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We consider the methods of error detection and correction in devices and
programs calculating functions f: G — K where G is a finite group and K is a
field. For error detection and correction we use linear checks generated by convo-
lutions in the field K of the original function f and some checking idempotent
function 8: G — {0, 1}. For the construction of the optimal checking function 8
we use methods of harmonic analysis over the group G in the field K. Since
these methods will be the main tools for the construction of optimal checks, we
consider the algorithms for the fast computation of Fourier Transforms over
the group G in the field K. We solve the problem of error detecting and
correcting capability for our methods for two important classes of decoding
procedures (memoryless and memory-aided decoding) and consider the question
of syndrome computation for these methods. We describe also properties of error
correcting codes generated by convolution checks.

1. STATEMENT OF PROBLEM

Development of universal methods for detecting and correcting errors in the
process of calculation of the given function realized with the aid of specific
devices, or with the aid of computer programs is a topical problem. The present
study, devoted to a possible solution of this problem, deals with the detection and
correction of errors in calculation of functions defined over finite groups (commu-
tative and non-commutative), an “‘error’” in this context being defined as cata-
strophic failure of the calculating device, or as an error in the text of the program.

Examples of the devices in question are: blocks of arithmetic units of a
computer, networks whose operation is described by two or many-valued
switching functions, linear control systems over finite groups (Karpovsky and
Trachtenberg, 1977a), rearrangeable switching networks whose output depends
on permutation of input terminals (Opferman and Tsao-Wu, 1971}, etc. We shall
refer to any device or program calculating the given f as a computation channel f.

Let f be a function defined over a finite group G of order | G| and {K;},
(j = 1,...,m) be a set of fields, such that Im fC ﬂ;n:l K; (Im f is the range
of f).

335
0019-9958/79/030335-24$02.00/0
Copyright © 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.



336 KARPOVSKY AND TRACHTENBERG

For detecting and correcting errors in channel f, we sha]l use systems of
linear checks in the fields K;:

G, ®)2) 2 ;ZG om(D)f(t O I = o(t) + A, (K), (1)

forall te G, j = 1,..., m. Where & is the operation of group convolution, O is
the group operation, {1 is the inverse of { € G,

R

p;: G — K; some “‘simple” checking function (for example, ¢; = const).

All arithmetic operations in (1) are carried out in the field K , as indicated by
the symbol (K;) on the right.

Methods of error detection and error correction in computation channels by
means of linear checks of type (1) were considered by Karpovsky (1977a) for
the case when G is an Abelian group, m = 1 and K; = C — the field of complex
numbers and in (Karpovsky and Trachtenberg, 1977b) were given some results
(without proofs) about error detection and correction in computation channels
for the case K; = K; = - = K,, = C. Several examples of linear checks of
type (1) for such important computation channels as counters, adders, sub-
tractors, multipliers, etc. were given by Karpovsky (1977a) and Karpovsky and
Trachtenberg (1977b).

We note that for the important case Im f C NV (IV is the set of integers) the
transition, in (1), from the field C of complex numbers to the field GF(q) of ¢
elements (g > max,.; f(£), g being a prime number) results, generally speaking,
in reduction of the complexity || 8y || £ 3rec 0 (£) of check (1) (see Section 4).

We shall also consider in this paper, methods of error detection and correction
for system of functions defined on finite groups (Section 4) and methods of
network implementation of these checks (Section 5).

In searching for optimal checks of type (1) in terms of || SH I, we shall apply
methods of harmonic analysis over group G in the fields K (j = 1,..,m).
(The choice of || 85 || as complexity criterion in (1) will be justified in Section 5)
An analogous app;oach, based on methods of harmonic analysis over finite
groups, is described by Karpovsky (1976, 1977b).

Since harmonic analysis over finite group G in the field K will be the main
tool in this work we shall consider in Section 3 the algorithms of fast computation
of Fourier transforms for functions f: G — K.

Methods of harmonic analysis yield simple and convenient from the computa-
tion viewpoint search procedures for optimal checks, but on the other hand have
the following basic disadvantages:

(H;CG)

(i) For a given finite group, it is not in every field K that technique of
Fourier transform may be used.
(ii) Only checks where H; are normal subgroups of G will be constructed.
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Tt should also be noted that checks of type 1, at ¢,(t) = Oforall e G, \; =0
and K; = GF(q) (j = 1,..., m), are analogous to those used for syndrome
calculation in decoding procedure for g-ary linear error-correcting codes. The
properties of error-correcting codes generated by systems of checks of type (1)
will be considered in Section 7.

In addition to the present section, the paper contains six others:

The second section presents some prerequisites from harmonic analysis over
finite group G in a field K. The third section presents algerithms for the fast
computation of the corresponding Fourier transforms when G is a direct product
of some groups H; , G = [1;_y H; . The fourth section deals with construction
methods for optimal checks of type (1). The fifth section deals with calculation
of error syndromes. The theorems of the sixth section solve the problem of the
correcting and detecting capability of systems of checks (1) for two different
methods of decoding. Section 7 is devoted to linear error-correcting codes
generated by a system of checks of type (1).

2. Fourier TRANSFORMS OVER THE FINITE Grourp G anp Frerp K

Let G be an arbitrary finite group with | G| elements and K any field of
characteristic char K. In the spaceL; x = {f : G — K} we shall use the elements
of the non-equivalent absolutely irreducible representations of G over the field K
as an orthogonal basis.

Recall (Dornhoff, 1971) that representation w of degree 4, in a linear space 7
(dim V' = d,) over K is defined as a homomorphism w: G — GL(d,, , K), where
GL(d,, , K) is the group of all invertible (4, X d,)-matrices over K. The value of
representation w at the point ¢ € G will be denoted by [w, £] and the functions
generated by [w, t] when w and ¢ are fixed will be denoted by [w, -] and [, £]
respectively.

