right along the rows ofv?] and, along the rows ofv@], the integers Z + 1,
2f + 2,...,n are entered in increasing order findeft to right. For example, i = 7

andv®@ = (2, 1), then
o (1212] [5]8]
“\B4[7] )

A v-bitableaut is row standardif the entries in each row af?) increase read from left
to right fori = 1, 2. A row standard-bitableaut is standardif t = ' and the entries
in each column of@ is an increasing sequence read from top to bottom. The collection of
standard-bitableaux will be denoted by Sta)).

The symmetric groui®,, acts from the right on the set ofbitableaux by permuting

the entries of each bitableaux. For example,:i:f( , ) then

12.3@.7.65= ({35 ().

If tis av-bitableau, we defind(t) to be the unique element &, such that"d(t) = t.
For present purposes, the Young subgroup

61} = 61):([2) X oo+ X 61},(,2)
of &, will be the row stabilizer of*” in &,; that is to say

S, ={s; | i,i +1are in the same row d:f(z)).
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For f > 0 we defineB ; to be the subgroup ab,,

B = (s1,52i-152i 4152 | 1 <i < f)

and set®; = (1) when f = 0. For example, whem = 7 andv@ = (2,1) we have
S, = (s5) andB ; = (s1, s2s15352). Note that ifv@ n — 2f and f > 0, thenB is

the subgroup of5,, which permutes the rows af"” and that®s ; is isomorphic to the
hyperoctahedral group;: & ;.

In the next proposition, we obtain a complete $gtof coset representatives i S,
in &,. In this statement, wheif = 0 andv  n, we recover the result thap, is the
usual set of distinguished coset representatives for the parabolic subgroup &,
(Proposition 3.3 of [8]).

Proposition 3.1. Letv® k1 — 2f be a partition and” = ('@, ¢'?) and

(D, @) = " dis row standard and the first column 6P l
m

P = {d €S is an increasing sequence when read from top to bott

Then2, is a complete set of right coset representativesfgr x S, in &,,. Moreover, if
d € 9,,thenl(wd) =1(w) + 1) forall w € &,,.

Proof. Suppose tha® ;&,v =B S, w and lett’v = (v, v@) andt’w = WD, u?@).
Theno™® andu'® differ by a reordering of the entiseof each row, and a permutation of
the rows whilen® andu(@ differ by a reordering of the entries of each row. Therefore
2, is a complete set of coset representativesgiS,, in &,,. Now fix d € Z,; thent’d

is row standard sak)d < (k + 1)d whenevetk andk + 1 are in the same row af?. In
particularl(syd) = I(d) + 1 wheneves; € G,,.

Now suppose that € &, and that/(w) > 1. Thenw = sxv and/(w) = I(v) + 1 for
somes; € 6,,; therefore(k)v < (k + 1)v. Now (k)v and(k + 1)v belong to the same row
of t”(z), S0 (k)vd < (k + 1)vd and hencd(syvd) = I(vd) + 1. By induction therefore,
l(wd) =1(spvd) =1l(vd) +1=1(v) +1(d) + 1=1(w) +[(d) as required. O

We record the following useful fact for later reference.

Proposition 3.2. Let0< f < [n/2], uFn — 2f andt = (tD, t?) be a standardu-
bitableau. If v is the bi-partition withv® = (n — 2f) and w € 2,, theni(d(H)w) =
1d®) +1(w), tVw=t""w andd(Hw € F,.

Proof. Thati(d(tyw) = I(d(t)) + I(w) follows from the previous Proposition 3.1 in the
following manner. We note thatw must be row standard; therefdi@w) =1 (v) + [ (w)
forall v e G,; in particular, sincel(t) € G, we havel (d(Hw) =1(d®t)) + [(w). DO
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Example3.1. Letn =7, f =2, u = (2,2,1). Thenv® = (5) and if we take

(2
—\|3l4)

andw = (1,3,5)(2,9,4,8,7), we observe that

) 3[9
vw— (|31 [L[214Te7))

sow € Z,. Now, [(d(t)w) = I(d(t)) + [(w) and
tw = ( g

For 0< f < [n/2], we regardHg ,—27(g?) as the subalgebra 6ir ,(¢?) generated
by {T; | 2f <i <n} and sewR,n_zf(qz) = R when f = [n/2]. We therefore have a
decreasing family oR-algebras

[~]o] o

o ©
NN
o
~

sod(tyw € Z,.

Similarly, regardB,_2(r, q) as the subalgebra &f, (r, g) generated by7; | 2f <i <n}
and set3,_»¢(r,q) = R when f =[n/2]; thus,

B (r, q) DBn—Z(V’Q) D---DR.
For 0< f < [n/2], let Iy be the two-sided ideal oB,_»¢(r, ¢) generated by, _;

and letB/ be the two-sided ideal as,(r, g) generated by the elemeBi E3--- Exf_1. If
f =1In/2],setl; = {0} and B/ = {0}. Then,

Bu(r,q)=B°> B> ... 5 {0} (3.1)
is a filtration of B, (r, ¢) by two sided ideals.

By Proposition 3.2 of [12], the map:HR,,l_zf(qz) — B,—27(r,q)/1y defined on
generators by

o Xi>Ti+1p, 2f<i<n, (3.2)
is an algebra isomorphism. Proposition 3.3 below shows that

E1E3---Epp_1lf C gfti
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from which it follows that the map defined on generators by
Xy > E1E3---Ez;_1-b+ B/l wheregp(X,,) =b+ Iy, (3.3)

is a well-definedR-module homomorphism,: Hg ,—27(q%) — B/ /B/*1. The map:
will allow us to produce, by passing to quotients, a cellular structureBénB/+1
corresponding to a cellular structure Bk ,—2(¢2). The cellular structure o/ /B/+1
will be used to refine the filtration (3.1), thereby obtaining a cellular basigfor, ¢).

The two propositions below are technical statements which will be important in later
calculations.

