
An Intmatlmal Joumal 

computers & 
m8thematics 
m- 

PERGAMON Computers and Mathematics with Applications 45 (2003) 1739-1748 
www.elsevier.nl/locate/camwa 

An Error Bound for the MAOR Method 
TING-ZHU HUANG AND Fu-TI LIU 

Department of Applied Mathematics 
University of Electronic Science and Technology of China 

Chengdu, Sichuan, 610054, P.R. China 
tzhuangQuestc.edu.cn 

(Received September 2001; accepted October 2001) 

Abstract-suppose Ax = b is a system of linear equations where the matrix A is symmetric 
positive definite and consistently ordered. A bound for the norm of the errors sk = I - xk of the 
MAOR method in terms of the norms of 6k = zk - zk-’ and 6&l = zk+l - xk and their inner 
product is derived, 

lkkll:: 5 $ { (I( wl - l&2 - I)/ + bl(Y -m2)1d)2 llskII; - 204 - l&2 - 1)(6k,bk+l) 

+ 21w1(7 -~Z)~~L:~~~k~lZ~~~k+1~~2 + Ilak+l\i;}. 
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1. INTRODUCTION 

In order to solve linear systems 

Ax = b, (1.1) 

where A is an n x n real nonsingular matrix, the modified accelerated relaxation (MAOR) method 
was proposed. If the diagonal elements of the matrix A are nonzero, let the matrix A have the 
splitting 

A=D-CL-Cu=D(I-L-U), 

where L = DelC~, U = D-‘Cu, D = diag(A), CL and Cu are strictly lower and upper 
triangular matrices of A, respectively. In [l], a class of the MAOR method was defined whenever 
the matrix A is a GCO (p,q)-matrix. For the two-cyclic matrix A, the iterative scheme of the 
MAOR method is defined by 

xk+’ = Lfi,rx” + &J’,b, k = 0, 1,2,. . . ) (1.2) 
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where Q = diag(wili,wsIs), ~1,~s # 0, l? = diag(yiIi,TsIs), and the MAOR iterative ma- 
trix Ln,r is defined by 

Lfl,J = (D - rcp[(I - R)D + (fi - l-yCL + nc,,] 

= (I - rL)-l[I - i2 + (c2 - r)cL + my, 
aPn,r,b = p - rcL)-lnb = (I- rL)-W1m. 

It is easy to show that the MAOR iteration is independent of yr so that we can denote the 
iterative matrix by Iwl,w2,y, i.e., the MAOR method can be defined by 

xk+’ = J&U&~ + @‘wl,wz y b, , > k=0,1,2 ,...) 

where the iterative matrix L,,,W2,7 is defined by 

L w1,w2,y = (I- yL)-V - i-l + (w2 - Y)L + WlU], 

and 
cp wl,wz,y,b = (1 - -&)-‘D-‘flb. 

When the parameter y equals wg, the MAOR method reduces to the MSOR method (see [2, 
Chapter 81 and the iterative matrix is denoted by L,,,,, ; i.e., 

L wl,& =(I-w~L)-yI-s2+wJJ]. 

Let B = L + U, where B is the Jacobi iterative matrix, let x be the solution of (l.l), and let 

sk =x-x’, Sk = xk -Sk-i. 

Then, 

Sk+1 = Lw,,wz,-+k, bk+l = L,,,q$k, &k = (1 - LLLJ~,w~,Y)-~ Lw,,w&k. 

Assume that the matrices A and B satisfy the two conditions: 

(Al) A is symmetric and positive definite; 
(A2) A is consistently ordered and B is symmetric. 

In view of (Al) and (A2), we can assume that the matrix A has the form 

[-: -ST]. 

The corresponding Jacobi iterative matrix B is 

0 ST 

[ I s 0. 

We suppose that matrix A satisfies the conditions (Al) and (A2), and denote the eigenvalues 
of B by ,ui, i = 1,. . . ,n. If all pi are real, set 

I = i$$4, I = i~~~,{Pi). -- -- 
Obviously, if A is positive definite, then /.Q are real, and 1-1 < 0 < ii. 

