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In this paper using variational approach, we obtain necessary and sufficient 
conditions for a nonlinear boundary value problem to be self-adjoint. Analytic 
representations of Lagrangian and Hamiltonian are given. Several interesting 
applications to biological models are also discussed. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The study of models of biological systems in mathematical biology takes 
the form of first-order differential equations: 

Qi = Qi(t, Q, Q’, (i = 1, 2, 3, . . . . n), (1.1) 

where the functions Qi depend upon the model in question but are in 
general non-linear in nature. 

In 1964, Kerner [S] considered such models when he introduced 
Lagrangian into the study of biological systems. The main thrust for such a 
development was to find a Hamiltonian by making use of Lagrangian 
through a Legendre transformation. According to Kerner [3] the resulting 
Hamiltonian is an integral of the motion with respect to the system 
of differential equations (1.1). Earlier works in the area of Mathematical 
biology making use of Lagrangian representation have failed to explain 
two fundamental questions: 

(i) What is the criteria that a system of ordinary differential 
equations must satisfy in order to ensure the existence of a Lagrangian? 

(ii) Does there exist an algorithm that enables one to construct the 
Lagrangian from the dynamical equations? 
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The second question was proposed by Lumsden and Trainer [4]. For 
the first time Helmholtz [2] formulated such conditions for the existence of 
a Lagrangian and indicated that a necessary and sufficient condition for the 
existence of a Lagrangian for a system of ordinary differential equations, is 
that the system 

Fi(t, Q, Q’, Q”) =O (i’ 1, 2, 3, . ..) n), 

be variationally self-adjoint. Later various authors have studied the 
so-called inverse problem of mechanics. In 1978, Santelli [7], comprehen- 
sively studied and wrote on the problem of classical mechanics. On the 
other hand, modern analysis of the inverse problem of classical mechanics 
makes use of a variety of sophisticated mathematical tools. 

In 1982 Gregory H. Paine [S] obtained the self-adjoint conditions for a 
system of n-first-order ordinary differential equations by variational 
approach. One of the theorems of [S] also gives criteria under which a 
Lagrangian representation for a system of ordinary differential equations is 
possible. 

In this paper we mainly concentrate on nth-order nonlinear differential 
systems and by using variational approach, we obtain the adjoint 
equations for &h-order systems. Using this we give necessary and sufficient 
conditions for an nth-order system to be variationally self-adjoint. We 
observe that the conditions for self-adjointness to first-order systems 
obtained by Gregory H. Paine [S] become a particular case here. The 
results obtained here are validated by certain biological systems, 

2. VARIATIONAL APPROACH TO SELF-ADJOINTNESS 

Let us consider a system of n - &h-order nonlinear differential equations 

Fi = Fi(t, Q, Q’, ...) Qcn’) = Q!‘Q - Q -( t l t 7 Q, Q’, . . . . Qcn)) = 0, (2.1) 

where Q E R” (i = 1, 2, 3, . . . . n). 
We assume that system (2.1) satisfies certain global existence theorems. 
The main aim of this paper is to give answers to the questions posed in 

regard to the system (2.1) and give a criterion for a system (2.1) to be 
variationally self-adjoint. 

Consider only the functions F, rather than the equations F, = 0, we can 
characterize by one-parameter functions { Qi(t, a)}, t E (t,, tz), where a is 
infinitesimal (i = 1, 2, 3, .,., n). As from the definition the variation of 
admissible paths are 

y;(,)=dei 
da a=O 

(i= 1, 2, 3, . ..) n) (2.2) 
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are the finite parts of the contemporaneous first-order variations of Qi, that 
is, SQi = y,(t) LX, where a is infinitesimal. The system of variational forms of 
(2.2) are obtained by 

dFi 
Mi=-& _ 

U-0 

where 

aQi aQ: 
y=aa E=o' 

(n) _ aQl"' y'=daz;, >..., Y -aa . 
TX=0 

Denoting 

ar;, 
s=P0. 

I= ,, af- p 
aQI 

"F'+ aFi 
aQI'- 2, . ..$@-)=P., 

(i = 1, 2, 3, . ..) n). 

We get 

M=[P,y+P,y’+P,y”+ ... +P,y’“‘]. 

or 

M= i Pry”‘. (2.3) 
r=O 

Here the variation of yi is not unique. In fact, there exists a family of 
admissible variations which we shall denote by {Mi}. By considering more 
admissible paths Qi(t, tl), Qi(r, a), we can construct more elements of this 
family. Then the variations yield 

aQi _ @i 
Yi=x a=O9 Yi=x z=02 .... (2.4) 

For each system of variational forms Mi(y), we can define an adjoint 
system fii(y) that is related uniquely to M,(y). Now we define an adjoint 
system of variational forms of Mi. 

DEFINITION 2.1. A system of variational forms fii( y) is called the 
adjoint system of forms Mi( v) when there exists a function J(y, jj) such 
that 

(2.5) 
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Equation (2.5) is called the Lagrangian identity. From (2.4) we can write 

yM( y) = [ yP, y + yP, y’ + yP, y” + . . . + yP, y’“‘] 

=y[yP,-(yP,)(‘)+(yP,)(2)-(yPj)(3)+ ... +(-l)‘(yP,)“‘] 

+$[ f (-l)r~l(pp,)“-“]Y+[ f (-1)r(Yfy-2~]Y’ 
r= 1 r=2 

+ i (-,),.I (ypr)‘r-3’ y”+ . . . 