Proposition 3.3. Let0< f < [n/2] andb € B,_27(r,q). If i > 2f + 1, then
E1E3--- Eor_1bE; =0 mod B/ 1,
Proof. First note that
TiTi+1Ei TiaTy = °Ei 1 Ei TraTy = ¢ Ei 1 B Eip1 = ¢ Ei11,

from which it follows thatE; = g™ T, Ez>¢41T,F, wherev has a reduced expression=
$2f4282F 4182 £ 435242 - - Si—18i—28;8i—1 andm is the integerm = 4(2f + 1 —i). Since
b, E; andT, commute withE; whenevek <2f — 1,

E1E3---Epf 1bE; = qmbTv*ElEg -+ E2r41T, =0 mod g+t
which proves the claim. O
Proposition 3.4. Letw € &,,. If ())w = (k) and(i + L)w =k + 1, thenE; Ty, = Ty, E.

Proof. Forj=1,2,...,n, leta; = (j)w. In the first instance, suppose that< k + 1
for somej >i 4+ 1 and letm = min{j | a; <k + landi < j}. Then(m — Hw >
(m)w, so w has a reduced word beginning wit),_1; in particular w = uv where
U= Sy—1Sm—2Sm—3- -+ Si+28i+18; andl(w) = [(u) + I(v). Using the relationE; T; 1 T; =
Ti+1Ti Ei+1 We have

ET,=ET,Ty=ETy 1Ty 2--- Ti+2Ti+lTi T,

=Tp-1Tym—2 - - Tip2TivaTEi11Ty.

Now (i + v =k, (i +2)v = (k + 1) andl(v) < I(w) so, by induction it follows that
Eit1Ty =T, Ex.

In the second instance, suppose that k + 1 whenevey > i + 1. If a; < k whenever
j <i,thenk =i andw = uv whereu is a permutation ofl1,2,...,k — 1} andv is a
permutationonk+2, k+3, ..., n}; in particular?,, commutes withE. Suppose therefore
thata; > k for somej <i and letm = maxa; | a; > k andi > j}. Thenw has a reduced
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word ending ins,,—1 and we can writaw = uv wherev = sgsg4+18i4+2 - - Sm—25m—1 and
l(w) =1(u) +1(v). By the relation?; 7; 11 E; = E;117; Ti+1,
TwEr =T TyEx =T, T Tx+1Tkv2- - - Tin—2Tm—-1Ex
=TuEx+1Tk Tx+1Tkv2 - - Tin—2Tm-1
= TuEk+1Tv = Ei Tu Tv

where the last line follows by induction using the fact tha) < [(w). O

We now take for each & f < [n/2] a cellular basigé’r, Ay) for HR,,,_zf(qz); that
is for each f, the collection¢s = {c}, | v,u € Is(X), r» € Ay} is a free R-basis for
Hr n—27(q?) satisfying the following conditions:

(1) the maps:ch, > ck, is an anti-involution ofi{ g ,—2/(¢?); we assume that the map

* coincides with the anti-involution determined By — 7,,-1 and,;
(2) givenr € Ay, ueZ; andh € Hg 27 (q?), there exists, for s € Z, (1), such that

cﬁuh = X:agcﬁ5 mod A* (3.4)
S
for all v € Zy(%), where A* is the R-module generated by the elements, for
vp,ueZr(d) andu > A.
The Murphy basis forHR,n,zf(qZ) given in Theorem 1.2 is one possible choice for

(65, Ay). Forr e Ay, we letA* be theR-submodule oﬂiR,,,,zf(qz) generated by the
elements

{c’,fu ‘ v,ueZ(n) andu > A},

so thatA* = 3
Bf/Bftlas

-2 A", To eachcyy = ¢}, in € associate an element, = by, in

bow = t(cou) = E1E3-+- Eop_1- Gou + B/ 1
where: is defined by (3.3), so that,,, is a coset representative foKc,,) whereg is the

isomorphism (3.2). Note that if = [n/2], thenHR,n_zf(qz) = R can be given a formal
cellular structure witd y = {A}, Zr (1) = {v}, cyv = 1g and consequently,

byy := E1E3--- Eof 1.

Since‘Bf/‘BfJrl is a invariant under the left and right actions§f(r, ¢), we define
B* € B/ /B/*1 to be theB, (r, ¢)-bimodule generated by the elements
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{bou 0, ueTr(n) andu > A}
andB* € B/ /B/*+! to be theB, (r, ¢)-bimodule generated by the elements
{bow |0, ueTyr(n) andu > A}.

For a fixedv € Zp(), we denote byC’ be the rightB,(r, ¢)-submodule ofB*/B*
generated by

{bow+B* |ueZ ).
The following statements are gasonsequences of the definitions.
Proposition 3.5. Let0< f <[n/2] andi € A¢. Then

(1) B/ B/ =34, B
(2) B* c B o
(3) t(A") € B* and((A*) € B*.

Proof. By assumption there arg,, € ¢y suchthat,, , 2 =3 cj,, whence

E1Es - Eapa+ B/ 7= u(egy) = iy

which proves the first item. The statements (2) and (3) follow directly from the
definitions. O

Inva sequence of lemmas below we estabkshases for each of th8, (r, ¢)-modules
B*, B andC} expressed, in each case, in termsfand 2, wherev = vV, v@) is
the bi-partition withv® = (2/) andv@ = (n — 2f).

Proposition 3.6. Suppose thad < f < [n/2], A € Af, v,u e Zy(2) and letv be the bi-
partition with v@® = (n — 2f). If w € 2, 2f < (k)yw™! and 2f < (k + w1, then
bouTwEr =0 modB/*1.

Proof. Noww € 2, so (i) w =k and(i + 1)w = k + 1 for somei with 2f + 1< i < n.
By Proposition 3.4, we havg,, T, Ey =byuE; Ty SO, from Proposition 3.3, it follows that
the termby E; T, lies in the idealB/ 1. O

Lemma3.1. Let0 < f < [r/2], andv be the bi-partition withv® = (n —2). If A € Ay,

ueZr(d) andw € &,, then there exist € Zr (1) andas € R determined by1.7) such
that

quTw = Za5bng mod EA
s

forallveZs(2).
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Proof. Observe thatl, € B,—2¢(r,q) € Bu(r,q). Let ¢y € By—27(r, q) be such that
¢ (cou) = Cou + 1. Sinced (X)) =Ty, + I and¢ is a homomorphism, we have

quTw = L(CUU)T = (El . E2f—1 . Ebu + Bf+l)Tw
=E1---Egf_1-GouTw + B ™ = t(couXu).