- Now, we state some results of the MAOR method. 

LEMMA 1.1. (See 111.) Let A be a Hermite positive definite matrix. Then, the MAOR method 
converges if the parameters ~1, ~2, y satisfy either 

0 < Wl I w2 i y I 2, w2 < 2, 

LEMMA 1.2. (See 131.) Let eigenvalues of L,,,,,,, and the corresponding Jacobi iterative ma- 
trix B be, respectively, {X} and {,D}. Then, (A + w1 - 1)(-y + w2 - 1) = Wl(W2 - y + rX)p2; 

i.e., 

x2-(2-w1-w2+yw1p2)X+( Wl - l)(wz - 1) + Wl(-y - w&2 = 0. 
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2. EIGENVALUES AND EIGENVECTORS OF Lw,,w,,y 

From this section to the end, we only suppose that the assumptions (Al) and (A2) are satisfied 
and the MAOR method is convergent. Further, without loss of generality, we can assume that S 
is a nonsingular matrix of order m = n/2. From [4] it is known that the eigenvalues of B are 
related by 

-1 < -pr I --/-Q I . . . 5 -pm < 0 < pm I . . . I pg < p1 < 1. 

Let 
z!‘) 

zi = ( 1 &I ’ 
i=1,2 ,..., m, 

z 

be the eigenvectors of B corresponding to pi. Then, 

Z!‘) 
gi= z ( 1 _p ’ 

i=1,2 ,..., m, 
z 

are the eigenvectors of B corresponding to -pi. 
The following lemma is given in [4]. 

LEMMA 2.1. (See 141.) 

(p#) = (&$)) = ;, i= 1,2 ,..., m, 

and 
(2!1),~~1))=(212),212))=0, i#j, i,j=1,2 ,..., m. 

By Lemma 1.2, we have 

Xi=~(ywl~f-Wl-W2+2+~), i=l,..., m, 

xi = f 
( 
~ywr/$ -WI-W2+2-a), i=l ,..., m, 

where Ri = (yw~p~+w~-w~)2--4w1p~(yw1-w2), i = 1,. . . , m. Now, we construct the eigenvalues 
and eigenvectors of L,, rW2 ,r. Let 

vi = ti if Ri # 0, (2.1) 

where 
xi+wr-1 xi+wr-1 

OIi = 
w/-h ’ 

ij( = 
WlPui ’ 

i = l,...,m, 

or 

(2.2) 

where 

Vi = Jz l+Jz if Ri = 0, 

Pi = 
YWrI.LP + WI - W2 WlPi 

2Wlcli 

) &=‘= 
2pi ywr$ + WI - w2 ’ 

i=l,...,m. 

When B satisfies Assumption (A2), L,,,,,,-, is given by 

L (1 - w)l WIST 
w ,w 87 = 

(w2 - -fWl)S (1 - wz)l+ ywrss T * 
> 

By direct calculation, it is easy to prove the following statements. 
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LEMMA 2.2. For j = 1,. . . , m, there holds 

L wt,wz,-yUj = XjUj, Lw~,wz,yQ = XjV,, if Rj # 0, 

or 

3 if Rj = 0. 

LEMMA 2.3. Let the definitions of U, and V, (j = 1,. . ,m) be the same as those in (2.1) 
and (2.2). Then, the set of vectors {Vi, Vj} (j = 1, . . . , m) is a basis for C”. Furthermore, 

(Vi, Uj) = (Ui,vj) = (K,Uj) = (&,I$) = 0, ifi #j; 

if Rj > 0, then 

(Uj, Uj) = 1 + Q;, (vj,I+l+(u;, 

(Uj~T;;)=(I$,U,)=lfy-2; 

if Rj = 0, then 

(U.j,Uj)=l+Y-2, (vj,v,) = w1 
4(W - w2) ’ 

(Uj,vj) = (I$, Uj) = f; 

if Rj < 0, then 

(Uj,Uj)=(I$,Vj)=l+,-zY 

(Uj, vj) = 1 + 03, (4, Uj) = 1 + 63. 

