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Miroslawa Jańczak, Tomasz Schoen ∗

Department of Discrete Mathematics, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
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We call a set A of positive integers an asymptotic basis of order
h if every sufficiently large integer n can be written as a sum
of h elements of A. If no proper subset of A is an asymptotic
basis of order h, then A is a minimal asymptotic basis of that
order. Erdős and Nathanson showed that for every h � 2 there
exists a minimal asymptotic basis A of order h with d(A) = 1/h,
where d(A) denotes the density of A. Erdős and Nathanson asked
whether it is possible to strengthen their result by deciding on
the existence of a minimal asymptotic bases of order h � 2 such
that A(k) = k/h + O (1). Moreover, they asked if there exists a
minimal asymptotic basis with lim sup(ai+1 − ai) = 3. In this paper
we answer these questions in the affirmative by constructing a
minimal asymptotic basis A of order 2 fulfilling a very restrictive
condition

1

2
k � A(k) � 1

2
k + 1.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

A set A of positive integers is an asymptotic basis of order h if every sufficiently large integer n
can be written as a sum of h elements of A. If A is an asymptotic basis of order h and no proper
subset of A has this property then A is a minimal asymptotic basis of that order. Hence, for every
element a of a minimal asymptotic basis A of order h there are infinitely many positive integers n,
each of whose representations as a sum of h elements of A includes a as a summand.
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M. Jańczak, T. Schoen / Journal of Number Theory 130 (2010) 580–585 581
Put A(k) = |{a ∈ A: 1 � a � k}|. The lower density of A is defined by

d(A) = lim inf
k→∞

A(k)

k
.

If the limit limk→∞ A(k)/k exists, then it is called the density of A and denoted by d(A). Nathanson
and Sárközy [2] proved that if A is a minimal asymptotic basis of order h then d(A) � 1/h. Erdős and
Nathanson [1] showed that for all α ∈ (0,1/(2h − 2)) there exists a minimal asymptotic basis A of
order h with d(A) = α. They also proved that for every h � 2 there exists a minimal asymptotic basis
A of order h with d(A) = 1/h. Erdős and Nathanson [1] asked whether it is possible to strengthen
their result by deciding on the existence of a minimal asymptotic bases of order h � 2 such that

A(k) = k/h + O (1). (1)

It is easy to see that there are no minimal asymptotic bases A = (ai)
∞
i=1 of order 2 with

lim sup(ai+1 − ai) = 2. The set constructed in [1] satisfies lim sup(ai+1 − ai) = 4. Thus, Erdős and
Nathanson asked if there exists a minimal asymptotic basis with

lim sup(ai+1 − ai) = 3. (2)

The object of this paper is to prove construct a minimal asymptotic basis A of order 2 fulfilling
a very restrictive condition

1

2
k � A(k) � 1

2
k + 1.

Clearly, this basis satisfies (2) and (1) in the case h = 2. As we also remark at the end of the note our
example is, in a way, best possible.

2. A construction of a dense minimal basis

The main result of this note can be stated as follows.

Theorem 1. There exists a minimal asymptotic basis A of order 2 such that for every k ∈ N

1

2
k � A(k) � 1

2
k + 1. (3)

Proof. Let (tn)n�0 be the sequence such that t0 = 7 and

tn+1 = 3tn + 4,

so tn = 3n+2 − 2. We shall construct inductively a sequence of sets (An)n�0, An = {a1, . . . ,amn } such
that mn � n and for n � 0

An ⊆ [tn], tn ∈ An, (4)

{6, . . . , tn} ⊆ An + An, (5)

1

2
k � An(k) � 1

2
k + 1 for every k ∈ [tn], (6)

An(tn) = 1
tn + 1

, (7)

2 2
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and for n � 0, tn − 2 has a unique representation in An + An and this representation is of the form
tn − 2 = bn + a, where a ∈ An and {bn}n∈N is defined as follows

b1 = a1,

b2 = a1, b3 = a2,

b4 = a1, b5 = a2, b6 = a3,

. . . . (8)

Observe that bn = ai with i � mn−1 , so in the nth step the element bn has been already defined and
bn � tn−1.

