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Abstract

Multi-stage versions of Jacobi relaxation are studied for use in multigrid methods for steady Euler equations.
It is shown that these multi-stage versions allow much more general and much more efficient multigrid methods
than possible with classic relaxation methods.
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1. Introduction

Upwind methods of flux-difference type used on steady Euler equations generate, in the first-order
accurate form, a set of discrete equations of so-called positive type. This set can be solved by any
classical relaxation method in multigrid form. The set of discrete equations generated by a higher-
order accurate form does not have this property and, as a consequence, cannot be solved in the
same way. The common approach is then to use defect correction [4,7,8]. In this procedure the
multigrid method is applied to the first-order accurate form and constitutes an inner iteration for
a higher-order correction only performed on the finest grid. This procedure proves to work well in
many applications. The speed of convergence is however largely determined by the outer iteration and
sometimes is found to be rather disappointing, especially when the first-order and the higher-order
solutions differ significantly. It can be expected that if the higher-order approximation also could be
used in the multigrid itself, a better performance could be obtained. A second difficulty is that often
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convergence cannot be obtained, unless a suitable initial flow field is specified, i.e., there is a risk of
choosing an initial approximation which is out of the attraction region of the iterative method.

In principle, both difficulties can be avoided by using time stepping methods on the unsteady equa-
tions instead of relaxation methods on the steady equations. The higher-order accurate discretization
can then be used on any grid, so that the defect correction becomes unnecessary and convergence is
guaranteed, starting from any initial field due to the hyperbolicity of the equations with respect to
time. Many multi-stage time stepping methods with optimization strategies for the smoothing have
been proposed for this purpose in recent years. We cite the methods of [1,12,13], among others.

The drawback of time stepping is clearly that, even if local time stepping is used, the smoothing
only can be tuned well for the fastest wave components in the flow field. This results in a rather poor
multigrid performance. As a remedy to this, we propose to use Jacobi relaxation as a basic algorithm,
equivalent to single-stage time stepping, and to bring in multi-staging in the same way as single-stage
time stepping is transformed into multi-stage time stepping. This procedure has the advantage that all
wave components are first scaled so that, so to speak, they move all with the same CFL number. This
guarantees optimal tuning for all wave components. Nevertheless the hyperbolicity with respect to the
relaxation direction, i.e., the fictitious time, is not lost. The principle of combining Jacobi relaxation
and time stepping was first suggested in [9], but not worked out. A preliminary analysis of the
possible multigrid performance was made recently by the authors [6]. Here we elaborate further the
principle and analyse the performance.

2. The flux-difference splitting method

The discretization is based on the vertex-centred finite-volume method. Fig. 1(a) shows a control
volume centred around a vertex (i, j) in the grid. The control volumes are formed by connecting the
centres of gravity of the surrounding cells.

® i+l
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Fig. 1. Control volumes in the interior and on a solid boundary.
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To define the flux through a side of a control volume, use is made of the flux-difference splitting
principle. Euler equations in two dimensions take the form
au 4 d
af %8 _

0, 1
at  dx dy (D

where U stands for the vector of conserved variables and f and g are the Cartesian flux vectors,
given by

p é)u pv
_ | pu | pw+p _ pUv
U - pU > f - puU y g - pUZ _l_p > (2)
pE puH puH

with p the density, u and v Cartesian velocity components, p the pressure, E = p/(y—1) p+ su* + 1v*
the total energy, H = yp/(y — 1)p+ 1u* + J0° the total enthalpy and y the adiabatic constant.
For the side ab of the control volume, the flux-difference can be written as

AF; = (nAf i + 0y A480001) Siv 25 (3)

where Af;;.; and Ag;,.; denote the differences of the Cartesian flux vectors, n, and n, are the
components of the unit normal to the side ab in the sense i to i + 1 and s;,/5 is the length of the
side. In all formulas, nonvarying indices are not written.

The differences of the Cartesian flux vectors are

Afiinr = fisr — for Agiivi = giv1 — &is 4)

where f;, g; and fi,,, gi.1 are the flux vectors calculated with the flow variables in node (i, j) and
node (i + 1, ), respectively.
The flux-difference defined by (3) can be written as

AF; i = A (U) — U i1 = A AU 8ic1 2 (5)

where A;;.; is a discrete Jacobian matrix.