LEMMA 2.4. Let Uj and vj (j = 1,. . . , m) be defined as above in (2.1) and (2.2). If aiUj -i- biV, 
and CjUj + djVj are real vectors, then 

(aJi + biVi, CjUj + djVj) = 0, ifi#j; 

also, if Rj # O., 

(ajUj + bjVj, CjUj +djVj) = ajcj(l+~~)+bjdj(1+6~)+(ajdj$bjcj) 1$-y- ( z> 3 (2.3) 

and if Rj = 0, 

(ajUj + bjVj, CjUj + djVj) = ajcj (‘+Y-2) +bjdj4(yclw2) + i(ajdj +bjcj). (2.4) 

PROOF. It is obvious for i # j. By direct computation and using Lemma 2.3, we can get (2.4) 
for Rj = 0 and (2.3) for Rj > 0. 

In the case Rj < 0, Uj and Vj are complex conjugates, and it follows that bj and dj must be 
complex conjugates of aj and cj. Thus, 

(ajUj + bjVj, CjUj + djVj) = ajEj(Uj, Uj) + aj&(Uj, Vj) + bjEj(Vj, Vi) + bjdj(Vj, Vj) 

= ajdj(Uj, Uj) + ajcj(Uj, Vj) + bjdj(Vj, Uj) + bjcj(Vj, Vj) 

+ajcj(l+c$+bjdj(l+$) 

+bjcj (1+7-z) 

= ojcj (1 + oj”) + bjdj (1 + $) + (ejdj + bjcj) 
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Now, we expand Ek, 6k, etc., in terms of the basis {Uj, Vj}, j = 1,. . . , m. That is, for some 
complex numbers aj and bj, j = 1,. . . , m, 

j=l 

where [j = ajUj + bjVj is real. Thus, 

j=l 

Since (&,[j) = 0 for i # j, it follows that 

m 
IlskllE = CAjT 

j=l 

Ilbk+llli = ecj> 
j=l 

j=l 

(bkr bk+l) = 2 Bj, 
j=l 

llrkllz = eEj9 
j=l 

where 

Aj = llGlli7 Bj = (t, Lx,uz,&) 7 

cj = II Lu~w2r7tj II: 7 Ej = (I- Lq,wz,y)-’ L II 
3. AN ERROR BOUND 

LEMMA 3.1. Let Aj, Bj, Cj, and Ej be a~ above and Dj = wlwz(l - pj). Then 

EjD; = XiXjAj - 2XjXj + Cj. 

PROOF. 

CASE 1. For Rj # 0, 

Aj=(ajUj+bj%, UjUj+bjVj)=~~(l+C$)+b~(l+$)+2a~b~ 

Bj = (ajUj + bjvj, ajXjUj + bjXjvj) 

=a~Xj(l+~~)+b~Jj(1+6~)+ajbj(.Aj+T;j) 

Cj = (ajAjUj + bjXjvj, ajXjUj + bjXjV;.) 

=~j”x~(l+a~)+b~~~(l+6~)+2ajbjXjXj 

1 

(1 - Xj)’ (1 - Jj)2 
UpX3 (1 + a:) (1 - ij)l 

It is easy to verify that 

xjxj = (Wl - l)(W2 - 1) + WlpLj2(7 - W2), 

Xj + Xj = YWlp; - WI- W2 + 2, 
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(1 - Xj) (1 - Xj) = wlwz (1 - p;) = Dj, 

EjD; = a;$ (1 +c$) (1 - &)’ + b$i; (1 + ii;) (1 - Xj)’ 

+2ajbjXjXj(l--Xj)(1-Xj) 

= a; (1 + a;) [x; (1 - &)“I + b; (1 + 6;) [“j”(l - Xj)“] 

[2X&1-Xj)(l-Xj)] 

= ajbJ 
( “‘) 

1 + y - z [2x;“; - 2x,x, (Xj + Xj) + 2XjXj] 

+ u; (1 + a;) (X;x; - 2X;& + A;) + b; (1 + 6;) (X;xj” - 2x3, + 1;) 

= #Ai - 2X$., B, + Cj. 