T'wo representations w; and w, of the same degree d, = d, are said to be
equivalent if there exists an invertible (d,, X d,, )-matrix Q over K such that
O, t]0 = [wy, t], {K) for every te G.

A representation w in linear space V over K is said to be irreducible if ¥ has
no proper w-invariant subspaces, and is absolutely irreducible if it remains
irreducible in any extension of K.

Henceforth it will be assumed that

(i) char K = 0, or char K does not divide | G |. (Throughout this paper,
| A | denotes the cardinality of the set 4, and a | & (@ x b) signifies that a is (not)
a divisor of b.)

{(it) Kissuch that if w is an irreducible representation of G in a linear space
V over K, then w is absolutely irreducible (i.e., K is the so-called splitting field
for G. See, e.g., Dornhoff, 1974).
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We note that K = C (C, the field of complex numbers) is the splitting field
for any G. Conditions for K to be a splitting field for a given group G, and
construction methods for absolutely irreducible representations of G in K,
are considered in algebraical literature for the great variety of groups G and fields
K (see, e.g., Dornhoff, 1971).

Let G = {w} denote the set of all nonequivalent absolutely irreducible repre-
sentations of G'in K, indexed so that w is of degree d,, (G is the dual object for G);
| G | equals the number of conjugate classes of G, and we have

Y. 4 =Gl 2)

wel@

Let f;: G — M(a; , K) where M(a; , K)—the set of all (¢; X a;)—matrices over
K and ¢;: G — M(b,d,, , K) where for every w e G @w) is a (d, x d,)-block
matrix over K with blocks

¢§j’8)(w) e M(b;, K) C=1,245=1,.,do).

Denote

<hislfoe & Z (1) ® fo(£1);

teG

. (K). (3)
G de 2 Y Y #9(0) @ ¢8I (w)).

weG {,5=1

Here %) Kronecker product of matrices;

{fi»foe € M(aya, , K); (@1, Parg € M(byd, , K).

Let [w, t]; ; denote (7, j)-th element of matrix [w, £] (7,7 = 1,..., d,). We recall
(Dornhoff, 1971) the orthogonality relations for the | G| functions {[w, -1, ;}

G
<[w1: ']il,jl s [w2 ']i2,12>c = Id | awl.wg Sil,ig 311.12: (K) (4)

w3

(Here wy, w,€ Gy iy, jy = 1,00, dy 5ty vJo =L,y d, 5 8 is the Kronecker delta,
and | G |/d, € K.)

The character of the representation « is defined as the trace [w, -]. The
characters satisfy the following orthogonality relations

(trace [wy , ], trace [wy , Do = | G | 8,0,

G (K)
(trace [+, ], trace [+, ;" De = 'V— 84,000

iy

where v; is the cardinality of the conjugate class of G which contains #; (Dornhoff,
1971).
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We consider now the important case of Abelian group G and Galois field
K = GF(g’). In this case G may be represented as a direct product of cyclic
subgroups

G —=H, X X Hy, ie teG t ="t o ta), t;€{0, 1., | H; | — 1},

| H;| is a power of a prime number, the group operation is componentwise
addition mod | H, |,j = 1,..., n. Let p be the least common multiple of | H, |,...,
| H, | and “+/T € GF(q"), i.e. the equation x* = 1 is solvable in GF(g") or, in other
words, u | g" — 1. Since | | G| then ¢+ | G| and GF(q") is a splitting field
for G. In this case d, = 1 for all we G, G = &, X - X #,, G is a multi-
plicative group of characters which is isomorphic to G' and H; isomorphic to
P, e, o = (0 5oy wy), w; €40, 1,..., | H; | — 1} and we have

[, 1] = [T €% ;1 £;€10, 1, | Hy | — 1}, (GE(g"). (5)
=1

Here & = #i14/Te GF(g") (j = 1,..., n).

For the case K = C, ¢, = exp(2wif| H; |), i = (—1)*"2andif | H, | = - =
| H, | then, [w, -] is known as Chrestenson functions and for ¢ = 2 as Walsh
functions (see, e.g., Karpovsky, 1976).

Let f: G — K. It follows by (3), (4) that the Fourier transforms Fg; x: f — f
and inverse Fourier transforms Fgly: f — f on the group G in the field K may be
defined as follows

oo d, "
f(w)— [GI <f?[ ’ ]G) (6)
f@) =< - Y]

For the Fourier transform Fy; x: f — f on the group G in the field K the usual
properties of linearity, translation of arguments, convolution, Plancherel,

Wiener-Khinchine, Poisson theorems are valid.
Now let 2 C G and denote

Q+ 4 ﬂ kern w = () {¢| [w, t] = E}, E-the identity matrix.
wER wER

A subset 2 C G is said to be closed (notation 2 = Q) if for any w ¢ 2 we have
Q' ¢ Kern w. Then for every normal subgroup H of G there is a unique 2 C G

such that 2+ = H. Moreover, any £ is isomorphic to the dual object abi of
the factor group G/£2* and elements of the set £ are constants on the cosets of G
modulo 2*; in addition if «(2) A Y, .5d,2 then o(2) || G|, «(G) = | G| and
«3) |3 = |G,

ExampLE 1. Let f(t) = 2 — 170t — 35, t€{0,..., 28 — 1} and ¢ represented
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TABLE I

Cy X S;

G, x S,

G =

fi fa

5

(tl ’ t2)

i, T

010

0 (0,0

RN
RN
el

0 0
1
0

1
0 —1
0 —1

1 (0, (132))
2 (0,(123) (

0 0
0 —1

1
0
0

1 —1

0 1 0
. 0 4
10 0 10

1
0

1 0 0
0—-1 1
0 0 1!

3 (0,(12) (

1
0
0 —1

4 (0,(13) (

1
0
0

5 (0,23 (

10

10

10

10

7 (1,(132)

8 (1,(123)

9 (1,02

10 (1,(13)

1

10 10

1
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in the binary form # = (#; ,..., &g), & {0, 1}. Then f: C;} — C where C,® is the
group of binary vectors with eight components, and the group operation is
componentwise addition mod 2.