By (3.4), there exist, fors € Z(1), andh € A*, such that for alb € Zr(n),

teouXw) = ) ast(cos) +1(h) =) dsbos +1(h).

S

Therefore, by the inclusions (3) of &position 3.5, we have shown that for ale Z¢ (),
tcpuXy) = Za5b05 mod B*.
5

This completes the proof of the lemmar

Lemma 3.2. Let0< f < [n/2], . € Ay andv be the bi-partition witw® = (n — 2f).
If ueZy(1) andw € G,, then there exist elemenise &,, wheret’v is row standard,
together withus € R, for s € Z¢(1), such that

bouTw = ZasbusTv mod B*

5

forallveZy(2).

Proof. Suppose that the tableati” contains more than one entry. Iff2< j <n and
(J + Dw < (J)w, thenbyy Ty = bouT;Ts;u Wherel(sjw) + 1 =I(w). Repeating this
procedure, by Lemma 3.1, we may write

bouTw =bouTy Ty = Z asbysT,y mod B* (3.5)
seZ(A)

where(j)w’ < (j + L)w’ whenever ¥ < j < n, andas € R depends only on andv’.
Now suppose that*” is not empty. If 1< j < f and (2j — Dw' < (2j)w’, then
[(s2j—1w") +1=1(w"). Fromthe relatiorEy; _17»;_1 = qr~LE»_1 it follows that

-1
bosTy =bys TZi—lngi_lw/ =qr~ by Ts2i_1w’~

Repeating this procedure if necessary, we may rewrite each summand on the right-hand

side of (3.5) as
Zasbvs Ty = ‘]k”ik Zasbvs T,
S 5

wheret’v is row standard. This completes the proof of the lemna.
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The next statement is the first step in rewritihg, 7, as anR-linear combination of
termsby, Ty, Wherev € 2,,.

Proposition 3.7. Let1< j < f <[n/2l, h€ Ay, p,uecZy(}) andw € G,. If v is the
bi-partition with v@ = (n — 2f) and t"w is row standard with2j + 1)w < (2j — Dw,
then

bouTy if 2] +2Qw > 2j)w> (2j — Dw;
q*bouT, if 2)w > (2j — Dw > (2j + 2w;
buuTw = 2 2
q quTu + (q - 1)quTv
—q%(q%> = DbouTy  if 2j)w> (2j +2w > (2j — Dw,

where u, v and v' are given byu = s2;s2;4152j—152;w, v = s2;s2j—152;w and v’ =
s2j4+152j—152jw. Moreovert”u, t'v andt’v’ are row standard bitableaux.

Proof. Sincet’w is row standard and2; — Hw > (2j + L)w we use (1.2) to observe
that/(spj_152;w) = l(w) — 2. Letu’ = s2;_152;w and consider the following three minor
cases.

Case 1. Suppose that2j + 2)w > (2j)w > (2j — Dw > (2j + D)w; then it is verified
using (1.1) that(szjs2j+1u’) =1(u') + 2. From the relatiol®; T;+17; = g2%E;Ej+1,

2
Ej 1E2j+1Ty = Egj—1E2j4112jT2j 1T,y = q“E2j_1E2j+1E2;j
=Ej 1E2j11T2;T2j11Ty = E2j—1E2j11Ty
whereu = s2s52; +1u" andt”u is row standard.

Case 2. Suppose that2j)w > (2j — Dw > (2j + 2)w > (2j + D)w; then it is verified
using (1.1) that(szjs2j+1u’) =1(u’) — 2. Hence,

Ezj 1E2j 11Ty = E2j_1E2j11T2jT2j 1T,y = E2j1E2j4+1T2;T2j112j4+1T2; T,
= q2E2j71E2j+lE2j Toj1172;Tu = ¢ E2j—1E2j+1E2; E2j41Ty
:q4E2jflE2j+lTu

where u = s2;s2j11u’ and t"u is row standard, and we have applied the relations
q?EiEiz1 = EiTx1T; andE; Eix1 E; = E;.

Case 3. If 2))w > (2j + 2w > (2j — Dw > (2j + Dw, theni(szj11u’) =1@') — 1,
l(szju/) =lw)+1 andl(sojs2j1u’) =1(s2j+1u’) + 1. Thus
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Eoj 1E2j 11Ty = E2j 1E2j4112;T2j 1T,y = Ezj1E2j 111212411,
= E2j 1E2j11T2;[q*Ty + (¢° — )T — gr~(q® — 1) E2j11Ty/]
= Ezj_1E2j41[q°Tu + (¢° — )Ty — ¢*(¢* — 1) Ty/]
whereu = 5252 y1u’, v =s2;u’, v' = s2; 411’ andt’u, t"v andt”v’ are row standard. O
Corollary 3.1. LetO < f < [1/2] andv be the bi-partition with @ = (n —2f).If . € A

andw € &, andt'w is row standard, then there exist elements= R, for v € %, such
that

bouTy = Z aybou Ty
v

forallv e Zy(2).

Proof. Now the preceding Proposition 3.7 descelpecisely an algorithm which allows
us to reorder the entries 6fw while rewritingb,, T,, as a sum in the required formo

Example3.2.Letn =6, f =3 andw = (1, 3,2,4,6,5). Then

34
=|2|6
1|5

@

@ — (0), t

andt"? is the empty tableau.
Now apply the procedure given in Proposition 3.7, wita: 2:

boo Ty zqzbunTu + (q2 - 1)bUUTv - qz(qz - 1)bUUTv’ (3.6)
where
L 3|4 L 34 L 34
Py =15, %v=[1[6], ¢"v=[1]2
2|6 2|5 5|6

andt”(z)u, t”@v, @y are the empty tableau.
To expresd,, Ty as a sumZve% by Ty, One repeatedly applies Proposition 3.7 to
each of the terms on the right-hand side of (3.6), as in Example 3.3 below.