To determine this matrix, we use here the polynomial flux-difference splitting. This splitting tech-
nique was introduced by the first author [3]. Full details of this splitting are given in [4,5]. The
polynomial flux-difference splitting is a simplified form of the splitting introduced in [10]. The
precise splitting used is not really relevant for the method we describe here. Therefore we do not
detail the method any further. The only important result is (5).

The discrete Jacobian A, ., in (5) has real eigenvalues that are discrete analogues of the normal
velocity through the side (twice), the normal velocity plus and minus the velocity of sound. The
Jacobian also has a complete set of eigenvectors. These properties are a direct consequence of the
hyperbolic character of the Euler equations with respect to time.

The Jacobian matrix can be split into a positive part and a negative part where the parts correspond
to the positive and the negative eigenvalues respectively. This leads to the splitting of the flux-
difference

AF 1 = AL AU S p + AL AU s e (6)
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The first-order upwind flux is defined by

Flop=3(Fi+ Fun) = 5(Al = A AU S, (7)
where

Fi=(n.fi+ny8) 501/, Fioi = (nefiy1 + 1y8i41) Siv12-
Using (6), expression (7) can be written as

F,-]+1/2 =Fi+ A1 AU 802 (8)

This way of writing the flux shows the incoming wave components.
Following Van Leer’s so-called MUSCL technique [11], a higher-order accurate upwind flux can
be defined by

—~—t
l+1/2 F+1/2+ %A$+14Ui,i+1si+l/2 2Atl+1AUH+ls‘+l/2’ (9

where Zl//,.,l. 41 18 a combination of the centred difference AU;;,, and an upwinded difference, which

for a regular grid is U; — U;_,. Similarly AU, ;+1 18 a combination of AU;,,, and U, — Uy,.

We denote by C2 the second-order accurate scheme obtained with the centred difference and by
U2 the second-order accurate scheme obtained with the upwinded difference. Van Leer’s third-order
accurate k = % scheme is obtained by taking a linear combination of two third of the centred
difference and one third of the upwinded difference. We denote this scheme by K3. The first-order
upwind scheme is denoted by Ul. The K3 scheme will be used in the sequel mainly for reasons of
ease of analysis. We do not consider nonlinear (TVD or ENO) schemes. A TVD scheme was used in
[4,5] based on the flux-extrapolation technique of [2]. For linear schemes this technique is identical
to the MUSCL technique. For nonlinear schemes the two techniques differ.

3. Boundary conditions

The examples to follow are channel flows. These internal-type flows have solid boundaries, inlet and
outlet boundaries. For inflow and outflow boundaries, the classic extrapolation procedures are used.
At subsonic inlet, the Mach number is extrapolated, while stagnation conditions and flow direction
are imposed. At subsonic outflow the reverse is done. This means that stagnation properties and flow
direction are extrapolated while Mach number is imposed. At supersonic inflow, all flow quantities
are imposed. At supersonic outflow, all quantities are extrapolated.

At solid boundaries, impermeability is imposed by setting the convective part of the flux equal to
zero. Thus a special flux definition is used for the boundary edges of the control volumes of boundary
nodes.

Using the notation introduced in (8), for (i, j) a point on the boundary, (i + 1, ) is a fictitious
point outside the domain (see Fig. 1(b)). The only meaningful definition of the flux is then

Fip=F, (10)

i.e., the flux is calculated with the variables in the node (i, j). Impermeability then simply means
that the convective part of F; is to be set equal to zero.
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To give the same appearance to a boundary flux as to an interior flux, all flux expressions can be
written as

Fiyp=F+ A AU 802 + e, (11)

where fc denotes the flux correction for higher-order accuracy. For any other edge than ab, the flux
expression is obtained by replacing the node (i + 1, j) with the corresponding node.

For a boundary node the point (i + 1, j) does not exist. This can be introduced in (11) by setting
the term fc to zero and by taking the values of the variables in the fictitious node (i + 1, j) equal
to the values of the variables in the node (i, j). The matrix A7, in (11) is then calculated with
the values of the variables in the node (i, j). Of course, since the difference of the variables is zero,
the first-order difference part in (11) is also zero. The impermeability is introduced in the term F.
This means that the flux F; is to be replaced by F; — F/, where F! is the convective part of the flux.
The term —F] can be seen as a new flux correction term fc. As will be discussed in the next section,
the matrix A, at a solid boundary plays an important role in the relaxation method, although it is
multiplied by a zero term.

