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Interleukin-1beta (IL-1b) is a pro-inflammatory cytokine which

is part of the first line innate response in vertebrates and is

induced in injury, infection, and immunity. While temporally

limited induction of IL-1b is believed to protect the organisms

against traumatic or infectious insults, its aberrant expression

in chronic inflammation is detrimental. Therefore,

pharmacological neutralization of IL-1b in chronic inflammatory

diseases is a meaningful strategy to treat inflammation and to

alleviate respective clinical symptoms in man. Canakinumab is

a high-affinity human monoclonal antibody designed to target

human IL-1b in inflammatory diseases. Indeed, canakinumab

has shown excellent efficacy in rare genetic autoinflammatory

diseases or pathological conditions associated with aberrant

production of IL-1b. This review focuses on the molecular and

clinical mode of action and pharmaceutical development of

canakinumab in (auto)inflammatory diseases.
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Introduction
Muckle Wells Syndrome (MWS) and Familial Cold Auto-

inflammatory Syndrome (FCAS) are autosomal dominant

hereditary diseases, and they belong together with the

non-hereditary Neonatal Onset Multisystem Inflamma-

tory Disease/Chronic Infantile Neurologic Cutaneous

and Articular syndrome (NOMID/CINCA) to the family

of Cryopyrin Associated Periodic Syndrome (CAPS).

CAPS is an extremely rare disease with an estimated

prevalence of about 1 per 1,000,000 subjects [1]. The

clinical symptoms in CAPS can be variable; they include

severe fatigue, periodic fever, influenza-like myalgia,

anemia and inflammation of the skin, eyes, bones, joints

and meninges [2]. In 2001, the genetic cause of MWS was
www.sciencedirect.com 
traced to mutations in the CIAS gene [3,4]. The CIAS1

gene codes for a protein previously termed NALP3, now

NLRP3 [3–5].

At about the same time as the discovery of mutations in

the NLRP3 protein in CAPS, the inflammasome, a regu-

latory protein complex for the production of mature and

bioactive IL-1b was described [6]. Different inflamma-

somes with distinct regulatory subunits exist, which all

converge on caspase I which cleaves pro-IL-1b [7] to

generate its active and secreted form. NLRP3 is a regu-

latory subunit of the NLRP3 inflammasome, and muta-

tions in the NLRP3 gene identified in CAPS patients

render NLRP3 constitutively active (Figure 1). As a

consequence, these NLRP3 mutants are associated with

increased and pathological secretion of IL-1b from pe-

ripheral blood monocytes [8,9].

IL-1b signals through a heterodimeric receptor composed

of IL-1 receptor 1 (IL-1RI) and IL-1 receptor associated

protein (IL-1RacP). Pharmacological treatment of CAPS

with recombinant IL-1 receptor antagonist (IL-Ra), a

competitive antagonist of IL-1 for receptor binding, led

to a rapid and complete clinical and serological response in

a case study with 2 and 3 MWS patients, respectively [9,10].

Preclinical development of canakinumab
Novartis Pharma AG licensed the HuMab-MouseTM

technology from Medarex in the late 1990s and started

a program aimed at the generation of therapeutic human

antibodies targeting human IL-1b. HuMab mice have

part of the human antibody repertoire integrated into

their genome, while their endogenous immunoglobulin

repertoire is inactivated by targeted genetic disruption

[11]. Such mice produce human IgG1 antibodies upon

immunization with antigen, and human monoclonal anti-

bodies can be derived from such mice by conventional

hybridoma technology [12]. Anti-human IL-1b monoclo-

nal antibodies were generated from HuMab mice immu-

nized with human IL-1b antigen. Several different

monoclonal antibodies capable of neutralizing the bioac-

tivity of human IL-1b emerged from this endeavor, and

two of them were progressed into preclinical develop-

ment. The more potent antibody, termed ACZ885, and

later canakinumab, a human IgG1/k antibody, entered

full clinical development.