We start with A0 = {1,2,5,7}, t0 = 7. Clearly the conditions (4)–(7) are satisfied. Assume now
that for some n � 0, An has been already defined and it satisfies (4)–(7).

We put

A′
n+1 = An ∪ Cn ∪ Dn ∪ {tn+1 − 2, tn+1},

where

Cn = {tn + 1, tn + 3, . . . ,2tn},
Dn = {

d ∈ [2tn + 1, tn+1 − 3]: tn+1 − 2 − d /∈ An
}
.

We will show now that

[6, tn+1] \ {tn+1 − 2} ⊆ A′
n+1 + A′

n+1 (9)

and

tn+1 − 2 /∈ A′
n+1 + A′

n+1. (10)

By (5) we have

[6, tn] ⊆ An + An ⊆ A′
n+1 + A′

n+1.

Since 1,2, tn ∈ An it follows that tn + 1 ∈ A′
n+1 + A′

n+1 and for all l ∈ {1,3, . . . , tn}

(tn + l) + 1, (tn + l) + 2 ∈ Cn + An ⊆ A′
n+1 + A′

n+1,

so [tn + 1,2tn + 2] ⊆ A′
n+1 + A′

n+1, and

tn + (tn + l), (tn + 1) + (tn + l) ∈ A′
n+1 + A′

n+1,

so [2tn + 1,3tn + 1] ⊆ A′
n+1 + A′

n+1. Notice that tn+1 − 1 = 1 + (tn+1 − 2) and tn+1 = 2 + (tn+1 − 2), so
tn+1 − 1, tn+1 ∈ A′

n+1 + A′
n+1. Observe that

tn+1 − 2 /∈ A′
n+1 + A′

n+1.

Indeed, by the definition of Dn it follows that tn+1 − 2 /∈ An + Dn and tn+1 − 2 ∈ Cn + Cn is impossible
because tn+1 − 2 is an odd number while all elements of Cn + Cn are even.
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We will prove that the counting function of the set A′
n+1 satisfies (6) and (7). By A′

n+1 ∩ [tn] = An ,
we have

A′
n+1(k) = An(k),

so A′
n+1 fulfills (6) for all k ∈ [1, tn] by the inductional assumption. Since tn + l ∈ A′

n+1 and tn + l + 1 /∈
A′

n+1 for odd l ∈ {1, . . . , tn} and (7), so

A′
n+1(tn + l) = 1

2
(tn + l) + 1

and

A′
n+1(tn + l + 1) = 1

2
(tn + l) + 1

2
.

Let l ∈ [1, tn + 1], so that 2tn + 1 � tn+1 − 2 − l � 3tn + 1 = tn+1 − 3. We have A′
n+1(l) = 1

2 l + C ,
where 0 � C � 1, therefore

A′
n+1(tn+1 − 2 − l) = A′

n+1(2tn) + Dn(tn+1 − 2 − l)

= tn + 1 + (
tn + 1 − (l − 1) − (

A′
n+1(tn + 1) − A′

n+1(l − 1)
))

= tn + 1 +
(

tn + 2 − l −
(

1

2
(tn + 1) + 1 − 1

2
(l − 1) − C

))

= 1

2
(tn+1 − 2 − l) + C .

Note also that

A′
n+1(tn+1 − 2) = tn + 1 + A′

n+1(2tn) − A′
n+1(tn + 1) + 1

= 2tn + 3 − 1

2
(tn + 1) − 1

= 1

2
(tn+1 − 2) + 1

2
.

Finally, since tn+1 − 1 /∈ A′
n+1, tn+1 ∈ A′

n+1 we have

A′
n+1(tn+1 − 1) = 1

2
(tn+1 − 1),

A′
n+1(tn+1) = 1

2
tn+1 + 1

2
.

Thus, A′
n+1 satisfies (6) and (7).

Observe that tn+1 − 2 − bn+1 /∈ A′
n+1. Now we can define the set An+1 and prove that the number

tn+1 −2 has unique representation in An+1 + An+1 in the form tn+1 −2 = bn+1 +a, for some a ∈ An+1.