Note that in Corollary 3.1 we have expresskg, T, as a linear combination of
by, T, Where, for each, the sequencél)v, (3)v, ..., (2f — v is increasing. While we
could have equally specified, for instance, that the sequenee(3)v, ..., (2f — 1)v be
decreasing, our convention is consistent with the choice of coset representatives made in
Proposition 3.1.
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The following special case of Proposition 3.7, which shows that the subalgebra of
B (r,q) generated by the elemen{ts,, | w € B} stabilizesb,,, may be of interest in
its own right.

Corollary 3.2. Let1< j < f <[n/2], e Ay, v,ueZr(A) andw € &,. If t'w is row
standard,(2j — Dw =k, 2j)w=k+ 1land(2j + L)w <k, then

b T — bouTy if (2] +2w > k;

P TN o T, ik > (2 + 2w,
whereu = sp;s52;+152j—152;w, t'u is row standard and, k 4 1 are in the same row of the
bitableaut” .

Proof. Observe that if(2j — )w = k and (2j)w = k + 1, the third casg2j)w >
(2j+2)w > (2j —1)w of Proposition 3.7 cannot occur. Observe alsoihab; 152, -152;

interchanges th¢ andj + 1 rows oft'”. o

Example 3.3. Let n =6, f =3 andw = (1,3,2,4,6,5) as in Example 3.2. Then
Corollary 3.2, allows us to rewrite the expression (3.6) as

by Ty = qzbun T, + (CIZ - 1)bun Ty — 616(612 - 1)bun Ty

where
. 15 . 16 . 12
oYy =314, ¢eYw =[3[3, %' =[3]4
216 2|5 5/6

andt*?u’, ?w’, *?v” are the empty tableau.
Lemma 3.3. LetO< f < [1/2] andv be the bi-partition withv@® = (n — 2f). If A € Ay,

ueZy(x) andw € G,, then there exist elements, a; € R, for v e 2, ands € Z¢ (1),
such that

bnuTw = Zav ZagbngTv mod é)h
v S

forallveZs(2).

Proof. By Lemma 3.2 there are; € R, fors € Zr(), andu € &, such that”u is row
standard and

bouTy = ZaﬁbusTu mod B*

S

forall v € Zr(A). Now, if 0 < f then, Corollary 3.1 allows us to rewrite ealgh 7,, as
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bosT, = Za“ ZasbusTv mod B*
v S

wherev € 9, thus completing the proof of the lemmar

The next two propositions are technical statements which will play an important part in
establishing the multiplicative properties of our cellular basis.

Proposition 3.8. Let0< i < f < [n/2], w € 6, and suppose tha2i — 1)w = k and
Riyw=k+1Ifi <j< fandny==1, ¢ € {0, 1}, then there exist, € R, forv € &,,,
such that

Epj 1Ty, T5; 1Ty =) ayEzj1T,.
v

Moreover, the sum is overe G, with (2i — L)v =k and(2i)v =k + 1.

Proof. The proof of the proposition will then be ligspecting six possible cases and four
possible subcases. We first suppose that0.

Case 1. If ¢ =1 andi(szj—1w) > l(w) or if ¢ = =1 andl(s2j_1w) < [(w), then
Ezj,sz”j Ty 1Tw= Ezj,sznj T, wherev = sj_1w.

Case2.If e =1 andi(s2;—1w) <l(w), then

Ezj 1T}, T2j1Tw = E2j 1T}, [°Ty + (¢% — 1) Ty — gr (g% — 1) Egj T3]

= Ezj1T),; [4°Ty + (4% = 1) Tw] = 4" (% — 1) Egj 1T,

where v = s2;_1w and the last line is obtained from the relatidf; 17, E2j-1 =
(qr)"Ezj-1.

Case 3. If ¢ = -1 and/(s2j—1w) > I[(w), then we expres?r.?z‘jl_l in terms of7>;_, and
E3;_1 to obtain

Ezj 1Ty, Tyt T = q 2 Egj aT3,[T2j1 — (4% — 1) + (¢° — 1) E2j 1] T
= 61_2E2j71T2”j[Tv —(q® =) Tw]+q" 2" (¢* — 1) E2j_1T,
wherev = s7;_1w and the last line is again obtained from the relat@},sz"jEzj,l =
(gr)"E2j-1.

In each case above we have demonstrated how theZigrm can be eliminated from
the product. To complete the proof thfe proposition, we sﬁow that the temﬁj can be
similarly eliminated from the resulting expressions which are of the fdrmngij
wherew satisfies(2i — DHw =k and(2i))w =k + 1.
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Case 4. If n=1andi(szjw) > [(w) or n = —1 andi(s2;w) < I(w), then, as in the first
caseEzj 112 Ty = Ezj_1T, wherev = sp;w.

Caseb. If n=1andl(sz2;w) < [(w), then

Eaj 1T2;Ty = E2j 1[q*Ty + (¢° — 1) T — qr~ (¢ — 1) E; T, ]

= E2j-1[¢°Tu + (¢° = V) Tw — (4 ¢* = YT T2jaTs]  (3.7)
wherev = s2;w and the last line follows from the relation
Ezj 1Ep; = q72E2j—lT2jT2j—l-
Now from Case 5, two subcases arise.

Subcase5A. If I(s2j—1v) > I(v), it follows thatl (s2;s2;-1v) > I(s2;—1v), SO (3.7) becomes

Ezj1To;Ty = Eijl[quv +(¢® = 1) Ty — (gr)Yq? — 1)7y]
wherev' =sp;s0;_1v andl(v') =1(v) + 2.