4. The multi-stage Jacobi relaxation

In earlier multigrid formulations for steady Euler equations the Gauss—Seidel relaxation method was
always used [4,5]. Gauss-Seidel relaxation was preferred to Jacobi relaxation because of its much
better smoothing properties (effectiveness associated to the coarse grid correction) and much better
speed of convergence (effectiveness associated to the relaxation method itself). A simultaneous
relaxation method like the Jacobi relaxation has the advantage of being easily vectorizable and
parallelizable. The only drawback is that a simultaneous relaxation method, at least in its basic form,
is much less effective than a sequential method.

To repair this, we suggest to bring in multi-staging into the Jacobi method in the same way as
multi-staging is used for time stepping methods and to use the optimization results with respect to
smoothing known for time stepping schemes.

For the time-dependent Euler equations, the discrete set of equations associated to the node (i, j)
reads

d

U,
Vol,;— 4+ Ay (Ux — Ui)sk+ Y fe=0, (12)
K K

where the index K runs over the faces of the control volume and the surrounding nodes. A single-stage
time stepping method on (12) gives

VO]," _
<—At_l) 8U;; + Yy Ag(Ug = Upsc+ ) fe"=0. (13
K 1 4

The Jacobi relaxation applied to the steady part of (12) reads

Y AU = Ursg+> " =0. (14)
K K
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Using increments 8U;; = U'F' — U7, this gives

i iLj°

(-ZA,;SK> 8U,;+ > Ag(Up —Ul)sg +y_fc" =0. (15)
K K K

The 4 x4 matrix coefficient of 8U; ; in (15) is nonsingular. In the expressions (13)-(15), the matrices
Ay are on the time or relaxation level n. The difference between (single-stage) Jacobi relaxation
(15) and single-stage time stepping (13) is seen in the matrix coefficient of the vector of increments
5Ui,j-

In the time stepping method, the coefficient is a diagonal matrix. In the Jacobi method, the matrix
is composed of parts of the flux Jacobians associated to the different faces of the control volume. The
collected parts correspond to waves incoming to the control volume. In the time stepping, the incoming
waves contribute to the increment of the flow variables all with the same weight factor. In the Jacobi
relaxation the corresponding weight factors are proportional to the wave speeds. As a consequence,
Jacobi relaxation can be seen as a time stepping in which all incoming wave components are scaled to
have the same effective speed, i.e., all have a CFL number equal to unity. Using terminology already
in use nowadays, time stepping can be referred to as scalar time stepping while Jacobi relaxation can
be referred to as matrix time stepping.

For a node on a solid boundary, an expression similar to (15) is obtained, provided that for a
face on the boundary the flux expression (11) is used and that the difference in the first-order flux-
difference part is introduced as U?; — U7}', similar to the term Uy — U7}' which is used for a flux on
an interior face. So, in order to avoid a singular matrix coefficient of the vector of increments in (15),
this special treatment at boundaries is necessary. A boundary node can then be updated precisely in
the same way as a node in the interior. This way of treating the solid boundary is different from the
treatment used earlier [4,5]. The modification is necessary to give the appearance of a time stepping
procedure to the relaxation procedure.

To bring in multi-staging is now very simple. For instance, a three-stage modified Runge-Kutta

time stepping is given by

t t
UO=U,-"A, U' =U° + av R, U> =U° + apv R,
J VO],"j VO],',]'
At
3 = R2, Un+l = U3,
=0+ a3VVol,»,_,- i
with
R'==" AUy — Ul sy — > 1. (16)
K K

The parameter v stands for the CFL number. The parameters «, a; and a; are to be chosen, except
for a3 which is equal to 1, due to the introduction of the CFL number.
Similarly, a three-stage Jacobi relaxation is given by
Ul =U" U =U° + a,véU°, U? = U° 4+ a,wéU’,

ij?

U = U° + a3v8U7, Ut =07,

with
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(-ZA,;ISK> 8U' =R (17)
K

So 8U' is the increment obtained from the single-stage Jacobi relaxation method. The method
is converted to a multi-stage time stepping if SU' is replaced by the increment obtained from the
single-stage time stepping method. For the multi-stage Jacobi relaxation method, the parameter v
loses its significance as the multiplication factor of the time step. It is now a multiplication factor of
the increment due to the basic single-stage relaxation.

