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the existence of a minimal asymptotic bases of order h > 2 such
that A(k) = k/h + O(1). Moreover, they asked if there exists a
minimal asymptotic basis with lim sup(a;j;1 — a;) = 3. In this paper
we answer these questions in the affirmative by constructing a
minimal asymptotic basis A of order 2 fulfilling a very restrictive
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1 1
—k <Ak < =k+1.
3 (k) 5 +
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1. Introduction

A set A of positive integers is an asymptotic basis of order h if every sufficiently large integer n
can be written as a sum of h elements of A. If A is an asymptotic basis of order h and no proper
subset of A has this property then A is a minimal asymptotic basis of that order. Hence, for every
element a of a minimal asymptotic basis A of order h there are infinitely many positive integers n,
each of whose representations as a sum of h elements of A includes a as a summand.
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Put A(k) =|{a € A: 1< a<k}|. The lower density of A is defined by

d(A) = liminf@.
k— o0 k

If the limit limy_, o, A(k)/k exists, then it is called the density of A and denoted by d(A). Nathanson
and Sarkozy [2] proved that if A is a minimal asymptotic basis of order h then d(A) < 1/h. Erdds and
Nathanson [1] showed that for all o € (0,1/(2h — 2)) there exists a minimal asymptotic basis A of
order h with d(A) = «. They also proved that for every h > 2 there exists a minimal asymptotic basis
A of order h with d(A) = 1/h. Erdds and Nathanson [1] asked whether it is possible to strengthen
their result by deciding on the existence of a minimal asymptotic bases of order h > 2 such that

A(k) =k/h+ 0(1). (1)
It is easy to see that there are no minimal asymptotic bases A = (a;){2, of order 2 with

limsup(a;+1 — a;) = 2. The set constructed in [1] satisfies limsup(aj+1 — a;) = 4. Thus, Erdds and
Nathanson asked if there exists a minimal asymptotic basis with

limsup(aj+1 —a;) =3. (2)

The object of this paper is to prove construct a minimal asymptotic basis A of order 2 fulfilling
a very restrictive condition

1 1
k<A < sk+1.
3 (k) < Sk+

Clearly, this basis satisfies (2) and (1) in the case h = 2. As we also remark at the end of the note our
example is, in a way, best possible.

2. A construction of a dense minimal basis

The main result of this note can be stated as follows.

Theorem 1. There exists a minimal asymptotic basis A of order 2 such that for every k € N

1 1
—k<AK < =k+1. 3
> (k) 2<+ (3)

Proof. Let (ty)n>0 be the sequence such that top =7 and

thy1 =3tp + 4,
so t, = 3"2 — 2. We shall construct inductively a sequence of sets (A0, Ap={ai,...,am,} such
that my >n and forn>0
An S tal,  tnh € Ap, (4)
{6,...,ta} € An + An, (5)
%k < Ank) < %k +1 foreveryk e [ty], (6)

1 1
An(tn) = gtn + E, (7)
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and for n > 0, t; — 2 has a unique representation in A, + Ap and this representation is of the form
th —2=Dby +a, where a € A, and {by}nen is defined as follows

b1 =a,
by =a, bz =ay,
by =ay, bs =ay, bs =az,

(8)
Observe that b, =a; with i <my_1 , so in the nth step the element b,, has been already defined and
bn <tp-1.
We start with Ag = {1,2,5,7}, to = 7. Clearly the conditions (4)-(7) are satisfied. Assume now
that for some n > 0, A, has been already defined and it satisfies (4)-(7).
We put

A/

n+1 = ApUCUDpU {tn+1 -2, th+1 },

where
Ch={th+1,tn+3,...,2t,},
Dp={d €2ty +1,tap1 —3]: tay1 —2—d & Ap}.
We will show now that
(6, tnp 1]\ {tns1 —2} S Ap L + Ay (9)
and
tiy1 —2 ¢ Apq + Aniq. (10)
By (5) we have
(6.ta] S An+An S ALy + Ay
Since 1,2, t, € A, it follows that t, +1 ¢ A;1+1 +A;/1+1 and for all I € {1,3,...,ty}
tn+D+1,(tn+D+2€C+An S A+ AL,
so [thn+1,2ty +2]C A, + A, and
tht+Ea+D, G+ D)+t +D €A+ AL,

so [2tn +1,3ta +11 S A}, +A; . Notice that tn1 —1=1+ (ta+1 —2) and tn1 =2+ (tnt1 — 2), SO

tht1 =1, thy1 € Apy + Aj . Observe that

tng1 —2 ¢ Ay + Al

Indeed, by the definition of D it follows that t;+1 —2 ¢ Ap + Dy and t;+1 — 2 € Cp + C;; is impossible
because t;+1 — 2 is an odd number while all elements of C,, + C, are even.
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\l/l\/e will prove that the counting function of the set Ay/1+1 satisfies (6) and (7). By A} N[ta] = Ap,
we have