Canakinumab interacts with human IL-1b with an

equilibrium binding constant of about 40 pM [13] and
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Production of mature IL-1b is regulated by the inflammasome. IL-1b production requires two steps: (i) ‘priming’, that is induction of mRNA for pro-

IL-1b via NFkB by for example, toll-like receptor (TLR) signaling and (ii) activation of the inflammasome by the regulatory subunit NLRP3 by a

physiological stimulus (a), or by gain-of-function mutations in CAPS patients (b) [8]. NLRP3 activation leads to multimerization and recruitment of

the adapter protein ASC which enables pro-caspase I to bind to this complex. Autocatalytic cleavage to proteolytically active caspase I is required

for the proteolytic processing of the inactive pro-IL-1b and the secretion of mature and active form of IL-1b [53].
neutralizes the biological activity of IL-1b in vitro with

an IC50 of about 43 pM [14]. Canakinumab has high

selectivity towards human IL-1b, it does not bind to other

members of the IL-1 family, including the most related

members IL-1a and IL-1Ra, which both bind also to the

IL-1RI receptor chain. Demonstration of pharmacody-

namic action in vivo was conducted in preclinical mouse

models. To this end, mouse NIH 3T3 cells engineered to

secrete human IL-1b (3T3-hIL-1b) were employed to

induce local inflammatory pathology in the mouse. For

example, neutrophil migration into subcutaneous air-

pouches was initiated by injecting the 3T3-hIL-1b cells

into the airpouch (Dawson et al., unpublished). Systemic

application of canakinumab by intraperitoneal injection

inhibited the neutrophil invasion into the pouch in a dose

dependent manner, demonstrating in vivo potency of this

antibody (Figure 2).

In order to elucidate the molecular mechanism by which

canakinumab interferes with the bioactivity of IL-1b, the
Current Opinion in Chemical Biology 2016, 32:1–9 
crystal structure of canakinumab in complex with IL-1b

was determined [14]. The structural model based on X-

ray diffraction data revealed a large interaction surface of

957 Å2 for canakinumab, which recognizes an extended,

discontinuous epitope on human IL-1b. All six comple-

mentarity-determining regions are involved in antigen

binding, and 19 residues of canakinumab, 7 contributed

by the light-chain and 12 by the heavy-chain, make

contacts with IL-1b, while 20 residues of IL-1b are in

contact with the antibody. Overlay of the canakinuma-

b:IL-1b structure with the structure of the IL-1b:IL-

1RI:IL-1RacP complex [15,16] revealed that a complex

of canakinumab and IL-1b cannot interact with the IL-1

receptor due to a steric interference between canakinu-

mab VH domain and the D1 domain of IL-1RI. Canaki-

numab does not seem to interfere with the binding of IL-

1RacP, the second component of the IL-1 receptor, to the

IL-1b::IL-1RI complex, as there is no steric overlap with

the respective interaction sites (Figure 3). Therefore,

canakinumab blocks the first step of the assembly of
www.sciencedirect.com
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Figure 2
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Inhibition of polymorphonuclear leucocyte (PMN) influx. Subcutaneous

airpouches were formed by injection of air on the back of OF-1 female

mice, and antibodies or controls were injected intraperitoneally (i.p.)

six days later. The following day, recombinant NIH3T3 cells expressing

human IL-1b were injected into the airpouch, and 24 h later, PMN

numbers were determined in lavage fluid from the airpouch. Data

represent the mean � standard error of the mean from 5 animals per

group (Dawson et al., unpublished data). Controls were animals which

did not receive NIH3T3-IL-1b cells (control), vehicle (saline) and

isotype-matched irrelevant antibody as treatment controls.
the active IL-1b receptor complex, binding of IL-1b to

IL-1RI. This structure-based prediction is confirmed by

demonstration of competitive binding to IL-1b between

canakinumab and recombinant soluble IL-1RI and IL-

1RII [14].