5. Optimization of the multi-stage parameters

We follow here the Fourier representation method for operators and solution methods used, e.g., in
[12]. For the scalar model equation

du ou

a T

single-stage time stepping for a first-order discretization scheme gives

At
n+1 n n noy 19
u, u =—a x(u, u_,) (19)

After inserting harmonic data

u(x) = Pe*,

0, a>0, (18)

where j = /—1 and w is the wave number, one obtains
P — " = pFP",

where
F = —(1 —eioary

is said to be the Fourier symbol of the discretization operator.

For the first-order upwind discretization, the Fourier symbol describes a circle in the complex plane
with diameter [—2,0] since —7 < 6 = wAx < 7. The C2, U2 and K3 single-stage time stepping
schemes for (18) are respectively

-1 n _ l.n _ 1.n
' —up = —v(Gu, — Quy),
n+1 no_ 3.0 n 1.n
u;m — = v = 2ul )+ su ),
n+l __on _ _ 1l n 1n __.n 1,
i wp = —v(Fuy, + U — w4 gu,).

The Fourier symbols for the schemes are shown in Fig. 2. Only the upper half of the diagrams is
shown. The C2 scheme is not represented. Its Fourier symbol is a line on the imaginary axis.
Similarly the multi-stage stepping on harmonic data gives

@' =@ 4 @, AP, @ =@ + a, AP, @ = @ + AP,
where A = v F.
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Im|F(6)]

v2
K3

u1
Re[F(0)]

1 i 4
t + 1

4 —1

Fig. 2. Fourier symbols for the first-order upwind method (U1), the second-order upwind method (U2) and the third-order

x = £ method (K3). The dot denotes the location of the |6] = j7 wave.

The amplification factor is
A=14+ 2+’ +aaA’.

This amplification factor can be visualized in the complex plane by contours of constant values for
varying complex A.

Fig. 3 shows the contours of the amplification factor for the three-stage stepping scheme together
with the Fourier symbol of the first-order discretization multiplied by the CFL number for the
parameters «; = 0.1481, a; =0.40, a3 = 1.0, v = 1.5 according to [12}.

The optimum set of coefficients given in [12] corresponds to a minimization of the maximum of
the amplification factor in the high-frequency domain, i.e., 37 < || < 7, under the constraint that a
maximum number of zeros occur. For an odd number of stages this corresponds to a zero value of
the amplification factor for the highest wave component, i.e., |#| = 7. For an even number of stages,
this is not the case. Precisely the zero value for the highest frequency is a desirable property. It is
found that multigrid methods based on schemes with an odd number of stages perform better than
methods based on an even number of stages.

Optimization strategies have been defined by many other authors for use with higher-order schemes
for Euler and Navier-Stokes equations [1,13]. For these equations and discretizations, it is not always
clear how an optimum should be defined. For the first-order upwind discretization there is less doubt.
For a perturbation with the highest possible wave number, the perturbation values in the surrounding

Im[}] Avi

Re[)] )

K)Z T'l‘

Fig. 3. (Left) Contour levels of the amplification factor for three-stage stepping optimized for the first-order operator
(coefficients 0.1481, 0.40, 1.0) with the locus of the first-order operator multiplied by » = 1.5; amplification levels shown:
1, 0.5, 0.2, 0.1, 0.05. (Right) Resulting amplification factor in function of frequency; results according to [12].

i
—




E. Dick, K. Riemslagh/Journal of Computational and Applied Mathematics 50 (1994) 241-254 249

Im[)] Axa
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Fig. 4. (Left) Contour levels of the amplification factor for three-stage stepping optimized for the third-order operator
(coefficients 0.2884, 0.5010, 1.0) with the locus of the third-order operator multiplied by » = 1.3254; amplification levels
shown: 1, 0.5, 0.2, 0.1, 0.05. (Right) Resulting amplification factor in function of frequency; results according to [12].

nodes in (15) can have a sign opposite to the sign in the central node (i, j). The single-stage
Jacobi relaxation according to (15) then returns a perturbation of the increment of the values in the
node (i, j) equal to minus two times the original perturbation. This is exactly the same response
as the model equation (19) for » = 1. This means that the perturbations with the highest wave
number are exactly annihilated. The amplitude reduction of lower wave number perturbations cannot
be seen so clearly. It is very difficult to recognize a correspondence between medium wave number
perturbations in an actual grid and wave numbers around %77 in the model equation. Since however,
according to Fig. 3, the whole high-frequency region %77 < 16| € 7 is strongly damped, we can
believe that the damping of medium to high wave number components in the actual grid is strong for
all possible perturbation patterns. Investigations on the sensitivity to the optimization strategy show
that the damping of the medium wave numbers is not very critical for good multigrid performance.
It is important to have a very good damping of the highest wave numbers. In this study, we use the
optimization results for three-stage stepping according to [12].