Put

An+1 = A′
n+1 ∪ {tn+1 − 2 − bn+1} \ {rn+1},
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where bn+1 is an element of the sequence (8) and rn+1 ∈ A′
n+1 is chosen as follows. If

A′
n+1(tn+1 − 2 − bn+1 − 1) = 1

2 (tn+1 − 2 − bn+1 − 1) + 1, then tn+1 − 2 − bn+1 − 1 ∈ A′
n+1 and we

define

rn+1 = tn+1 − 2 − bn+1 − 1. (11)

However, if A′
n+1(tn+1 − 2 − bn+1 − 1) = 1

2 (tn+1 − 2 − bn+1 − 1) + 1
2 , then we put

rn+1 = tn+1 − 2 − bn+1 + 1. (12)

Notice, that A′
n+1(tn+1 − 2 −bn+1 − 1) = 1

2 (tn+1 − 2 −bn+1 − 1) is not possible because we would have

A′
n+1(tn+1 − 2 − bn+1) = 1

2 (tn+1 − 2 − bn+1) − 1
2 , which contradicts (6).

Observe that

[6, tn+1] ⊆ An+1 + An+1,

because every number from [tn, tn+1 − 3] is a sum of two elements of A′
n+1 less or equal 2tn, and

bn+1 � tn, so rn+1 > 2tn. Moreover

tn+1 − 2 = bn+1 + (tn+1 − 2 − bn+1),

tn+1 − 1 = 2tn + (tn + 3),

tn+1 = (tn+1 − 2) + 2.

To finish the proof we have to show that the counting function of the set An+1 satisfies (6) and (7).
If rn+1 is defined by (11), then A′

n+1(tn+1 − 2 − bn+1 − 1) = 1
2 (tn+1 − 2 − bn+1 − 1) + 1, whence

An+1(rn+1) = A′
n+1(rn+1) − 1 = 1

2
rn+1

and

1

2
k � An+1(k) = A′

n+1(k) � 1

2
k + 1,

for every k < rn+1 or k � rn+1 + 1. In particular

An+1(tn+1) = 1

2
tn+1 + 1

2
.

In the second case (12) we have A′
n+1(tn+1 − 2 − bn+1 − 1) = 1

2 (tn+1 − 2 − bn+1 − 1) + 1
2 . Then for

each k � rn+1 − 2 or k � rn+1 one has

1

2
k � An+1(k) = A′

n+1(k) � 1

2
k + 1.

Furthermore, by (12)

An+1(tn+1 − 2 − bn+1) = A′
n+1(tn+1 − 2 − bn+1) + 1 = 1

(tn+1 − 2 − bn+1) + 1.

2
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Now, let us set

A =
∞⋃

n=1

An.

Clearly, by (5) A is an asymptotic basis of N. Moreover, by An+1 ∩ [tn] = An for every n � 0, and (6),
A satisfies (3). To see that A is a minimal basis, observe that every element a ∈ A occurs in the
sequence {bn}n∈N infinitely many times. Therefore, there are infinitely many n’s such that the number
tn − 2 has unique representation in A + A, which includes a as a summand. This completes the proof
of Theorem 1. �

Finally, let us remark that the lower bound for A(k) in (3) cannot be increased, i.e. no minimal
basis A satisfies

1

2
k + 1

2
� A(k) � 1

2
k + C

for every sufficiently large k ∈ N, where C is a positive constant. Indeed, let m be a positive integer
such that

A(m) = m

2
+ C

and let a ∈ A, a > m. Since A is a minimal basis, so there are infinitely many numbers u > a + m
such that for some b ∈ A, a + b is the unique representation of u in A + A. Since u has a unique
representation and a,b > m, the sets u − (A ∩ [m]) and A ∩ [u − m, u − 1] are disjoint, so

∣∣A ∩ [u − m, u − 1]∣∣ � m − A(m) = m

2
− C .

Thus

A(u − 1) � A(u − m − 1) + ∣∣A ∩ [u − m, u − 1]∣∣ � u − 1

2
.
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