Canakinumab exhibits also a very high degree of species

specificity, as it does not bind to mouse, rat or rabbit IL-

1b. Not even the highly related IL-1b from rhesus or

cynomolgus monkeys (96% sequence identity) is recog-

nized by canakinumab. The X-ray structure of canakinu-

mab in complex with IL-1b revealed that Glu64 in human

IL-1b is a critical residue for antibody:antigen interaction.

This residue forms multiple strong interactions with both

heavy and light chain residues of canakinumab, but is not

conserved in macaque monkeys, rodents, canines, and

many other mammalian species [14].

This unusually high species selectivity posed a problem

for the preclinical development of canakinumab, as the

commonly used macaque non-human primates, cynomol-

gus or rhesus monkeys, were not acceptable for toxico-

logical evaluation due to the lack of target binding.

Marmoset monkeys (Callithrix jacchus) belong to the

group of non-human primates, and their physiology is

fairly well characterized [17]. Furthermore, breeding
www.sciencedirect.com 
colonies for pharmacological testing under good laborato-

ry practice are available. IL-1b from marmoset shares

96% identity with human IL-1b and, most interestingly

for the preclinical development of canakinumab, marmo-

set IL-1b has Glu64 like human IL-1b. Canakinumab

exhibits full crossreactivity to marmoset IL-1b, and the

bioactivity of marmoset IL-1b is effectively neutralized

by canakinumab [14]. Therefore, marmoset monkeys

fulfilled the criteria of a relevant species for toxicological

examination of canakinumab, and the required toxicolog-

ical program for clinical development of canakinumab

could successfully be conducted in this species.

Clinical development
The molecular understanding of the affected cellular

pathway by mutations observed in CAPS patients allows

for the application of a targeted medicine paradigm, that

is specifically and exclusively targeting IL-1b, a highly

potent inflammatory mediator closely downstream of the

causative defect in NLRP3 and the inflammasome. CAPS

is therefore a highly relevant model disease best suited to

unequivocally demonstrate the pharmacokinetic/pharma-

codynamic (PK/PD) relationship and clinical utility of

canakinumab.

Four MWS patients treated by intravenous (i.v.) infusion

of canakinumab at 10 mg/kg showed a fast and complete

clinical, serological, and biochemical response with a

medium duration of 185 days [18]. Complete clinical

responses were subsequently observed in the same

patients upon i.v. infusion of a 10-fold lower dose of

1 mg/kg canakinumab or subcutaneous (s.c.) injection

of 150 mg canakinumab when clinical signs reappeared.

The long duration of clinical remission in CAPS patients

upon administration of a single dose is fully explained by

the pharmacokinetics and potency of canakinumab,

which has a serum half-life of 26 days in CAPS patients

[19]. Clinical development of drugs requires a proper

description of the dose and dose interval to be applied

in the respective patient population. A traditional parallel

arm, placebo-controlled dose finding phase IIb study was

not possible due to the extremely rare prevalence of CAPS.

Therefore, a mathematical model describing the relation-

ship between pharmacokinetics (PK), pharmacodynamics

(PD), target binding (KD), and the production rate of IL-

1b was developed from data collected in this first clinical

phase I/II study in Muckle Wells patients [18].

Pharmacodynamic activity of canakinumab in patients

can be traced by measuring circulating IL-1b in complex

to canakinumab in the serum. The elimination rate of free

IL-1b from blood is very high [20], and steady state

concentrations in blood are therefore extremely low

and hardly measurable in the serum of healthy individuals

or patients [18]. IL-1b in complex to canakinumab has a

much lower rate of elimination, and steady state serum

concentrations of the complex between IL-1b and
Current Opinion in Chemical Biology 2016, 32:1–9
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Figure 3
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Overlay of the X-ray structures of the IL-1b receptor complex consisting of IL-1b (blue surface), IL-1RI (red C-atom backbone), IL-1RacP (green