[ r=3 1 

Defining 

M(y)= f (-l)‘(YPr)“’ 
r=O 

(2.6) 

We get 

J(y,j)= i (-1)“-‘)(yP,)‘‘-1’ 
[ 1 [ y+ f (-l)‘(yP,)“-” 1 y’ 

r=l r=2 

+ f (-l)lfl 
[ 

(ypr)(r-3) 1 y”+ . . . . (2.7) 
r=3 

Thus we obtain unique definitions for J(y, J) and the adjoint M(y). Now 
we define self-adjointness for a system of variational forms of Mi(y). 

DEFINITION 2.2. A system of variational forms Mi(y) is said to be self- 
adjoint if it is identical with its adjoint form Ai for all y, that is, 
Mi(y) = n,(y), (i = 1, 2, 3, . . . . n). Therefore, we must have 

n n 

c P, y”’ = c ( - 1)’ (yP,)“‘. (2.8) 
,=O r=O 

From (2.8) we write the conditions for self-adjointness for a system of 
variational forms. First we write, the conditions for n-first-order ordinary 
differential equations: 

Fi(tv Q, Q’)=Qi-Qi(t, Q, Q’)=O, (i= 1, 2, 3, . ..) n). 

Utilizing (2.8), we get 

B, - PO = Pi” 

P,+B,=O. 

(2.9) 

(2.10) 
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Thus for n&h-order ordinary differential equations the self-adjoint 
conditions are 

P, = i ( - 1)’ (P,)“’ 
r=O 

P, = i (-l)‘r(P,)“-1) 
r=l 

P, = P, - 3P5” + 6Pi2’ + lOPi3’ + . . . 
. . . . . . . . . 

P,=(-l)‘P,. 

(2.11) 

The Lagrangian representation is given by 

UC Q, Q’, . . . . Qcn)) = - f Qj J6’ Fi(t, Q, Q’, . . . . Q’@) dt. (2.12) 
i= I 

The theory developed in this section will now be applied to certain 
biological models. 

3. REPRESENTATION OF LAGRANGIANS FOR BIOLOGICAL MODELS 

(a) A Mathematical Model of Glucose and Insulin Interaction 

Let G(t) denote the level of blood glucose at time to and H(t) represent 
the net hormone level on the blood at the same tie t, the weighted average 
of all endocrine secretions which tend to alter blood glucose is assumed to 
be included in H(t). Assume that G,,, Ho are the constants, fasting values of 
glucose, and net hormone level, respectively. Define x,(t) and x2(t) by the 
equations. 

x,(t)=G(t)-Go 

X*(f) = H(t) - Ho. 

When it is assumed that G and H are not too different from Go and Ho, 
then we get 

xi(t) = -m,x, -??Qx2 

x;(t) = -m3x2 + m4xI + u(t) 
(3.1) 

with m,,m,,m,>O, m,>O. 
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In the absence of u(t), that is, the rate of infusion exogeneous hormone, 
(3.1) becomes 

x;(t)= -m,x, -m2x2 
(3.2) 

x;(t) = -mjx2 + mqx,. 

Obviously, this system of equations does not satisfy the self-adjoint con- 
ditions. However, by multiplying the system (3.2) by a nonsingular skew- 
symmetric matrix function G(t, x), we obtain 

From (2.13) and considering a purely time-dependent g, we get a partial 
differential equation of the form 

ag -=g(m,+m,)+~(m,x~+m~x~)+ 
at $( mjxz -m4x,). (3.3) 

1 2 

Solving for time-dependent g, we get 

g(f)= Cexp(m, +md 4 (3.4) 

where C is an arbitrary constant. Using (2.12) (for n = 1) we get the 
corresponding Lagrangian as 

L(t, x, x’) = pm1 fm,)t [x2x; -x,x; + rn4x: + m2x: + (m, - m3) x1x2]. 

(3.5) 

Now an integral of motion H for the system of the ordinary differential 
(3.2) is 

H(t, x,, x,)= pmL+““’ [(m,-m,)x,x,-m,x:-m,xf]. (3.6) 

For individuals with diabetes there is an impaired ability to produce 
endogeneous insulin and eventually, in this case, the system (3.2) is 

L( f, x, x’) = +Cpl +Y)’ [(m3-m,)xlx2-m241 (3.7) 

and an integral of motion H is 

H(t,xl,xz)=~Ce(m’+“3~‘[(m,-m,)x,x2-m,x~]. (3.8) 

In 1964, Kerner [3] found the Lagrangian corresponding to the time- 
independent case by taking the diagonal elements (here m2 = m4 = 0) to be 
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zero for a linear system of type x’ = Ax in which A has been diagonalized 
from the beginning A,= 1,6,. Now analyzing the above system with 
diagonal A for a time-independent G, the function g must satisfy the partial 
differential equation 

(3.9) 

A solution is of the form 
g(x,, x*) = x;*2/+;~1/~2 (4 z 22). 