CASE 2. For Rj = 0, in this case, 

= ( ajXj + ywl~~~~_w2)2(l+Y-~)+b:~:l(yw~~w2) 

+ bj” 
W,X? 

4(YWl - w2) 
+ 

XjW$j 

VW; + Wl - w2 
+ 

w:P;(Ywl ++JJJl - w2) 

4(Pl - w2) 1 ’ 

b.w2 2 
Ej = ajXj(l - Xj) + 3 1cLj 1 1 

yw1pT +w1 -w2 (1 -X,)2 
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[ 

bjw:p; 2 w1 + ?wl - w2 
= &(l - Xj) + 

YWIPj2 + Wl - W2 
I 

(1 - Xj)4W1 

b?Jj? 

+ (11 ;j)2 4(yw;l w2) + 
bjw# 

u&W - %) + ywl$ + WI - w2 1 bjXj 
(1 - Xj)3’ 

Since Rj = 0, Xj = Xj, and Dj = (1 - Xj)2, it follows that 

EjD; = ajXj(I - Xj) + 

+ UjXj(1 - Xj) + 
bjwfp; 

I 
bjXj(l - Xj) + w1 

YJ1cL; + Wl - w2 4(YWl - w2) 

b:X:(l - Xj)’ 

=X:Aj_2X:Bj+Cj. I 

By Lemma 3.1, we can get the following error bound. 

THEOREM 3.2. Let Assumptions (Al) and (A2) be satisfied by a matrix A and its associated 
Jacobi iterative matrix B. Then, the error Ek of the MAOR method satisfies 

11&k/l; 5 5 { [I(w1 - l)( w2 - I)[ -!- Iwl(“Y - w2)l/42 \ldkll; - 2(wl - l&2 - l)(dk, bk+l) 

+ 2kI(Y -w2)~~~~~6k~~2~~~k+1~~2 + ii6k+1/l;} 7 

(3.1) 

where a = wlw2(1 - &). 
PROOF. Since Cj 2 0 and Dj 2 Q > 0, then by Lemma 3.1, we have 

a2Ej 5 XTX;Aj - 2XjXjBj + Cj, j = l,...,m. 

By direct calculation, we can get 

XjXj = (WI - l)(Wz - 1) + WIp3(Y - UP), 

and 

(3.2) 

a2Ej 5 ((WI - l)(wz - 1) + WlpT(y - ~2))’ Aj - ‘J(w~ - I)(w~ - 1)Bj 

- 2~1~3(7 - w2)Bj + Cj 

Notice that 

I (I(w - ~)(wz - 1)l + I%cLf(Y -W2)1)2Aj - 2(w1 - 1)(~2 - 1)Bj 
(3.3) 

+~J~IP:(Y-Q)~ IBjl +Cj. 

IBjl = I(tj~L,w,rtj)I 5 llEjll2 IIL,w,rtll2 7 
and by the Cauchy-Schwarz inequality, 

2 lBjl 5 2 IltjllZ lIL,m,-rJjll2 5 
j=l j=l 

(g Aj) 1’2 (ZCj) 1’2 = IIbkII2II6k+1II2. (3.4) 

Now, from (3.3) and (3.4) we derive 

j=l j=l 

m m m 

-2(wl-1)(wg-l)~Bj+2~~~~~(~-~~)I~IBjI+~cj 
j=1 j=l j=l 

< (I(wl - 1)(w2 - ‘)I + \w1/4(7 - w2)j)2 116kjj; - 2(wl - 1)(w2 - l)(bk,bk+l) 

+ 21wl(? - w2)~1-1:~~~k~~2~)~k+l~~2 + )16k+lll;}, 

and inequality (3.1) follows. 
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REMARK 1. From inequality (3.1)) one can get the following results. 