Subcase 5B. If I(s2;—1v) < I(v), then (3.7) becomes

Ezj1T2;Ty = E2j—1[quv +(¢% - 1)7Ty] - (gr) g% — 1) E2j_1T>;
x [q°Ty + (4% = 1) Ty — qr(q® — 1) E2j-1Ty]
= E2j-[a°T + (¢4~ 1)T2]
—(qr)"Hq? — 1) E2j—1T2j[¢*Ty + (¢* — 1) T,]
+ r—z(qz - 1)2E2j—lT2jE2j—lTv/
= Eoj a[q?Ty + (4% = )T +qr Hq? - 1)°Ty ]
— (g g% = 1) E2j-1T2[¢%Ty + (¢° = 1)T]
= Epj1[q?Ty + (4 = V)[L—r (g — ¢ D] Tw +qr *(¢? - 1)°T,]
—qr~H(g? = 1) EgjaTo; Ty
wherev’ = s7;_1v and we have exploited the relati@; _172;E2j_1 = (gr)E2j_1.
Now the only term in the last expression tBp;_17>;T,, above which containg;; is

the producttz;_17>;T,; we note that(sz;j_1v") > I(v’) so this term can be disposed of
by applying either Case 4 whé,;v') > [(v') or Subcase 5A whehv') > I(s2;v").
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Case6. If n=—1andl(s2;w) > I(w), then
Egj 1Ty Ty = q 2Ezja[Ts; — (¢* = 1) + (¢ — 1) E2; ] T
= quEijl[Tv - (tIZ - 1T, + 6172(612 —1T2;T2j-1Tw] (3.8)

wherev is given byv = s2;w and we have used the relati@n;_1E2; = ¢ 2E2;—1T2; T2 1.
We again have two subcases.

Subcase 6A. If [(s2j—1w) > [(w), thenl(szjs2;j_1w) > l(sz2j—1w), by (1.1); thus (3.8)
becomes

E2j-1Ty; T =g 2E2j—1[To — (¢* = )T+ ¢ %(¢° = ) Tv/]
wherev’ = §2j852j—1W.
Subcase 6B. If I(s2;—1w) < I(w), then (3.8) becomes
Ezj T3 Ty =g %E2j-1[T, — (¢° = 1)T.]
+472(q? = )12;[¢°Tu + (¢4° = )T — gr~*(¢° — 1) E2j-1T.]
_ 2
=9 2E2j—l[Tv - (qz - 1)Tw - qz(qz - 1) Tu]

+97%(q? - V) 12[¢%Tu + (¢% - 1) T]
whereu = s2;_1w. To complete the proof of thproposition, we note thaz;_17>; T,
and Ez;_17>;T, can be eliminated from last expression, as was done in Case 5, without

reintroducing any terms involvingjz;l. O

The next proposition is similar to Proposition 3.8 except that here we work modulo the
ideal B/ 1,

Proposition 3.9. Let0<i < f < [n/2], w € &, and suppose tha2i — 1)w = k and
Riyw=k+1.1f 2f < j <n ande = £1, then there exist, € R, for v € G,,, such that

E1E3--- Ezf_leT = ZaUE1E3- - Eop Ty mod B/ 1,
v

Moreover, the sum is overe G, with (2i — L)v =k and(2i)v =k + 1.
Pr oof.

Casel. If e=1andi(s;w) > I(w) ore =—1 andl(s;w) < I(w), theanTw =T, where
v=1s;w.
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Case2.If e =1andi(s;w) <I(w), then

E1E3---Ezf 1T;T,
= E1E3-- Ezr_1[q°Ty + (4> = )T — qr~(¢? — 1) E; T, ]
=F1E3--- E2f—1[q2Tv + (q2 — 1)Tw] mod B/ 11

wherev = s;w and the last line folls from Proposition 3.3.

Case3.If e = -1 andi(s;w) > I(w), then, by Proposition 3.3, we again have

ErE3--- Ezp T 'Ty
=g *ErE3- - EapaT) — (2 = 1)+ (¢* — D E Ty
=q 2E1E3-- Ezy1[T, — (¢* — 1)T,,] mod B/
wherev =s;w. O

We now consider termB1E3- - Eo 1Ty Ex for (k)w™! < (k + Dw=1 < 2f.

Lemma 3.4. Let0 < f < [n/2] and v be the bi-partition withv® = (2f — 1). Suppose
thati € Ap, ue Zp(2), andw € %,. If (Hw! < (k + Hw=t < 2f, then there exist
ay € R, forv € 9,, such that

bouTwEr = ZavbuuTv (3-9)
v

for all v € Zr(A). Moreover, in the expressidi3.9), a, = 0 whenevek andk + 1 are not
in the same row of* v.

Proof. In the bitableaut = t'w, k andk + 1 occur as entries in the same row t¥9

precisely when2i — 1)w = k and(2i)w = k + 1 for somei with 1 <i < f. Thus, when
k andk + 1 are in the same row af", by Proposition 3.4, we have

bouTwEx =bouE2i 1Ty = xbpyTy.
Now suppose thali)w =k and(p)w =k + 1 where 1< 2i < p < 2f. Then

Ep—1nEp-2 £2i4+1
bouTyEy = bnquil Tpiz te TZiJI::—L T, Ex

whereu = 82i+182i+2 - Sp—1W and

8‘_[1 if (Hw>k+1,;
771 -1 otherwise
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forj=2i+1,2i+2,..., p—1.Butsincg2i)u =k and(2i + 1)u = k+ 1, Proposition 3.4
implies that

Sp 1pEp-2 £2i+1 ‘917 1pép-2 E2i+1 .
bouT, p— lTp 2 I TuEk = bouT p— lTp 2 Doy Eailu.

Now Ep_1 is a factor of by, which commutes withT; whenever;j = 2i + 1,
2i+2,...,p—1,sousing the relation? Ep;_1 E2; = Eo;_1T2; T2i_1 We see that

Ep—1pEp-2 £2i4+1 Ep—1anEp-2 £2i+1 .
bm‘T -1 Tp72 T21+l T, Ex —quT -1 Tp72 ) T21+l EoiTy

-2 Ep—-1 -2 €2
=q “bou ppl Tp 2 Tz,:i T2i Toi1T,.

Since(2i — Vu < k = (2i), itis verified using (1.1) that(sp; s2; —1u) = 1 (u) + 2; thus

bouT, 3 T 5 Tyt EaiTy = q 2bou T, T, -+ Ty Toi Toi Ty

p—1"p=2" 2i+1 p—1"p=2" 2i+1
_ =2 Ep—1pEp-2 £2i4+1
=q “bouT," T, 5 - T 1 Tw

whereu’ = sp;s9i_1u andl(u’) = l(u) + 2. Since(2i — Du’ =k and (2)u’ =k + 1,
Proposition 3.8 allows us to write

& &
quT P 11Tp1) 22 2512_,:11T Zav/buuT ,

wherev' € &,, k, k + 1 are entries in the same row g’ andt*® v’ = ¢ w for eachv’.
Thus, we may use Corollary 3.1 to rewrite each of the tesmg, in the last expression
asasum

bouTy = ZavbvuTv
v

wherev € 2, andk, k + 1 are in the same row af®v.