All the representations of C,® in C have degree one, and in a according with (5)

8 8
o 1] = exp (1 X aty) = (—1F5 0y, 1,40, 1)

J=1

Fourier (Walsh) transform in this case defined by formula

4 _ 8 it
f@) =2 5 fay—1Fer
teCy?
For the polynomial f(f) = ¢2 — 170t — 35 we have f(w) =0 if jw| =
2]8-=1 wy > 2
A oA~
The dual object C,? is isomorphic to C,® and £ = 2 C C,? iff Q2 is a subgroup
of C.8 .
Linear checks of type (1) for this polynomial will be constructed in Section 4,
and error-detecting and correcting capabilities of these checks will be considered
in Section 6.

ExampLE 2. Let G be the multiplication group of the twelve (3 x 3)-
matrices f = (£;;), 4,7 == 1, 2, 3 over the field C represented in Table I. Note
that G is isomorphic to the direct product of the cyclic group C, = {0, 1} of
order 2 with generating element 1 and the symmetric group of permutations
Ss = {0, (132), (123), (12), (13), (23)} (see Table I). Table I lists also ail absolutely
irreducible representations for the given group G = C, X S, in GF(11) (GF(11)
is a splitting field for Cy X S;.)

All closed subsets £2 C G with the corresponding «{{2) and ' are represented
for the given group G = C, X S, in TableII.

TABLE II

@ o ) at
2y {0} 1 {0,1,2,3,4,5,6,7,8,9,10, 11}
Q1 {0: 1} 2 {07 1’ 2: 3: 4) 5}
§2 {0, 2} . 2 {Oy 1: 27 6’ 7) 8}
2y {0, 3} 2 10,1,2,9, 10, 11}
§4 {07 13 2) 3} 4 {07 1) 2}
25 {0,2, 4} 6 {0, 6}

2 0,1,2,3,4,5 12 {0}
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3. CompuTATION OF FOURIER TRANSFORMS FOR FINITE GRrRoUP G aND FieLp K

We consider methods of computation of Fourier F;  and inverse Fourier
Fgl transforms. For the case when G is a group of binary (g-ary) n-vectors, the
Fourier transform on G in the field C of complex numbers is called the Walsh-
Hadamard (Chrestenson-Hadamard) transform. In such cases, there exist
algorithms of the Fast Walsh-Hadamard (Chrestenson-Hadamard) transforms,
which require 7 - 2* (z - ¢*) elementary operations, and 27(¢") memory cells to
compute F, ¢ or Fg'c . Those algorithms are generalized for the case where G
is an arbitrary finite Abelian group and K = C in (Apple and Wintz, 1971). In
(Karpovsky, 1977¢) these algorithms were given for G and arbitrary (non-Abelian)
finite group and K = C. We generalize (see Theorem 1) this technique for the
case where G finite group isomorphic to a direct product of some groups H;
(j = 1, 1), G = [1j1 H; and K is an arbitrary field (such that char K = 0
or char K + | G| and K is a splitting field for G).

For this case (see, e.g., Dornhofl, 1971)

[, 1] = @ [ws, 1, (K). ®)

=1

where w; € H; , t;€ H;, and ® denotes the Kronecker product of matrices over K.,

Turorem 1. Let G =[], H;. For any f: G — K set f = f™ f=fm
and for any w = (wy ,..., w,) denote by (f™), (@1 yooe, @) the (d, X d, )-block
matrzx recetved by partitioning of f"(wy ,..., w,) with blocks of dimensions

(Hr:l dwr X Hr=1 wk)
Let

I = (FD, [w;, Da,, 9)
f(j—l) = <(f(j))p ’ [" ti]>ﬁj (] =nn— 1,"" 1) (10)
(Here ( f W)y (g yeuey @55 Eigg yern, n) s a{d, xd, ) block matrix recewed by
partztzomng of f 9wy ., w; t] 41 9eers In) with block of dimensions (H,_ d, X
1= d. ). Then
. d
Jlw) = T—G‘”Tf“”(w)»f(t) = f ), (K). (11)

Proof. By (3), (6), (8) we have for any w € G and any 1€ G

=7 G| <f (>§1[wf,1ﬂ>6

I"G| ¢ s Lom s Dot [onas Dot o> D ()

/

G
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and in view of (9) f(w) = d,/| G | f (), (K). Similarly, in view of (3), (7), (8)

we have
£ = <A1 e = (£ O T13),

= L™ T s s s [t D)o [ 0D, -

Hence, by (10), we have f(t) = f©)(z).

It follows from (9), (10) in view of (2) that each of the functions fU-1), (-1
(j =mn,n— 1,.,1) is defined at | G | = [],, | H; | points and the number of
memory cells for storage f¥—1 or f¢-1 equals | G |. For computation of any
specific value of fU-D or f -1 we need | H, | multiplications. Consequently,
the total number of multiplications for computing f or f by Theorem 1 equals
|G ISy | Hy .

4. CoNsTRUCTION OF OpTIMAL CHECKS

The number [[ 85| of nonzero values of 8y for the check 8y ® f = ¢ -
MEYf, 9: G— K, 84:G—{0,1}, e K) affects the number of additions
needed for checking the given f when f is calculated by a computer program, and
affects the network complexity when f is realized by a network (see Section 5).
Accordingly, we use the || 84 || as a complexity criterion for the function 8 .
Let, for the given f: G — Kand anyy e K, 1€ G,

2y, 1) & o | f(w) = ,—‘igTy[w, Al v, (&), (12)
where [0, t] = 1 for all e G.