surface) and the Fab fragment of canakinumab (light chain, light red surface; heavy chain, blue green backbone). The magnified region (insert)

shows the steric overlap between the heavy chain of canakinumab and the D1 domain of IL-1RI. Because of this steric exclusion, only free IL-1b

can form the active receptor complex, and IL-1b complexed to canakinumab cannot bind to IL-1RI. The X-ray structure of the complex between

the canakinumab Fab and IL-1b is described by Rondeau et al. [13].
canakinumab can be determined in specific ELISA-

based assays. Measurements of the rate of complex

formation and serum concentrations  of canakinumab

over time and elimination rates of the canakinumab-

IL-1b complex allowed for the generation of a PK/PD

binding model, describing antibody-target complex for-

mation and the distribution of canakinumab into extra-

vascular and serum compartments (Figure 4a). Further

parameters, like the equilibrium binding constant (KD)

for binding to IL-1b, volume of distribution and steady

state tissue concentration of canakinumab are used to

generate a two-compartment PK/PD model [18]. Clini-

cal information, such as the serum concentration of

inflammatory markers, C-reactive protein (CRP) and

the clinical assessment of disease activity in patients

were combined with the PK/PD model. As shown in

Figure 4b, clinical relapse or flare, that is recurrence of

signs and symptoms of disease, is correlated with the

inflammatory serum marker CRP, the model-predicted
Current Opinion in Chemical Biology 2016, 32:1–9 
free IL-1b levels in serum and tissue, the formation of

the complex, and ultimately with the pharmacokinetics

of canakinumab. This model also predicts that the

duration of clinical remission, that is, time to subse-

quent flare, is inversely correlated to the endogenous

production rate of IL-1b in these patients. On the basis

of these correlations, a simpler flare-probability model

was created to link the pharmacokinetics of canakinu-

mab to the probability of clinical relapse, that is a flare,

in MW patients. Basis for such a model were clinical data

obtained from seven MWS patients. These patients

received different doses of canakinumab, ranging be-

tween 1 mg/kg and 10 mg/kg, applied intravenously or

subcutaneously [18]. The duration of clinical response

and the change in CRP over time was recorded, and

patient received re-treatment when clinical signs of a

relapse occurred. The resulting flare-probability model

thereby connected the applied dose of canakinumab to

the change in CRP and the probability of a clinical flare.
www.sciencedirect.com
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Figure 4
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The dose regimen for canakinumab in CAPS is predicted by a modeling approach. (a) Basis of the PK/PD model. Measured parameters over time

are depicted in brown, and model predicted parameters are represented in blue. The model also incorporates delineated PK parameters, such as

elimination rates, volume of distribution in blood and tissue, equilibrium binding constants, and serum half-life. (b) Time dependent profiles for the

concentration of canakinumab in serum, concentration of the IL-1b:canakinumab complex in plasma, predicted free IL-1b in the central (red) and

peripheral compartment (black), plasma concentration of CRP, and flare probability. Model derived predictions are shown as lines, actual data

from four patients are shown as circles. (c) Withdrawal design of the pivotal phase III study of canakinumab in CAPS. An open label part 1 is

followed by a randomized and double-blind, placebo controlled phase. Patients who completed the part 2 without a clinical relapse and patients

www.sciencedirect.com Current Opinion in Chemical Biology 2016, 32:1–9
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Monte Carlo simulations were applied to this flare

probability model, which predicted that a dose regimen

of 150 mg s.c. every 8 weeks would keep the majority of

CAPS patients in clinical remission [18].