To complete the proof of the lemma, suppose @2at— 1)w =k, and(p)w =k + 1
where 0< 2i < p < 2f.Nowsincew € %,, we must have = 2i +1; therefore](sy;w) <
[(w), and applying Proposition 3.4 together with the relati»n_175; E2i—1 = (qr) E2i 1,

bouTyEx = bouToi Ty Ex = bou T2 E2i 1Ty, = (qr)boy Ty

wherev = sp;w, (2i — 1)v =k and(2i)v = k + 1. Using Corollary 3.1, as before, the term
by, T, can be rewritten as a sum of the form required by the lemnma.

In the next example we illustrate the above calculationafer6 and f = 3.
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Example3.4. Letn =6, f = 3 andw = s254. Then

[N
w

@ = (0), weE D,, Y =2

a1

and *®w is the empty tableau. We let = s3sqw and proceed as in the proof of
Proposition 3.8;

booTywE3= E1E3EsT E3= E1E3E5T4T3_1TME3
= E1E3EsTaTy “EpT, = E3EsTaTy *E1EoT,,

and by the relatior&; E41 = inEka+lTk,
booTwEs=q 2E1E3EsTaTy *ToThT, = g 2 E1E3EsTaTy * Ty

where

3[4
eV =[1]2
56

andt’®u’ is the empty tableau. NoWssu") =I(u') + 1 so we use the relations
-1_ -2 —2(.2 _
T3 =q “T3+q “(¢°—1)(Ez—1) and E3T3E3=(qr)E3
to obtain

booTwEs=q *boo[TaT3T, + (q° — 1) TuE3T, — (¢° — 1) TuT,
=g *boo[TaT3Ty + qr(q% — V)T — (¢% — 1) TuTy .

Now, sincel (s4s3u’) =1(u') + 2 andl(squ’) =1(u') + 1, we have shown that

bowTwEs=q *bouTy +q73r (4% = VbooTw — g~ q? — Vb Ty  (3.10)

where
. [34 ) 3[4
Yy =25, v =[1]5
16 2/6

and t”(z)v, @y’ are the empty tableau. Using Corollary 3.1, the right-hand side of the
expression (3.10) may be rewritten as
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booTyE3 = qi4bvnTv” + C]"(qz - 1)bun - 474(512 - 1)bnv Ty

where
. 16 . 1[5
Yy =25,  ¢Pw =[2]6
34 3|4

and t”(z)v”,t”(z)w’ are the empty tableau. We have therefore expressed the product
boowTwE3asasund_ a,byo T, Wherev € 2.

The next lemma is vacuous in cage= [n/2] andn is even.

Lemma 3.5. Let0 < f < [1/2], andv be the bi-partition withv® = (n — 2f). Suppose
thatr € As,ueZr(A) andw € 2,. If (Hw™1 <2f and2f < (k + w1, then there
existay, as € R, fors e Iy (1) andv € 9, such that

bouTwEr =Y ay Y _asbosT, mod B* (3.11)
v 5

for all v € Z¢ (). Moreover, in the expressidB.11), a, = 0 whenevek andk + 1 are not
in the same row of* v.

Proof. Suppose in the first instance th& — 1)w = k and that(p)w = k + 1 where
1<i<fand2f < p<n.Then

bouTwEr = bou, T," ' T, 5 -+ Ty Tu Ex

Ep—1p€p-2 £2i
= bnuTPil Tpiz T T2i2’ E1T,

= (qr)2bouT, T, - Ty T,
whereu = 535241 - - Sp—1w, (2i —Du = k and(2i)u = k+ 1. Now Proposition 3.8 allows
us to rewrite the above expression as a sum

Ep—1pEp-2 £2f41
bouTwEy = E au/quTpil Tpiz tee T2f+1 Ty
u/

where(2i — 1)u’ =k and(2i)u’ = k + 1 whenever,, # 0. By Proposition 3.9, each of the
summand@uuT;Z’llT;f’z2 e T;;fllTu/ in the preceding can in turn be rewritten, modulo
the idealB/*1, as a sum

b““T;Tll T;TZZ e T;;{:ll Ty = Zav/buuTv’ mod B/ *1

v
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wherev' € &,, (2i — 1)v' =k and (2i)v' = k + 1. Finally, sinceB/*1 C B*, using
Lemma 3.3 to rewrite each summand in the preceding expression, we have shown that

bouTwEr = Z ay Z ashpsT, mod B
ve?, sely(n)

wherea, anda,, do not depend on, anda, = 0 whenevek, k + 1 are not in the same
row of t"v.

In the second instance suppose tt#jw = k and(p)w =k + 1 where 1<i < f and
2f +1< p <n.Then, fromthe reIatiquEz,»,lEz,- = Ey;_1T»;To;_1, we have

Ep—1pEp-2 £2i+1
bouTwEx = bouT, T, - Ty T, Ey

Sp 1€p-2 €2i41 .
= bouT p— lTp 2 Ty Eailu

-2 Ep—1anEp-2 £2i41
=4 “bou ppl Tppz TZi:EL T2 Toi 1Ty

whereu = sp;1152i42 - - sp—1w. Let u' = sp;80;_1u; using (1.1), it is verified that(u’) =
[(u) + 2 and therefore,

-2 Ep-1pEp-2 €241
buuTwEk = buuT Pl Tppz T2[—l|:;. T/

Since(2i — Du’ =k and(2i — 1)u’ = k + 1, we may write, using Propositions 3.8 and 3.9,
and Lemma 3.3, the preceding as a sum

bouTwEx = Z ay Z asbysT, mod B
ve?, self(d)

of terms of the form required by the lemman

We now have the necessary ingredients to dive' B/ ! a filtration by B, (r, ¢)-mo-
dules. Recall thaf'? is the right53, (r, ¢)-submodule oB* / B* generated by, + B* for
ueZr(r).