TrEOREM 2. Let f: G — K, K be any splitting field for G with char K = 0
or char K + | G |. Then

[!»QGLH (z 1) — y), (K)forallte G (13)

LeG

(8§-L ®f)) = VSQL(t O+

#ff 2 CQy, 7).
Proof. Let 2 be a normal subgroup in G. We first prove that if

1, tet;
o) =10, i (14)
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then
% |31\ E, a,
Splo) = {TGT 115 @i (15)
0, ‘ w2
(0 is (d,, X d,)-zero matrix).
By (6)
§gu(w) = ‘ 2 [w, 1], (K). (16)
tedt ‘

If wefd, then 8gu(w) =d, /|G| | D+ E, (K). If w¢, then o # 0 since
0 & 82 for every £2 C G. Hence, by (3), (4) for w ¢ Q2

Sasle) = 7T ¥ Lot = G7 T [0, = 0, ()

et e@L

From (13) and (15) by the theorems of convolution and translation or arguments
for Fourier transform f; x we have for any w e

. J G [ 2 f(g) w = 0;
=% & (17
ym‘[waﬂ, ‘“#0;,

and by (17) in a view of definition (12) we have 2 C Q/(y, 7). Conversely, if
Q C Q4(y, 7), then (17) is satisfied for any w €2 and (13) is also satisfied.

It will be shown in the next section that the complexity of a network implemen-
tation of a check (13) for the given channel f: G — K depends only on the
complexity || 8 || = Y req 8u(L) of the function 85: G — {0, 1}.

Thus, by Theorem 2 we have the following procedure for construction of the
best checking equation (13).

1. For the glvenf G — K, compute by (6) or by (9), (1 ) f.
2. By (12), construct the sets Q/(y, 7).

3. For the given group G, construct all closed subsets .Q of the dual
object_G

4. Find yopt € K, 7opt € Gy Zopt C G from the condition

max max of2) &  max  of2) 2 o(Qopt) (18)

vor SCQHAv,7) GCRHYoppsTopt)

ol s 1GIY -
(a(Q)zwgﬁdw = lﬁ*i)'

5. Construct 8.1 G — {0, 1} by (14), for y = yopt , 7 = 7opt » & = Pops -
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We note that for any f, y, = the set £,(y, 7) depends on K. Consequently, the
set Qqpt 2lso depends on K. This poses and apparently quire difficult problem:
optimal selection of a field K minimizing the complexity of the check.

We note also that if Im f C N then transition from C to any field GF(g)
(g — a prime and ¢ > max,, f(¥)) may result only in the increasing of | Q(y, 7)!
for all y, =. Consequently, a(Qpt), generally speaking, increases and the com-
plexity of the check is reduced. (See definition of (£2) and £+ in Section 2 and
(14). See also Example 5.)

ExampLE 3. Let fi: Cy X Cy— GF(11) is defined by Table 1. (see also

Example 2; absolutely irreducible representations of C, X Cy in GF(11) are
/\

given in Table I; closed subsets @ C C, X S, , «(2) and L' are represented for
C, X S, in Table I1.)

We will find now by Theorem 2 the optimal checking equation for f; . Table ITI
lists the Fourier transform fy(w) in GF(11) clmputed by (6). Then for every r € G

_§{0,1,2,3,5, i y—0;
20l = oy, ity 0.

By (18)
Yopt = 0; Qopt = Q4 = {0, 1,2, 3}; —E)Lpt = {0’ 1, 2}~

Since for our group 17% = 2, 27! = 1 we have by (13) the following checking
equation for f;

AHB) A0 O D) + £ O 2) = 1, (GF(11), for
and £ G.

We now apply Theorem 2 in the important case of pseudoboolean channels.
By “pseudoboolean channel” we mean any device or any program calculating
a function from # binary arguments. For this case, G = C," is a group of binary
n-vectors with componentwise addition mod 2.

If K is a finite field, the necessary and sufficient condition for existence of
absolutely irreducible representations of C,* in K is that | K| be odd. The
Fourier transform in this case is known as the Walsh-Galois transform and in
the case K = C as the Walsh-Hadamard transform (Karpovsky; 1976).

We denote for pseudoboolean channels

Q(y) & {w | flo) =2} U {0} (19)

The_rl, since for pseudoboolean channels a(Q2) = | £2 | instead of (18), we have
for Qopt ’ ’

max max | Q| = _max [Q]| = |80 (20)

vER QCQv) QCQ2:(vopy)
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TABLE III
w (wy , ws) filw) falw), (GF(11)) Falw), (C)
0 (0, 0) 4 8 5
1 (1,0) 0 0 0
2 o, 1 0 9 -%
3 1,1 0 5 $
7 9 9 10 21 —4/3
0 0 10 2 -3 1

6 23

o
<o L)
o ™

-~

o
<
—

(==

RS

00
5 1,2 ( )
0 0

To simplify this procedure we may replace yop: and Qopt by vop; and 2y
where

max | Q)| = Qlyop)  and  max 2] =Dl @1)

FCQgpy)

(Note that the complexity of the check constructed by (21) is, generally speaking,
higher than that of the check constructed by (20).)

ExampLE 4. For the pseudoboolean channel f() =2 — 170 — 35, f:
C,8 — C from the Example 1 we have f(w) = 0, | || = 2?=1 w; > 2,| 240)] =
28— (8 — (&) — () = 219, yop: = 0 and £ may be chosen as a linear space
over GF(2) with basis {(1100 1000), (01100100}, (00110010), (10010001)}. Then
H, & Q' is a linear space with basis {(10001001), (0100 1100), (00100110),
(0001 0011)}. Since the for every ze C,f t = t1, we have by (13) for f(¢) =
2 — 170t — 35: 3,cn f(2 W) = 120 (W stands for componentwise addition
mod 2). Note that this check is not unique for 2 — 170t — 35. For example we
may replace H; by the subspace H, with basis {1000 1110), (0100 1101),
(00101011), (0001 0001)}.

Let G = H; X - x H, . In some cases it is important to know whether
there exists the check generated by the given subgroup H; for the channel f:
G — K. For example (see Section 5), in the case where H; is a cyclic group, the
network implementation of the check can be essentially simplified.