(1) For wi = w2 = w, yi = 72 = y, the AOR case, the error bound reduces to 

]]sk]]; < -$ {[(w - 1)2 + ]w(Y -w)]p:)2 Itbkll; - f+’ - l)‘@k, dk+l) 

+ 2iw(y - w)~~~~~~k~~2~~~k+1~~2 + Ilbk+lll;} , 

which is given by Song [5]. 
(2) For wi = ws = yi = 72, in the SOR case, the error bound reduces to 

hll; 5 $ {(w - 1)4ii6ktl; - 2(w - l)‘@k, 6k+l) + (16k+ljl;}, 

by Hatcher (41. 
(3) If there is a norm ]] ?? ]] such that ]]B]] < 1, then in the error bound p1 can be replaced 

by IIBII~ 

4. EXAMPLE 

For the Laplace equation 

where 0 = [0,2] x [0, 1). We use the five-point difference scheme, and take the region s2. A 
red/black ordering is defined by the mesh point numbering given in Figure 1. The discretized 
equation is Ax = b, where 

DR = Dg = 41, ~LR = [u~i,21~2,. . . , URI,~]~, ug = [uB~, 2~~2,. . . , u~p3]~, I is a 16 x 16 identity 
matrix. The matrix A satisfied the assumptions (Al) and (A2). The spectral radius of B is 
/.J~ = &743548075804281E-001. 

Using the MAOR method with different parameter pairs (WI, w2,y) to solve this equation, 
Table 1 gives the result comparing ]]&k]] with the bound given by Theorem 3.2 and with 

llbkII 
ek = ~~~6k-1~~/~~6kll - II 

(which is provided by Wachspress). 

Figure 1 
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Table 1. 
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1.5 1.6 1.8 32 9.6614185142264723-004 1.972223250677176E-004 9.3808114091900353-003 

0.9 1.1 1.9 99 L621728080257447E-012 1.0877207117011433-012 1.3453023843703243-013 

1.3 1 1.4 1 1.5 1 56 1 7.4556314750774943-015 I 7.3375579576132853-015 I 5.669751483773890E-015 I 

0.7 0.8 0.9 219 l.l36331716265224E-014 4.593694506022584E-015 co 

1.0 1.3 1.6 14 2.866156766036221E-003 1,439279701643883E-003 1.416927067107923E-002 

0.9 1.08 1.7 95 6.415331030290821E-015 3.233018248352212E-015 00 

0.8 1.0 1.6 28 4.215267798028027E-005 2.123019870848327E-005 2.233041839322302E-004 

0.7 1.0 1.2 172 8.993324862699989E-015 3.922089704712238E-015 00 

Wl w2 

1.5 I 1.6 

0.9 I 1.1 

Table 2. 

1.7 30 29 28 42 38 37 52 46 50 

1.6 26 25 24 37 35 35 47 40 44 

1.2 60 58 58 82 80 80 103 102 102 

In Table 1, 

‘Pk = ; ((k1 - l)(wz - 1)l + Ia(-Y - w2)lpg2 Il&CIl; - 2(w - l)(w2 - 1)(6kr6k+l) 

+ +Jl(Y - ~2)lll:Il~lcllzll~le+lll2 + I16k+lll:}1’2. 

With given values, Table 2 gives iterative times which are generated, respectively, by vk, ek, 
lj&kII used as stopping criteria. kc,), kc,), kc,) denote the number of iterative times which are 
generated by vk, ek, I]&k11z used as stopping criteria, respectively. 

REMARK 2. Since [l&k112 is an accurate error, then ICC,) should not be less than k(,) with a given 
accurate value. Table 2 shows that it does not depend on ek used as a stopping criterion. 

EDITOR’S REMARK. The numerical results clearly demonstrate the correctness of the analysis 
and the proximity of the bound to the true error. This is a valuable generalization of the SOR 
(Hatcher) and AOR (Song) b ounds. However, for use as a stopping criterion the bound is only 
as accurate as the estimate of the difference from unity of the spectral radius of the Jacobi 
matrix. This is often not easily found, nor is an upper bound on a norm of this matrix adequate. 
Therefore, the simple estimate that I suggested or some alternative may be useful. Realizing that 
my estimate is not a true bound, I have required that it be less than the prescribed error norm 
three iterations in succession. This has been reasonably successful when the error is not so small 
that roundoff is significant. 
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