Proposition 3.10. Let0< f < [1n/2] andv be the bi-partition withv® = (n — 2f) and
supposethat € Ay.

1) fweP,uelyr) andb € B,(r, g), then there exist,, as € R, for v e 2, and
s € Ir(A) such that

bouTwb= > ay Y asbysT, mod B*
veP, sely(h)

forall v e Zy().
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(2) The elements
{bouTw +B* |ueZ (), we )

generateC} as anR-module.
(3) If v,5 € Z7(1), thenC} andC2 are isomorphic as righB, (r, ¢)-modules.

Proof. Letw € 2, andt = t"w. The preceding lemmas show tligt, T, Ex andby, T, Tk
can be expressed as a sum of the form stated in item (1) above wheakgwer <
k + Dw= L If wt> (k+ w1, thenk,k + 1 are not in the same row dfor
both in the first column of Y. Thusws € 2, and by (1.1),T,, = Ty, Tk SOboy Ty Ex =
bouTws, Tk Ex = qr Yoy Tys, Ex.. Now, since(k)wsy < (k 4+ Lywsy andwsy € Z,, we can
expressyy Ty, Ex as a sum of the required form. Similarly(if)w=! > (k4 L)w™1, then

bouTy Ty = qzbvuTwsk + (‘]2 - 1)buuTw - qril(qz - 1)bnuTwsk Ey
where we have shown that each term on the right-hand side can be expressed in the required
form.
The second and third items of the lemma now follow directly from the first
statement. O

Lemma 3.6. LetO< f < [1/2] andv be the bi-partition withv® = (n — 2f). If A € Ay,
then the set

[TbouTy + B* |0,ueZ;(2) andw, v € 2y}

generates3* /B* as anR-module.

Proof. SinceHR,n,zf(qZ) is finite dimensional, we initially take. to be a minimal
elementin(A r, <), in which caseB* = {0}. Now letv € Zr(n). Since

{bnuTu + B ‘ ueZs(r) andu e 91)}

generates,‘é as a right,, (r, ¢)-module, whenevel € 5, (r, g), we have

(bTufbnuTv)* = Tv*bunwa* = Z ay Z asTv*busTu'
ue?, sely(n)

Therefore, using the anti-involutiononce more,

bTibouTo= Y ay Y asT,bsuTy.
ue?, sely(n)
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Having shown the lemma to hold true for any minimal element(ihy, <), using
Proposition 3.10 and arguing by induction gnthe result now follows. O

It is a consequence of the proof our next propoision that theR-algebra homomor-
phismo of Proposition 2.1 is in fact aR-algebra isomorphism.

Proposition 3.11. Let0 < f < [1n/2] and letv be the bi-partition withv® = (n — 2f). If
(¢, Ay)is acellular basis forHg ,—2 (¢®), then the collection

{ThbouTy |0, ueZr(), 1€ Ay andw, v € %, }
is a freeR-basis forB/ /B/*1,

Proof. Fori e Ay andv,ueZy(2), letay, € R, forw € &, be elements satisfying

A E: w
Cou = anuXw'

weS,

Then, for eaclw, u € Zy(1), the elemenb,, € B/ defined by

bouw=E1E3---Ezf_1 Z agy T (3.12)

wes,

will satisfy i(c},) = boy + B/ *1; that ishy,, will be a coset representative fog, in B/ .
Now observe that, sinca/ /B/*1 =3, _, B*, the collection

{TobouT, |0, ueZf(A), 1€ Ay andw, v e %}
generate/ /B/*1 as ankR-module by Lemma 3.6. Therefore, the collection

€ = {TubouTy |0, ueZr(h), A€ Ay, v,we F,, 0< f < [n/2]}

will generateB3,(r, g) as anR-module. To prove the Proposition, it will now suffice to
show that the elements &f are linearly independent oveé.

To this end, letB, (¢, 7) denote the specialization &, (r, g) to x = C(g,7) via the
specialization homomorphisendefined in Proposition 2.1. Sin& generate®, (r, g) as
an R-module ands is surjective, it follows that (¥)) generate, (g, 7) as ark-module.
Thus, noting that?’| = |0 (¥)|, the linear independence @f over R will follow once we
have shown that (%) is linearly independent ovar. Counting we have,

[n/2] ) ) [n/2] @2f)! AN
\a(%)\=;|%| D1z =Z<2f.ﬂ) <2f) (n—2)!

AEAf f=0
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where, for 0< f < [n/2], v is the bi-partition withv® = (n — 2f). Now each summand
in the latter expression simply evaluates the number of Brauer diagrams fvitorzontal
bars. Thus, from Theorem 2.1 it follows thiat(¢")| = dim, (B, (g, 7)) which completes
the proof of the lemma. O

In the course of proving the previous Proposition 3.11, we showed the collection
G = {TwbouTy [0, u€Tr(M), he Ay, v,we Z,, 0< £ <[n/2]}
to be a freer-basis fori3, (r, ¢). We now wish to show that, with an appropriate choice of
index set and partial ordeg; is in fact a cellular basis faB,, (r, ¢) in the sense of Graham

and Lehrer.
We set

[n/2]
A= U Af
f=0

and giveA a partial order by writingh < p in (A, <) if either (i) 2 € Ay andu € Ag
wheref < gor, (i) A, pe Ayandr < pin (Ay, <). Foreachh € Ay, Z(3) is the set of
ordered pairs

I ={(v,w) |veZs() andw € %, }
wherev is the bi-partition withv® = (n — 2f). Write
bo,wys.uy = Tjibus Ty (3.13)
forallv,s e Z7(1) andu, w € 2,. Let B* be theR-module generated by the elements
{B(o,wy,w | fOr (0, w), (u, v) € Z(1) andp > 1}.
We are now able to state and prove the main theorem of this section.

Theorem 3.1. For 0< f < [n/2], let (6%, Ay) be a cellular basis for the Iwahori-Hecke
algebratg ,—27(q?). Then the collection

= {b(o,wy,v | fOr (v, w), (u,v) € Z(») andxr € A}
is a free R-basis forBB, (r, ¢). Furthermore, the following hold.

(1) TheR-linear map determined by, w)(u.v) — Du.v)(o.w) FOF @ll by w)u.v) € € is an
anti-involution of B, (r, q).