For every we G (G = H; X -+ X H,) we denote & = (wy ,..., wy,), wel,
w,€{0,1,..., | H,| — 1}, r = 1, 2,...,n (see Section 2). Then, for the given
f:G— K there exists a check (8y, ® f)f) = -ySHj(t on+1H G|



ERROR DETECTION AND CORRECTION 347

(Frec f(£) — 7), (K) generated by the normal subgroup H; iff for every w =
(01 yees @51 5 0, @jpg 5eny ),

w € 24y, 7). (22)

Indeed, (22) follows from the proof of Theorem 1, in view of
{o|w; =0+ = H;

ExampLE 5. Let channel f,: G — GF(11) (where G = C, X Sj) is defined
by Table I. The indexing of the elements t & G by vectors (¢, %), t; € Gy,
t,€S; is given in Table I. In this case w = (w;, wy), (w;€Cy, wy€.Sy),
wy €{0, I}, w, €{0, 1, 2}. The indexing of the representation w € G by vectors
w = (wy , wy) is given in Table I11.

From this table it follows that 5 = {(0, 0), (0, 1), (0, 2)} = £2; (2, 4). Hence
by (22) C, is the subgroup of G, generating the cyclic check

fot) -+ folt © 6) = 28¢,(t © 4) + 1, (€, = {0, 6)), (GF(11)).

It follows from Tables IT and III that if we consider f, as f,: G — C, then a
non-trivial cyclic check fro f, does not exist.

We consider now construction of linear checks for a device or a computer
program calculating the system of functions { f9,..., f-V}, f(): G — K (j = 0,
1,..., s — 1). Let G be come group with s elements. The system { f,..., f(-1)}
may then be considered as a computation channel f: G X G — K over the
group G X G, and the methods described in this section may be made of use
in finding the checks for f (and consequently for the given system {f@, ...,
f Y. In this connection we have an apparently quite difficult problem of
optimal selection of a group GY of the given order s = | GY) | minimizing the
complexity of the check.

5. IMPLEMENTATION OF LINEAR CHECKING EQUATIONS
FOR THE CoMPUTATION CHANNEL

We attribute an error e (e: G — K) to a channel f: G — K if the latter yields
f -+ e, (K) instead of f. (In other words, we use the additive method to describe
the mﬂuence of errors in the channel.)

The procedure of error detection or correction is d1v1ded in two steps, as is
usually done in coding theory: first, we compute the results of the checks (1),
called the error syndrome; secondly, we detect or correct errors by the computed
syndrome. We give now the formal definitions.

Let K; be some chosen fields and f: G — ﬂ:il K be the given channel with
the system of checks SHj ®f =@+ X, (K)). Let e: G — ()4 K; be an error
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in the channel f. By the syndrome S‘¢ of an error ¢, we mean the system of
functions S{¥ G — K; defined as:

S L8y ®(f+e)—p— A =0y, ®e (K), (j=l,,m). (23)

In this section we consider methods for syndrome computation. In practice,
computation of the syndrome S may be implemented with the aid of the
computer program or the linear discrete network containing only the delay
elements, the adder in the field K and elements realizing the group operation (.
In the first case the quantity Z;n:l || 8u, Il (see preceding section) is the number
of elementary addition in computing the syndrome .S¢®. In the second, it deter-
mines the complexity of the corresponding discrete network, i.e. the number of
elements needed for its realization and the time for computing the syndrome
(see Fig. 1, below). _

Let { fO..., f&1} be the given system of functions f¥: G — K, (j = 0,...,

error e

o
0] T

] ...|;('s-n]

9 e 4
iLinear network fon ayndrome
l::‘ompu’cation

— ewe s mmme e e P SRR S

Syndrome s{e) 1)

Block computing group operation.
One-~step delay element.
Adder-accumulator with initial state _XeK.

Block multiplying by the constant YyeK.

Block computing Kronecker delta.

Fic. 1. Network implementation of one check for the system {f‘®,..,f® 1}
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s — 1). We consider {9} as a function f: GY X G — K, where G =
{0,..., s — 1}. The network implementation of one checking equation 8y ® f =
o - A, (K) is given in Fig. 1.

Here

S (] g) . 1 jEH(“ = {0,.., 7 — 1}: {eH ={0, Zl ) sz[—l};

A 0, otherwise

H being a normal subgroup of G and H) a normal subgroup of G'; the jth
right coset of G0 with respect to H is {j#, jr - 1,..., (j + 1)r — 1}, (# = | HY|;
7 =0,.,sfr —1). As previously in Theorem 1, we suppose that @(f) =
Yoult © 7), (K).

In the network of Fig. 1. signals corresponding to

F@, f@ O &Gy fF(F O Gi1-a) and 3 S $

Lt T hiert 0 T—I,togT}II_l

are applied at successive instants of time to the input of the adders 3" in the field
K with initial state —A € K. For generation of ¢(t) = y84(¢ O =), we make use
of the fact that, by definition of 85 , we have

[H|-1

St O ) =380, b Y 81y (K).
j=1

error e

s

—~—5
Syndrome sle (t)
— i - step delay element.
4
F1e. 2. Network implementation of a check for channel f = {f® ..., f%-D} in case H
contains the subgroup H” = {0, {; ,..., {31}
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Let H contain some subgroup H' = {0, {; ..., {;_1} (not necessarily normal in
H), and let | H |/l = v be the number of right cosets of H with respect to H’,
with representatives 0, 1; ,..., ,_; . The following block diagram (see Fig. 2) is
then equivalent to that of Fig. 1.

To implement this network, we need only (I -+ v — 2) delay elements and
(I + v — 2) elements realizing the group operation. Accordingly the network
of Fig. 2. is preferable if I contains some non-trivial subgroup H'.