Fig. 4 shows the contours of the amplification factor for the three-stage stepping scheme optimized
for the third-order operator together with the Fourier symbol of this scheme multiplied by the CFL
number. The parameters are a; = 0.2884, a, = 0.5010, a3 = 1.0, v» = 1.3254 [12].

Fig. 5 shows a similar representation for three consecutive single-stage Jacobi relaxations with
relaxation factor 0.5, interpreted as one operation with CFL number equal to 1.5. Three consecutive
single-stage Jacobi relaxations with relaxation factor 0.5 can be seen as a three-stage scheme with

parameters «; = é, a, = % azy=1,v=1.5.

6. Performance results

To illustrate the performance of multi-stage Jacobi relaxation, we make a comparison with Gauss—
Seidel relaxation both for the first-order accurate discretization and for the third-order accurate
discretization. The channel geometry considered is shown in Fig. 6. The grid has 32 x 96 cells. Four
consecutive grids are used. The coarser grids have 16 x 48, 8 x 24 and 4 x 12 cells. The height of
the channel is equal to the length of the perturbation. The height of the circular perturbation is 4.2%
of its length. The grids used have an almost uniform distribution of the mesh size.

The same multigrid structure as in [4,5] is used. The W-cycle is employed. On each level there is



250 E. Dick, K. Riemslagh/Journal of Computational and Applied Mathematics 50 (1994) 241-254
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Fig. 5. (Left) Contour levels of the amplification factor for three consecutive Jacobi relaxations with relaxation factor 0.5
with the locus of the first-order operator multiplied by » = 1.5; amplification levels shown: 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01.
(Right) Resulting amplification factor in function of frequency.

one pre- and postrelaxation consisting of either three Gauss-Seidel relaxations or a three-stage Jacobi
relaxation. The defect restriction operator is full weighting. The computation starts on the coarsest
grid. To evaluate the work, the number of relaxation steps or stages are counted and the number of
defect corrections and defect calculations. One basic operation on the finest grid is considered as
one work unit. So the work unit corresponds to 3201 point-relaxation operations. A defect correction
or a defect calculation is somewhat less expensive than a relaxation operation. Nevertheless these
operations are given the same weight to compensate for the neglect of the work involved in the grid
transfer. Since precisely the defect operations are connected with grid transfer, this is believed to
be fair. A relaxation operation for the first-order and for the third-order operator are counted to be
equivalent. This is not completely correct. The third-order operator is slightly more expensive.

Two flow fields are considered: a transonic flow field corresponding to an outlet Mach number of
0.79 and a supersonic flow field corresponding to an inlet Mach number of 1.39. Fig. 7 shows the
results obtained by the K3 scheme in form of iso-Mach lines. The quality of the solutions is not
particularly good, due to the rather low resolution in the shock regions. The solutions are not free of
wiggles, due to the linear character of the discretization.

Fig. 8 shows the convergence results for the first-order accurate discretization using Gauss-Seidel
relaxation, three-stage Jacobi relaxation and three consecutive single-stage Jacobi relaxations. Con-
vergence results are expressed by the log,, of the L..-norm of the defect as function of the number

T
T
1
1
T
T

T

O 5

A A

il

Fig. 6. Grid 32 x 96 cells used in the channel test case.