The time-independent Lagrangian can be obtained from (2.12) and is 
given by 

412 -&l~l - ~l/h 
~w)=(~,+1,2)2~l x2 [xix; -x2x; + (A, - 4) x1x2) (3.10) 

and, correspondingly, an integral of motion is 

RI& 
WXl, x2) = (& + 1,)2 cu2 - 4) XIXZI. 

If 1, = A2 the expression g(x,, x2) is also a valid solution of (3.9). However, 
when applying (2.12), the matrix function G(x) gives an undefined integral. 
Hence we have to search for another G(x) and also note that the 
Lagrangian obtained here (3.10) is not same as obtained by Kerner [3] for 
the time-independent Lagrangian which tells the fact that the represen- 
tation of the Lagrangian need not be unique. 

(b) Malaria Model 

The probability per unit time that an uninfected human becomes infected 
is called the innoculation rate. This probability depends on the infec- 
tiousness of mosquitoes. Nevertheless it seems possible to avoid modelling 
disease dynamics in the mosquito population. 

The DMT (Dietz, Molineaux, and Thomas) Method is the innoculation 
rate without any dynamical equations for mosquitoes by means of an 
epidemiological index called the vectorial capacity [ 11. Although Ross [6] 
predated the formal definition of that index, one of his models used the 
same device. The other model included a differential equation for infected 
mosquitoes. 

In both of Ross Models [6] the human population size and the density 
m of mosquitoes are assumed constant. Let y(t) be the proportion of infec- 
ted people and x(t) the density of infected mosquitoes. Then the model is 

y’=bxa(l-y)-yy 

x’=c(m-x)ay-px. 
(3.11) 
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The parameters a, b, c, y, p are: a is the human biting rate of mosquitoes, b 
is the proportion of bites of mosquitoes infections on susceptible humans 
which result in infection, c is the proportion of bites by susceptible mos- 
quitoes on infections huans which result infection, y is the recovery rate 
from parasitemia, and p is the death rate of mosquitoes and (b x a) is the 
innoculation rate. 

System (3.11) can be written as 

x;=x,+x,+2x,x2 

x;= -x,-xx,+2x~x,. 

As the system cannot satisfy directly the self-adjoint condition, however, we 
multiply the system by nonsingular skew-symmetric matrix function 
G(t, x), we obtain 

Considering purely time-independent g, we get partial differential equation 

-$(x,s-x~+2x~x~)-~(x,+x2-2xIx2)=g(2x1+2x2). 
I 2 

Time-independent solution of the above partial differential equation is 

g(x,, x2) = Kecxzpxl), 

where K is an arbitrary constant. The Lagrangian, correspondingly, for 
time-independent g, from (2.12), is 

e(X2-X1) 

a x’) = (x1 +x2)2 [x~x;-x,x;-2x1x*-(x:+x;)+2(x~x2-x1x~)]. 

We get, correspondingly, an integral of motion H, 

e(x2-xI) 

H(x, x’) = (x1 +x2)2 [2(x,x, - 4x2 +x,x:, + (x: +x:,1. 

(c) Model of Immuno-Competent Cells 

Immuno-competent B cells arise by difference of stem cells and are 
especially sensitive to induction of tolerance at an immature stage. 
Therefore we consider two populations of B cells which can react 
specifically with antigen mature immuno competent cells (x ceils) and 
immature cells (I cells). This enables us to use the same model to 
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M 01 (1) b*dt) h 

FIGURE 1 

investigate experimental situations in which both I and x cells are irrever- 
sibly inactivated and also situations in which only Z cells are assumed to be 
irreversibly inactivated. 

Populations of immature (I) and mature (x) immuno competent cells 
and rates of cell transfer. Also the inclusion of an Z cell population in the 
model introduces an implicit time delay in the onset of reactivity after the 
induction of tolerance such a time delay is observed in experiments. Let 
S, a, and b be the rates of differences of precursors of I cells, of maturation 
of Z cells into x cells (cells which die before reaching the mature state are 
not considered) and of natural death of x cells, respectively, and let or(t) 
and Ma(t) be the rates of elimination of x cells and Z cells by antigen (M is 
dimensionless constant > 1) reflecting the fact that Z cells are more sensitive 
to tolerance induction than x cells). Then the development Z[i(t)] and 
X[x(t)] cell populations with time can be described as 

di( t) -=a-- [a+Ma(t)] i(t) 
dt 

dx(t) -=ai(t)- [b+a(t)] x(r); 
dt 

(3.15) 

thus in the absence of 6, this system (3.15) can be written as 

x; = --a,x, 

x;= -u,x,+a,x,. 

As in the earlier sections we obtain the Lagrangian for time-dependent g, 
from (2.12) 

(+J1+ W)f 
L( t, x, x’) = 2 [x2x; -x1x; + (a, - u2) XIX2 + u,x:1. 

Now an integral of motion H is 

H( t, x, x’) = 2 ct~2-a,)x,x,--a,41. 
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