446 J. Enyang / Journal of Algebra 281 (2004) 413—-449

(2) If A€ A, (u,v) € I(A) andb € B, (r, q), then there exist(s,4) € R, for (s, u) € Z(A),
such that

(bo.wyuw)b = Z a(s.uyb(o.w)(s..y mod B
(s,u)eZ(X)

forall (v, w) e Z(A).
Consequently#’, A) is a cellular basis foi3,(r, q).

Proof. By Proposition 3.11, we know th&t is anR-basis for3, (r, g). Sinceé(n,w)(u,v) =
T*byyT,, We observe from the definition df,, given in (3.12), that the map defined
by T, — T,-1, E; — E; is an algebra anti-involution a8, (r, ¢) which, applied to the
basis?’, Mapsh(v.uw)w.v) — bau.v)(v.w)- HENCe we have the first item.

The second item is now a simple restatement of Proposition 3.40.

4. A Murphy basisfor the B-M-W algebras

As an application of Theorem 3.1 we use the cellular basis constructed by Murphy
in Theorem 1.2 to give an explicit cellular basis #j(r, ¢) indexed by bitableaux. If
0< f < [n/2], we identify Hg,_27(¢g?) with the subalgebra otz ,(¢%) generated
by the elementqT; | 2f < i < n} and setHg,—27(¢g% = R when f = [n/2]. Let
Ap={r|rFn—2f}andZs(x) = Std(»). Write

My = {myy | u,0 € Std)},

where

Myp = T;(u)mk Td(u)

and forx € Zy (1), m,, is the element

my = Z Ty. (4.1)

U)EG)L
Then(.#y, Ay) is a cellular basis fot g ,—2(¢?). Define
A={r|atn=2ffor f=0,1,...,[n/2]}

and extend the dominance order foby writing A < u if either (i) A =n — 2f and
i n—2g wheref < g or, (i) 1, 1 are both partitions of —2f andY"*_; ; < Y°_, i
forall k > 0.

The cellular basis fo3,(r, q) will be indexed by ordered pairg(1) = {(v, w) |
v eZp(r) andw € 2,} wherev is the bi-partition withv® = (n — 2f). Each pair
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(v, w) € Z(1) corresponds to a uniquebitableau
(b,w) < t= t)‘d(n)w
whered (t) = d(v)w € 25 and each column af? is an increasing sequence read from top

to bottom (cf. Proposition 3.2 andkBmple 3.1). Thusfor a partitionA -=nrn — 2f, it will
be convenient to identiff (1) with the bitableaux

T = {A-bitableauxt with d(t) € 2, and each column ctfz)r}‘

an increasing sequence read from top to botto

We now set

by:= ) T,-Ei1E3---Ezf1

weS;
and fori-bitableauxv, u € Z(1) define
Eun = Td*(u)E)LTd(U)
Let B* be theR-submodule of3,, (r, ¢) generated byby, | v, u € Z(1) for > A}.

Theorem 4.1. For 0 < f < [n/2], let (#;, Ar) be the Murphy basis for the lwahori—
Hecke algebrai{g ,—oy (qz). Then the collection

M= {Z;nu |b,ueZ(x)andx e A}
is a freeR-basis forBB, (r, ¢). Furthermore, the following hold.
(1) TheR-linear map determined by
Z;nu = Z;uu

for all byy € . is an anti-involution of3, (r, q).
(2) fAe A,uel(d) andb € B,(r, q), then there exist; € R, for s € ¢ (1), such that

boub = Z ashys mod B*
seZ(\)

forallveZ()).

Consequently.#, A) is a cellular basis fo3,,(r, q).
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5. Specht modulesfor the B-M-W algebras

In this section we specialize to the B-M-W algebBa(7, §) overx = C(#,q) and
construct for each € A, a modules* which will generalize the classical Specht module
from the representation theory of the symmetric groups. Let

M = {131,u |b,ueZ(x) andie A}

be the specialization of the Murphy basis 1#8(r, ¢) given in Theorem 4.1. Fore Ay,
let N* be thex-module with basis

{Ebu | U,UEI(/L), H‘E)"}

andN* =Y., N*. Defines* to be the rights, (7, §)-submodule ofN* /N* generated
by N* + b, . Being isomorphic to the right cell modul&* has ac-basis

{]\V/)L +l;ATd(u) | v EI()\)}.

Forv € Z(1), let b, denote the elemem” + m; Ty, in S*. As in Lemma 1.3, there is a
symmetric bilinear forn{, ) : $* x §* — R defined by

(o bullor = by buy. mod N
for all bitableauxw, u € Z(1). Since(, ) is associative,
rads* = {b € §* | (b,b')=0forall b’ € $*}
is a B, (7, g)-submodule ofs*. Naturally, we defineD* to be the rightB, (7, §)-module
S*/radS*. We now have the following consequences of Theorems 1.4 and 1.5 respectively
(see also [13]).
Theorem 5.1. The set
{D* | » a partition ofn — 2 such thatD™ # 0}
is a complete set of non-isomorphic absolutely irreduci®)é, g)-modules.

Theorem 5.2. The algebraB, (7, ¢) is semisimple if and only ib* = $* for all » € A.

Example 5.1. Let n = 4. Corresponding tgf = 2 is the partitionv® = (0). In this case
thex-moduleN" is spanned by the elementis E37,(,,) whereu is one of

(GE) (za-) (2fE3)
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Corresponding tof = 1 are the partitions. = (2) and u = (1,1). For » = (2), the
x-moduleN* is spanned by element (1 + T3) T4 Whereu is one of the bitableaux

(2[2)[3[4]).  ([3][2[4).  ([2[3].[2]4)).
(L[4][23).  (241[23).  ((3[41[1]2)).

For the partitionu = (1, 1), N* is spanned by17,(,) whereu is one of the bitableaux
3 2 1
(=d) (E=E) (@4E)
2 1 1
(). (z95) (EE)

Sincev > A > u, we see that a®, (4, 7)-modules,s¥ = N, $* = (NY + N*)/N" and
SH = (NV 4+ N* 4+ NH*)/(N” + N*).
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