The network implementation of the given check 85y ® f = ¢ + A, (K) can
be further simplified if H is a cyclic subgroup of the original group G. The
network implementation of a check 8; ® f = ¢ -+ A, (K) 85(0) = 1 iff { e H,
H being a cyclic group with generator «) is given in Fig. 3.

error e
f(O) e filr-n e f(s~r) wee lfls-1)
¥ ¥
Y e ) LECI) DY o i
r-1 z
g

YT
Syndrome S(e)(n

Fic. 3. Network implementation of channel f = {f©®,...,f%~1} in case of the check,
generated by the cyclic subgroup with generator o.

Here we have identity of H at the output of the delay element 4 at the initial
time and signals corresponding to -1, ¢, = € G are applied, at | H | successive
instants of time, to the inputs of the network. It should be noted that the com-
plexity of the network of Fig. 3. does not depend on the cardinality | H | of the
chosen cyclic subgroup, which only affects the time required for the check.

Suppose now that the syndrome computation is implemented by a computer

program.
Let 8y ®f =9+ A, (K), H={(|84(() =1}, H containing some non-
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trivial normal subgroups H;, H, of group G, and let SHT(;) =1, iff {eH;
r = 1, 2. If moreover,

08y = Oy, ® 8y, OeK, (24)

(18a, I > 1,11 8g, | > 1) then we need [0z, || + |8y, || <[|3g| elementary
additions to compute St Tt is readily seen that (24) holds iff H is the smallest
normal subgroup of G containing H, and H, and © = | H; N H, |.

6. ERROR-DETECTING AND CORRECTING CAPABILITY
OF A SysTEM OF LiNgarR CHECkS FOR A CoMPUTATION CHANNEL

Let there be a system of m checks in some chosen fields K; (j = 1,..., m)
constructed in accordance with Theorem 2 for the given channel f: G — (., K;:

3y, ®f = @; + Ay, (Ky)s (j = 1,...,m). (25)

Here 0y, (t) =1 iff reH;, H; bemg normal subgroups in G, [ H;| > 1
Ime; C ﬂy 1K forall j = 1

We shall consider two methods for detection or correction of an error e by the
syndrome S (see (23) in Section 5) namely memoryless and memory-aided
decoding.

In memoryless decoding the value e(t) is computed for the every ¢t € G by
S€)(¢); in memory-aided decoding e = (e(0), e(1),..., e(] G | — 1)) is computed
by S = (StX0), S(1),..., SO G| — 1)). (We suppose that elements of G
are numbered by integers, G = {0,..., | G| — 1}). We note that the procedure
of error detection and correction is simpler with memoryless decoding, but as
will be shown in this section, the error-correcting capability of the given checking
system (25} is reduced in this case.

We give the formal definitions. Let for any set E or errors, the error e =0
belongs to E.

A set E of errors in a channel f with checks (25) is detected by memoryless
decoding if, for any e € E and for every given € G, it follows from e(t) # 0 that
there exists j €{l,..., m} such that S{(z) + 0.

A set E of errors is corrected by memoryless decoding, if for any e, , ;€ E
and for every given ¢ € G, it follows frome,(f) 7 ey(t) that there existsj € {1,..., m}
such that S{(z) # S{*(¢).

A set E of errors in a channel f with checks (25) is detected by memory-aided
decoding if, for any e € E it follows from e = 0 that there exist j € {I,..., m} and
t € G such that S'(z) 54 0.

A set E of errors is corrected by memory-aided decoding if, for any ¢, , e, € E
it follows from: e, 5 e, that there exist j€{l, 2,...,m} and e G such that
Sled(z) 5 Sie)(). : o

643/40/3-8
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It will be shown in this section that the error-detection and correction capa-
bilities of the check system (25) increase exponentially on transition from
memoryless to memory-aided decoding.

A system of checks (25) is said to be orthogonal if H; N H; == {0} (¢ + j;
t,§ = l,...,m). (Such a definition of orthogonality of computation-channel
checks is analogous to one used in the theory of threshold decoding for error-
correcting codes (see, e.g., Massey, 1963).) Hereinafter, only orthogonal checks
will be considered.

An error is said to be present in the given channel f if for the latter f + e, (K),
is computed instead of f. By the multiplicity of an error e, we mean || ¢]|. (Such
a definition of multiplicity is natural, if the errors in computing f(¢) are inde-
pendent for different ¢ — as, for example, it may be the case when f(¢) is informa-
tion stored in a memory cell with address ¢.)

We next consider the question of maximal multiplicity of errors detected or
corrected by a system (25) of m orthogonal checks, using memoryless and
memory-aided decoding.

TueoreM 3. For any channel f: G — ﬂ;il K; and any system (25) of m
orthogonal checks, we have for memoryless decoding:

(i) All errors with multiplicity at most m are detected, and all those with
multiplicity at most [m/2] are corrected. ’
(ii) There exist errors with multiplicity m 4+ 1 and [m/2] -+ 1, which are
not detected and not corrected, respectively. (Here [m/2] is the greatest integer
< mf2).
Proof. (i) 'The error e is not detected under memoryless decoding, if there
exists ¢ € G such that e(t) # 0 and

S;e)‘(t) =@, ®e)t) =e(t) + Y et OLM)=0(K;),j=1..,m (26)
teH (0}

By the orthogonality of the checks, it follows from (26) that there exist at
least m different elements ¢, ,..., ¢, such that #; = ¢ (mod H,), ; 7= tand e(t;) 40,
j=1,2,.,m Hence, ||e]l >m -+ 1, and any error with multiplicity not
greater than m will be detected by m checks.

Now let | e, || < [m/2], [l ;]| < [m/2] and e,(t)  ey(t) for some t€ G. Set
e D e — eythene(t) # Oand|| e]| < 2[m/2] < m. Then there existsj € {1,..., m}
such that S{(z) = S{(z) — Si*(2) 0, hence any error with multiplicity at
most [mf2] will be corrected.