The subcutaneous dose regimen of 150 mg every 8 weeks

was tested in a subsequent phase III clinical trial in CAPS

patients [21]. In this three-part, 48-week, double-blind,

placebo-controlled, randomized withdrawal study,

35 patients received first 150 mg of canakinumab. Those

patients who maintained a complete response for 8 weeks

(part 1) entered part 2 and were randomly assigned to

treatment with either canakinumab or placebo every

8 weeks for up to 24 weeks. After the completion of part

2 or at the time of relapse, patients progressed to part

3 and received canakinumab in an open label fashion

(Figure 4c). 34 out of 35 patients enrolled into part 1 of the

study had a complete clinical response to a single dose of

canakinumab. This response was typically observed at

day 8 or day 15 post treatment. 31 patients who main-

tained complete response during part 1 were randomized

to either placebo or canakinumab, which were adminis-

tered every 8 weeks. All 15 patients in the canakinumab

group remained in clinical remission throughout part 2,

while 13 out of 16 patients (81%, p < 0.001) who received

placebo displayed signs of a clinical relapse (Figure 4d).

Results from the this phase III study were confirmed in a

larger open label clinical trial study in which 166 patients

with CAPS were enrolled [22]. Complete clinical re-

sponse to canakinumab was observed in 78% of patients.

Upward dose adjustment is sometimes required for

patients with severe manifestation of disease within

the CAPS spectrum [23]. Other clinical studies confirmed

these initial findings, also reporting improvements in

quality of life measures [24,25]. Canakinumab was well

tolerated, and most adverse events were transient and

mild in nature. Reported adverse events included a

higher incidence of infections in children [22].

Other autoinflammatory diseases
Periodic Fever Syndromes such as Familial Mediterra-

nean Fever (FMF), TNF Receptor Associated Periodic

Syndrome (TRAPS), or Hyper IgD Syndrome (HIDS) are

rare genetic disorders associated with increased produc-

tion of IL-1b from peripheral blood immune cells.

TRAPS and HIDS, like CAPS, are rare and are mostly

confined to Western Europe. FMF is more common and

prevalent around the Mediterranean Sea [26].

The genes and corresponding proteins identified as causal

in these rare genetic disorders are not directly linked to
( Figure 4 Legend Continued ) who had a clinical relapse in part 2 received

proportions of patients with a disease flare in part 2 of the pivotal study. All

clinical relapse, while 13 of 16 patient on placebo had a clinical relapse in p

Figure parts a and b were modified based on [18].
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the IL-1b secretion or signaling, except the pyrin protein

in FMF, which interacts with components of the inflam-

masome [27]. TRAPS is caused by mutations in the TNF

receptor I, leading to aberrant folding, intracellular accu-

mulation, stress of the endoplasmic reticulum, and pro-

duction of reactive oxygen which is believed to stimulate

the inflammasome leading to hypersecretion of IL-1b

from peripheral blood monocytes [28]. HIDS is an auto-

somal recessive disorder caused by mutations in meva-

lonate kinase. Deficiency in this enzyme leads to

accumulation of mevalonate, and further downstream

in the pathway to a shortage of isoprenoids [29]. Small

GTPases require modification by isoprenoids for proper

function, and lack of prenylation of the small GTPases

Rac1 and RhoA leads to specific upregulation of IL-1b

mRNA and hypersecretion of IL-1b protein by monocytic

cells [30�,31].

Though the molecular defects in FMF, TRAPS and

HIDS are not immediately related to inflammasome

activation like in CAPS, the pathophysiological pathways

in these diseases converge on mechanisms directly linked

to dysregulation and overproduction of IL-1b. Proof of

IL-1b as the causative mediator in these fever syndromes

comes from the clinical use of IL-1-targeted therapy,

including the use of canakinumab. Indeed, FMF, HIDS

and TRAPS patients showed excellent clinical responses

to treatment with canakinumab [32,33,34��,35–39,40�].