Aniq (k) = An(k),

o) Ar/1+1 fulfills (6) for all k € [1, t,] by the inductional assumption. Since t, +1 € A;I_H and t; +14+1¢
A, foroddle{l,...,ty} and (7), so

1
A,/H.](tn +D= E(tn +D+1

and

1

1
At +14+1) = Ftn+D+3.

Let [ €[1,t; + 1], so that 2t + 1 <tpy1 — 2 —1<3tg + 1 =ty41 — 3. We have A;IH(I) = %H—C,
where 0 < C < 1, therefore

A:H—l (tn+1 -2 _l) = A;l+1 (2ty) + Dn(tn—H -2 _1)
=th+14+(ta+1-(-1)— (At + D — Ay, (—1))
1 1
:tn+1+(tn+2_l_<E(tn+l)+1—§(1_1)_c>>
1
= i(tn+1 —-2-Dh+C.
Note also that

Al (tii1 —2) =th+ 1+ A, Cty) — Ayt + 1)+ 1

1
=23 - S+ 1) —1
L 2+ .
T 2

Finally, since tp41 —1¢ A tnt1 € A, we have

nts
, 1
Ayt — D = i(tn-H -1,

, 1 1
An+1 (tn-H) = itn-H + 5

Thus, Ay, satisfies (6) and (7).
Observe that tp1 —2 —bpy1 ¢ Ay ;. Now we can define the set A1 and prove that the number
th+1 — 2 has unique representation in Apy1+ Ap+1 in the form t;+1 —2 =bypy1 +a, for some a € Ap+1.

Put

Anp1=An 1 Uftny1 —2 —bpa} \ {ras1),
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where bpy1 is an element of the sequence (8) and rpyq € Ay/1+1 is chosen as follows. If

A;1+l(tn+‘1 —2—byp1 =1 = %(tn_'_] —2—bpy1 —1)+1, then tpy1 —2—bp1 —1¢€ A;H] and we
define

rn+1:tn+1—2—bn+1—1. (1])
However, if A]_; (trt1 — 2 — bo1 — 1) = J(tay1 —2 — bny1 — 1) + 3. then we put

i1 =tpp1 —2 —bpy1 + 1. (12)
Notice, that A,’1+1 (th41 —2—bpt1—1) = %(tnﬂ —2—bp+1 —1) is not possible because we would have
Al 1(tng1 —2 = bpy1) = 3(tag1 — 2 — bpy1) — 3. which contradicts (6).

Observe that

[63 tn+l] - An+1 + An+1 P

because every number from [t;, t;+1 — 3] is a sum of two elements of A,/1+l less or equal 2t,, and
bnt1 <tn, SO 141 > 2t;. Moreover

th+1 — 2= bn+1 + (tn+1 —-2- bn+1),
tn+] —-1= 2tn + (tn + 3),

tht1 = (tny1 —2) + 2.

To finish the proof we have to show that the counting function of the set A, satisfies (6) and (7).
If rpyq is defined by (11), then A,’.l+1 (th41 —2—bpy1 — 1) = %(trH,] —2—bp+1 — 1)+ 1, whence

1
Ant1 (1) = Ap (M) — 1= P
and
1 , 1
ik < AH+1 (k) = An+] (k) < Ek + 1,

for every k < rpy1 or k >rpy1 + 1. In particular

1
Anti1(tnt1) = Etnﬂ + 5

In the second case (12) we have A1,1+1 (th41 —2—=bpt1—1) = %(th —2—-bp1 -1+ % Then for
each k <rpy1 —2 or k >y one has

1 1
Ek < Aﬂ+1 (k) = AI/’H-] (k) < Ek + 1.
Furthermore, by (12)

1
Ang1(tnt1 —2 —bny1) = Ay (thy1 —2 —bpp) + 1= E(fnﬂ —2—bpy) + 1.



M. Jaficzak, T. Schoen / Journal of Number Theory 130 (2010) 580-585 585

Now, let us set

Clearly, by (5) A is an asymptotic basis of N. Moreover, by Ap4+1 N [ta] = A, for every n > 0, and (6),
A satisfies (3). To see that A is a minimal basis, observe that every element a € A occurs in the
sequence {by}ncn infinitely many times. Therefore, there are infinitely many n’s such that the number
tp — 2 has unique representation in A + A, which includes a as a summand. This completes the proof
of Theorem 1. O

Finally, let us remark that the lower bound for A(k) in (3) cannot be increased, i.e. no minimal
basis A satisfies

1

1 1
_ — <Ak L =
2I<+2 (k) 2k+C

for every sufficiently large k € N, where C is a positive constant. Indeed, let m be a positive integer
such that

m
Am) = = +C

and let a € A, a > m. Since A is a minimal basis, so there are infinitely many numbers u > a + m
such that for some b € A, a + b is the unique representation of u in A 4+ A. Since u has a unique
representation and a,b > m, the sets u — (AN [m]) and AN [u —m,u — 1] are disjoint, so

AN[u—m,u—1] gm—A(m):E—C.
| | L

Thus

u—1
7

Au—-D<Aw-—m—-D+[AN[u—mu—1]|<
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