(i) We define ¢, as follows:
e0) = 1 eolts) = = exltn) = —1 et) = 0 £{0, £y oy )

where t;€ H;, t; # 0, j = 1,...,m. Then | ¢ =m -1 but S*'(0) = 0,
(j = 1,..., m), and the error ¢, is not detected.
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Defining:
31(0) =1; el(tl) == e](t[m/zl) = —1; el(t) =0if¢ ¢{Oa by yeeny t['m/z]},
ez(t[Wn/2]+]) == ez(tm) =1 ez(t) =0if ¢ ¢ {t[m/2]+1 yeeey tm}’

(tj € HJ’ ’ t]' Ea 07] = ]7'--9 m)a we have” € ” - [m/z] + 1; H é H =m— [7’}1/2] <
/2] 4+ 1, e,(0) =~ &,(0) but

S(0) = S79(0) =

and errors e; , e, with multiplicity [#/2] 4- 1 are not corrected.

Note that for correction with memoryless decoding, use may be made of a
method analogous to the majority logic approach in error-correcting codes (see,
e.g., Massey, 1963). Let m = 2/ + 1 and || e|| <C . Then for any ¢ € G, there are
at lease [+ 1 components with the same value e(t) in a vector S©t) =
(S32(2), .., SL(t)). We thus have a simple means of error correction for a syndrome
vector (Sy(2),..., S(2)).

We now consider the maximal multiplicites of errors detected or corrected
with memory-aided decoding.

For a given system (25) or orthogonal checks, we denote M(oy ,..., o) as the
set of all # &€ G such that there exist 2, € H; , #; 5= 0, and

t =0yt O 0ty O " O Oty & Qlojty, 0,€{0, 1}, 05t; & KR o l;
i 0, 6; =10
j = L,..., m. We also resuire that for any ¢ = (oy ,..., ) and o’ = (o1 ,..., 0,,),
(¢ # o)
M(a) N M(o’) = & (& is the empty set). (27)

(Note that by setting

we have by (27), H; n H; = {0}, (¢ +# j).) If for a system (25) of checks the
condition (27) holds, then the number m of checks satisfies

m < log,| G . (28)

Condition (27) essentially implies that H; X -~ X H, is isomorphic to a
subgroup of G and this is a very strong restriction on the system (25) of checks.
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THEOREM 4. For any channel f: G — (\,_; K; and any system of m checks
S, ®f =9+ (= 1,..,m) satisfying (27), we have for memory-aided
decoding:

() Al errors with multiplicity at most 2™ — 1 are detected, and all those
with multiplicity at most 21 — 1 are corrected.

(ii) There exist ervors with multiplicity 2 and 2™, which are not detected
and not corrected, respectively.

Proof. (i) Let e(t) 5= 0 for some ¢ € G. We shall show that if the error e is
not detected, then for any vector o = (oy ,..., o) (0; €{0, 1}) there exists at
least one f,et O M)t O M(o) ={{|{ =1t Ov,veM(s)}) such that
e(t,) 7 0. Since from (27) | |, M(c)| = 2™, then it follows from the above that
lell =2m.

The proof will be by induction on || ¢ || = 23_1 a; .

Lete(f) # Oand set o = (0,..., 0). Then || o || = 0, and setting 7, = — ¢ we have
tet O M(e) and e(t,) # 0.

Let it further be assumed that ¢(z) = 0, e is not detected and for any ¢’ such
that| o' || = I(l = 1,..., m — 1) there exists t,- € £ O M(co’) such that ¢(¢.) 5 0.
Set||o]j =1+ 1. By the definition of M{c), there exist ¢’ and some non-trivial
subgroup H; (i € {1, 2,..., m}) such that || o’ | = [ and

Me)= U MEe)oL (29)

teH—{0)

Since by the assumption e(¢,/) 7 0, and if e is not detected then

Y ety O =e(ty) + 3 ety O LY =0, (K,

teH, teH {0}

and there exists at least one { € H; — {0} such that if we set t, = £, O {7}
then e(z,) == 0. But t,» e t O M{(o"), and in view of (29) we havet, =, O (¢
¢t O M(o). Consequently, all e such that 0 < || e|] < 2™ — 1 are detected.

Let now [ e || < 2™t — 1, |[ep|l <2™1 —1, ¢ # ¢ . Thene £ ¢, —¢,,
e # 0, e] < 2™ eis detected and there exists 7 € G, j€{l, 2,..., m} such that
Si(t) = Si(8) — Si7(t) # 0. Consequently, all errors multiplicity at most
2m—1 _ ] are corrected.

(ii) We now construct the non-detected error ¢, with multiplicity. 2”
Let us fix arbitrary ¢; € H (¢ 75 0) j=1..,mand set

e(t) — (—1)lel, if there exists o = (0.1 yeers O) Such that t = ,91 os; (30)

0, otherwise.
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It follows by (30) that|| ¢, ]| = 2™. We show now that for any e Gandje{l,..., m},
Si(t) = Teen, et O L) = 0, (K)). o

If for some te G and some ;€ H;, eft O ™) 5= 0 then in view of (30}
there can be found o such that £ O {7 = O}, o,2; and

SOW) = Y aft © 1) = ¢ (@ oiti)+ 5 (6 oit; O c—)

{eH; LeH;—{0} =1
m J m
= £ (@ Giti) + Y e (Q ot; OO O Giti)’ 0:9) (31)
i1 CeH0)  iel i=ji1

(Here we use the fact that H; and H;,, X --- X H,, are normal subgroups of G
with only the identity in common.) Now, if o; = 0, then in view of (30), (27),

(@UtQC”IQOUz)?éO iff =1y
i=1 =j+1
and by (30) we have
Y o(0an 0010 O o) = (-1 ()
teH~{0} i=1 =il
Hence, by (31), (30)
S](_eo)(t) — (_l)haH € (“I)Ho]m =0, (Kj), (] =1,.., m)

Analogically, if 6; = 1 then in view of (30), (27) we see that

eo(@ot ore @ crt);éO it =147,

i=j4+1

and

y eo(é OO O az-tz-):<~1>”"“-1, (K)).