Schnitzler’s syndrome is a chronic autoinflammatory dis-

ease with unknown etiology and manifestation of system-

ic and local inflammation. A genetic cause for this rare

disease has not been identified, but targeted treatment by

blockers of the IL-1 signaling resulted in remarkable

clinical responses [41,42�]. A recent study by de Koning

et al. [43��] demonstrates increased IL-1b production by

isolated peripheral blood mononuclear cells from Schnit-

zler’s patients in response to lipopolysaccharide, but low

cytokine responses to TLR3 or TLR2/6 agonists. This

finding may point to a selective pathogenic stimulation of

the TLR4 receptor pathway, which is not only responsive

to bacterial lipopolysaccharide, but also to a variety of

endogenous damage-associated molecular pattern mole-

cules (DAMPs). High serum levels of IL-6, a downstream

cytokine to IL-1b, in symptomatic patients and normali-

zation of IL-6 serum concentrations concomitant to a

clinical response upon treatment with canakinumab clear-

ly establish a pathogenic and pivotal role of IL-1b in

Schnitzler’s syndrome.

Systemic Juvenile Idiopathic Arthritis (sJIA) does not

exhibit strong association with dominant or recessive
 canakinumab treatment. (d) Kaplan–Meier estimates of the

 patients who received canakinumab completed part 2 without a

art 2 of the study. The difference is statistically significant ( p < 0.001).

www.sciencedirect.com
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gene defects, but cellular and biochemical analysis sug-

gest that sJIA is an autoinflammatory disease rather than

an autoimmune disease [44]. IL-1 and IL-6 have been

demonstrated to play a pivotal role in the pathogenesis of

sJIA, as targeted treatment to either cytokine results in a

dramatic clinical response in the vast majority of sJIA

patients [45,46]. Two phase III trials enrolling patients

with active sJIA were successfully conducted with cana-

kinumab specifically targeting IL-1b. Both trials demon-

strated excellent clinical response rates, good tolerability,

and the ability to taper glucocorticoids in a substantial

fraction of patients [47].

Future directions
Genetic analysis has led to recognition of further auto-

inflammatory hereditary fever syndromes, directly or

indirectly involving inflammasome dysregulation. One

of the latest examples is the identification of mutants

in the NLRC4 inflammasome, leading to overproduction

of IL-1b and autoinflammation, providing a solid ratio-

nale for treating such conditions by IL-1 blockade [48,49].

IL-1b has been found to be involved in a number of

clinically relevant human pathologies, in particular in-

flammatory and vascular disease [50,51]. There are cur-

rently two more drugs approved for CAPS: Rilonacept, a

recombinant soluble IL-1 receptor, and anakinra, the

recombinant IL-1 receptor antagonist, which neutralize

both IL-1a and IL-1b. Canakinumab is the most selec-

tive pharmaceutical agent targeting only IL-1b, and

hence, provides the opportunity to specifically address

the role of IL-1b in human pathology. Indeed, a phase III

clinical testing the hypothesis that neutralization of IL-1b

by canakinumab reduces the risk for subsequent cardio-

vascular events in post myocardial infarction patients is

currently conducted [52]. The underlying pharmacologi-

cal hypothesis for this trial is that IL-1b is a driver of

atherosclerosis and plaque instability in patients with a

high risk for cardiovascular events. It remains to bee seen

if IL-1b is indeed a pivotal mediator of vascular inflam-

mation, and whether neutralization of IL-1b results in a

reduction of cardiovascular events and mortality.

Regulatory status
Canakinumab currently has orphan drug status for CAPS

in the US. The US Food and Drug Agency (FDA) granted

market authorization in June 2009 for the treatment of

FCAS and MWS patients aged four years and older under

the trade name Ilaris1. The European Medicines Agency

(EMA) approved Ilaris1 for the treatment of CAPS,

including NOMID/CINCA in October 2009. Ilaris1 is

currently approved for the treatment of CAPS in about

73 countries worldwide. In addition, Ilaris1 obtained

approval for the treatment of gouty arthritis attacks in

the EU, and it is approved for the treatment of systemic

juvenile idiopathic arthritis (SJIA) in the US and in the

EU.
www.sciencedirect.com 
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