E. Dick, K. Riemslagh/Journal of Computational and Applied Mathematics 50 (1994) 241-254 251

////JM N

Fig. 7. Iso-Mach lines calculated for the transonic test case Mach 0.79 (top) and the supersonic test case Mach 1.39
(bottom). Iso-mach lines per 0.02.

of work units. Three Gauss-Seidel relaxations with relaxation factor 0.95 are done per level. The
relaxation starts in the left bottom corner, goes up in the first column to the upper boundary, then
goes down in the second column to the lower boundary, etc. So the general relaxation order is from
left to right, i.e., along the flow. The convergence for the Gauss-Seidel relaxation is uniform. The
convergence history for the Jacobi relaxations shows a region of stagnation. As is well known, this
is due to the alignment of the grid lines with the flow. For the pure convection wave components,
perturbations perpendicular to the streamlines are not smoothed. These perturbations have to be con-
vected out. In principle, the sequential Gauss-Seidel relaxation convects these perturbations out in
one sweep. The Jacobi relaxation requires a number of steps. Single-stage and multi-stage Jacobi
relaxation have almost the same performance, showing that the amplitude reduction for medium
frequency waves is not very critical and that the essential feature is the complete damping of the
highest frequency wave. So, for the first-order discretization, there is no improvement in going from
single-stage Jacobi relaxation to multi-stage Jacobi relaxation. The same conclusion does not always
hold for higher-order discretizations, as we explain in the sequel.

Fig. 9 shows the convergence behaviour for the K3 scheme, using defect correction. This means
that the multigrid procedure is applied to the first-order scheme and that higher-order correction is
only calculated on the finest grid at the end of each cycle. For the three-stage Jacobi relaxation the
optimum set of coefficients for the first-order operator is used. The conclusions are similar to these
for the first-order accurate discretization. This is obvious, since the first-order discretization is used
in the multigrid method.
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Fig. 8. Convergence behaviour for the first-order scheme using Gauss-Seidel relaxation (GS), three-stage Jacobi relaxation
(MS) and three single-stage Jacobi relaxations (SS). Transonic (left) and supersonic (right) test cases. Logarithm of the
Loo-norm of the defect in function of number of work units.

Fig. 10 compares the full higher-order formulation with a mixed discretization formulation. By
a full higher-order formulation we mean that the K3 operator is used on all grid levels and in all
stages. By a mixed discretization formulation we mean that the K3 operator is only used on the
finest grid level in all stages and that the first-order operator is used on the other grid levels. Optimal
coefficient sets are taken corresponding to the operator. The improvement with respect to the defect
correction procedure using multi-stage Jacobi relaxation is obvious. This shows the benefit of using
more the higher-order operator in the multigrid cycle. The single-stage Jacobi relaxation versions are,
of course, not convergent. As can be seen in Figs. 2 and 5, single-stage Jacobi relaxation cannot be
made stable for the K3 operator. No scaling by the CFL number of the Fourier symbol of the K3
operator can bring the symbol inside the circular stability domain of consecutive single-stage Jacobi
relaxations. This is true for any higher-order operator, since from the second order on, the radius of
curvature of the Fourier symbol is infinite at the origin. This shows the necessity to use a multi-stage

- T T v v v v v -16 T v v y T T r
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

Fig. 9. Convergence behaviour for the K3 scheme in defect correction. Transonic (left) and supersonic (right) test cases.
Presentation identical to Fig. 8.
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Fig. 10. Convergence behaviour for the K3 scheme in the full higher-order formulation (FL) and the mixed discretization
formulation (MD). Transonic (left) and supersonic (right) test cases. Presentation identical to Fig. 8.

version with parameters adapted to the operator.

By comparing Figs. 9 and 10 it is seen that multigrid formulations using the higher-order operator
inside the cycle and multi-stage Jacobi relaxation do not perform better than defect correction for-
mulations based on Gauss—Seidel relaxation. The difference in performance is however not big. It is
thus clear that inherently Gauss—Seidel relaxation is much more powerful than any variant of Jacobi
relaxation. This is certainly obvious in Fig. 8. Nevertheless, multi-stage Jacobi relaxation is very
useful. First, it allows to bring the higher-order operator inside the cycle. The resulting performance
is not yet as good as the one of a defect correction formulation based on Gauss-Seidel relaxation, but
the difference between both is not big. Second, unlike Gauss—Seidel relaxation, multi-stage Jacobi
relaxation allows easily vectorization and parallelization.

7. Conclusion

By the combination of Jacobi relaxation and multi-stage stepping, multigrid methods for Euler
equations can be constructed that are more general than defect correction procedures. The resulting
performance in terms of work units of multigrid methods based on Jacobi relaxation cannot really
reach the performance of defect correction multigrid methods based on Gauss-Seidel relaxation.
The difference in performance is however not big. The gain of the Jacobi-type methods over the
Gauss-Seidel methods lies in their ease of vectorization and parallelization.
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