B0 \i-1 imit1
(Note that || o || > 1 since o; = 1.) Consequently, by (31), (30)

S,(go)(t) ( 1)”0" 4 ( 1)1[0”—1 0 (K) (] = 1,..., m)

and e, is not detected.
To conclude this proof, we note that existence of non-corrected errors with

multiplicity 27 follows from the fact that otherwise any error with multiplicity
2™ would be detected.

Thus, it follows from Theorems 3 and 4 that the error-detecting and correcting
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capabilities of a system of # orthogonal checks do not depend on field K and
increase exponentially on transition from memoryless to memory-aided decoding.

ExampLE 6. For the pseudoboolean channel f(¢) = 2 — 170t — 35, f:
Cf — C from Example 4, Section 4 we have constructed two checks
Yeen, S(EW ) =120 (i = 1,2), H;, H, have been described in Example 4.
It is easy to verify that these checks are orthogonal and the condition (27) is
satisfied. Thus from Theorems 3 and 4 these two checks detect all double errors
and correct all single errors for memoryless decoding, detect all triple errors and
correct all single errors for memory-aided decoding.

7. OrTHOGONAL CHECKS FOR CoMPUTATION CHANNELS
AND ERROR-CORRECTING CODES

We consider in this section properties of error correcting codes generated
by systems of orthogonal checks for computation channels.

We recall some basic definitions. Let ¥, ; be a linear space over the field K
of dimension g, 4(-; ‘) being the Hamming metric in V, ., ie. for any f,,
fo€Vyx, d(fis o) =l fi — fa |l — the number of non-zero components in the
vector fy — f5. A set F C ¥V, » is called the error-correcting code over K with
distance d(F), if min; | % d(f1; fo) = d(F). It is called a linear (g, h)-code over K if
it is an A-dimensional subspace of V, i, in which case it may also be defined by
its (g — 4) X g) check matrix (F,) over K, i.e. fe Fiff (F))f = 0, (K). (32) The
density of parity checks for the (g, A)-code F is defined as

M) = g S

(&—he

The coding and decoding procedures may be simplified on decreasing of u(F),
but this leads also to reduction of a transmission rate R(F) = gh~! of a code F
(see, e.g., Gallager, 1963). We denote by f(t) the #th component of the code
vector feF (t =0,1,...,g — 1).

A function ¢: {0, 1,...,g — 1} — {0, 1,..., g — 1} is called an automorphism
of a code F if for any fEF we have f(o) € F, where ( f(o))t) & f(c(t)), t =
0,..., g — 1. The set of all automorphisms of F is a group Aut(F) which affects
the complexity of the coding and decoding procedures (see, e.g., MAC
WILLIAMS, 1964). If, for example, Aut(F) contains the group of cyclic transla-
tions of vectors from F, then we have an important class of cyclic codes. Analysis
of Aut(F) and construction of codes with the given Aut(F) is an important and
difficult problem in coding theory (MAC WILLIAMS, 1964).

We consider now the error correcting codes generated by systems of orthogonal
checks for computation channels.
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TueoreM S. For a given system of m checks in the field K satisfying (27) we
denote

F={f|8n, ®f=e; + A, (K); H; normal subgroups of G (j = 1,..., m)}.  (33)

Then

(1) for any ¢;: G— K, A;e K, F is an error correcting code over K with
Hamming distance d(F) = 2™;

(ity for ¢; =0, A = 0, (K), (j = 1,..., m), Fis a linear (| G |, | G| R(F))-
code with d(F) = 2™, R(F) = [To1 (1 — | H; |Y) and G C Aut(F).

Proof. (i) Foranyf,,freFwesete=fi —f,, (K). Then oy, ®e =0,
(K), (j = 1,..., m), eis not detected by memory-aided decoding and, by Theorem
4,|lel] = 2™ and d(F) = 2™

On the other hand there exists the error ¢, such that || ¢, || = 2™ and ¢, is not
detected by memory-aided decoding (see Theorem 4, (ii)). Hence, if f € F then
[+ e eF, (K), and d(F) = 2™

(i) Ife; =0, = 0(j = 1,..., m), then F is linear space over K. By (27)
H, x - X H,, is isomorphic to some normal subgroup of G and for any
ordering elements of subgroups H; we have ¢ = (t,,.., t,, t,.;) where
£ €{0,, | Hy | — 1} (F = Ly, m), 1y €{0yey | G| TTjoy | H; [73. Then feF
iff

|H -1

Y fstia b G e b ty) = 0 (= 1,..., m)
1,0

K

for all ¢, €{0,...,| G| H;il | H; |71}, Hence if |G| =g, R(F) = gh™! then

h:dimF:|G|R(F)=1—I—,JL-%LETﬁ(IHjI—1): IGIIl(l ~ [ Hy|™).
S A ] j=

For any feF and r € G we set f(t) = f(t O 7) then f, € F and G C Aut(F).

We note that for a code F generated by a system of orthogonal homogeneous
checks with @; =0, \; =0 (j = 1,..,m) if feF then for any : G — K
F®Y¥eF, ¢ ® feFandFisatwo side ideal in the group algebra of the group G
over the field K. We note also that code F is a special case of the low density
parity check codes considered by Gallager (1963) and one may construct by
Theorem 5 linear codes F over the given field K with the fixed Hamming
distance d(F) = 2™, with transmission rate R(F) asymptotically (| G | — o)
equals to one and with the density of checks u(F) asymptotically equals to zero.
For example, we may set G = H;-ilHj, |Hy| = =|H,|=|H| then
by Theorem 5 we have a linear (| H |™, (| H | — 1)™) code F over K with d(F) =
2"andif | G | — oo, then | H | — 00, limyg|,o, R(F) = limg| o, (1 — | H |1y =
1 and for m > 1 lim g, u(F) == limy g, | H |77 = 0.

RECEIVED: June 17, 1977; revisep: July 24, 1978
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