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Right-angled Artin groups are commensurable
with right-angled Coxeter groups
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Abstract

For each right-angled Artin group there is a right-angled Coxeter group which contains it as
a subgroup of �nite index. A corollary is that right-angled Artin groups are linear. c© 2000
Elsevier Science B.V. All rights reserved.
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0. Introduction

Recently, there has been a great deal of work in geometric group theory on right-
angled Artin groups (otherwise known as “graph groups”). A key feature of any
right-angled Artin group is that it acts cocompactly and isometrically on a CAT(0)
cubical complex [4]. For example, this feature is heavily exploited by Bestvina and
Brady [1] in the construction of their beautiful examples of groups which are type
(FP) but are not �nitely presented. Somewhat earlier, a similar result had been proved
for right-angled Coxeter groups in [7]: such a Coxeter group acts cocompactly and
isometrically on a CAT(0) cubical complex (see [5,6]). In this paper we show that
given a right-angled Artin group A we can �nd a right-angled Coxeter group W ′ so
that the corresponding cubical complexes are identical.
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1. The groups

Let � be a �nite simplicial graph with vertex set I . Associated to � there are
two groups — a right-angled Coxeter group W (=W (�)) and a right-angled Artin
group A (=A(�)). For each i ∈ I introduce symbols si and gi and let S = {si}i∈I and
G = {gi}i∈I . The group W is de�ned by a presentation with set of generators S and
with relations, s2i =1 for all i ∈ I and (sisj)2 =1 whenever the vertices i and j span an
edge of �. The group A is given by the presentation with generating set G and with
relations [gi; gj] = 1 whenever i and j span an edge of �.
We de�ne two other graphs �′ and �′′, as follows. The vertex set of �′′ is I×{0; 1}.

Two vertices (i; 1) and (j; 1) in I × 1 are connected by an edge in �′′ if and only
if the corresponding vertices i and j span an edge in �. Any two distinct vertices in
I × 0 are connected by an edge. Finally, vertices (i; 0) and (j; 1) are connected by an
edge if and only if i 6= j. The vertex set of �′ is I × {−1; 1}. The subsets I × (−1)
and I × 1 both span copies of �. A vertex (i;−1) in I × (−1) is connected to (j; 1)
in I × 1 if and only if i 6= j and the vertices i and j span an edge of �.
Let W ′ = W (�′) and W ′′ = W (�′′) be the right-angled Coxeter groups associated

to �′ and �′′, respectively. It will cause no confusion to denote the generators of
W ′ corresponding to I × 1, as well as the generators of W ′′ corresponding to I × 1,
by same set of symbols S = {si}i∈I . (In both cases the subgroup 〈S〉 generated by
S is isomorphic to the original Coxeter group W .) The remaining generators of W ′

corresponding to I × (−1) will be denoted by T = {ti}i∈I . The remaining generators
in W ′′ corresponding to I × 0 will be denoted by R= {ri}i∈I .
Let (Z=2)I denote the direct sum of I copies of a cyclic group of order 2 and let

{ �ri}i∈I be the standard set of generators.
De�ne homomorphisms ’ :W ′′ → (Z=2)I and � :W ′′ → (Z=2)I by the formulas:
’(ri) = �ri; ’(si) = 1; (1)

�(ri) = �(si) = �ri (2)

for all i ∈ I .
We also have homomorphisms � :W ′ → ker’⊂W ′′ and � :A→ ker �⊂W ′′ given

by the formulas:

�(si) = si; �(ti) = risiri (3)

and

�(gi) = risi: (4)

Theorem. The homomorphisms � :W ′ → ker’ and � :A→ ker � are isomorphisms.

Thus, A and W ′ are both subgroups of index 2I in W ′′.

Remark. The homomorphisms ’ and � both take the subgroup 〈R〉 isomorphically
onto (Z=2)I ; moreover, the intersections 〈R〉 ∩ ker’ and 〈R〉 ∩ ker � are both trivial.
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This gives two decompositions of W ′′ as a semi-direct product: W ′′ = W ′ o (Z=2)I
and W ′′ = Ao (Z=2)I .

Corollary. A is a subgroup of a GLN (R)

Proof. W ′′ is. See [3, Chapter 5, Section 4].

Remark. One can probably prove this corollary directly by writing down an explicit
linear representation. However, we think that a proof of injectivity will necessarily use
some geometric input. Thus, our use of commensurability is quite appropriate.

2. The complexes

Associated to any right-angled Coxeter group or any right-angled Artin group there
is a natural contractible cubical cell complex on which the group acts properly and
cocompactly. In the case of Coxeter groups, these complexes are described in [5,6] or
[7]. In the case of Artin groups a description can be found in [4–6], [1] or [2]. We
will recall these descriptions below. The main idea in the proof of our theorem is that
the complex associated to the Coxeter group W ′ is identical to the complex associated
to the Artin group A. Moveover, the group W ′′ acts on this complex and one can see
geometrically that W ′ and A are both subgroups of index 2I .
First consider the special case where I is a singleton, I = {i}. Then W = Z=2 and

A = Z. The groups W ′ and W ′′ are both isomorphic to the in�nite dihedral group
D∞ = Z=2 ∗ Z=2 (W ′ = 〈ti; si〉; W ′′ = 〈ri; si〉). The groups W ′; W ′′ and A can all be
represented as transformation groups of R as follows. Let ti; ri and si denote the
reections across the points, −1, 0 and 1, respectively. Then W ′ and W ′′ are reection
groups on R with fundamental chambers [ − 1; 1] and [0; 1], respectively. The group
A=Z acts by risi which is translation by 2. Hence, [0; 2] is a fundamental domain for
A and the orbit space R=A is the circle formed by identifying the endpoints of [0; 2].
Next suppose that I is an arbitrary �nite set and that � is the complete graph

on I . This yields a product of I copies of the situation in the previous paragraph:
W=(Z=2)I ; A=ZI and W ′ ∼= (D∞)I ∼= W ′′. These groups act on RI by letting ti; ri and
si denote the reections across the hyperplanes xi=−1; xi=0, and xi=1, respectively.
(Here (xi)i∈I are coordinates on RI .) The groups W ′ and W ′′ are reection groups
with respective fundamental chambers the cubes [ − 1; 1]I and [0; 1]I . The generators
gi = risi of A are translations by 2ei, where (ei)i∈I is the standard basis. Thus, RI =A is
the torus T I formed by identifying opposite faces of the cube [0; 2]I . The theorem of
the previous section is clearly true in this case. As we shall see below, in the general
case, the cubical complexes which we are interested in have quotient spaces which are
subcomplexes of either [− 1; 1]I ; [0; 1]I , or T I .
Before describing these complexes, we �rst recall a general method of constructing

actions of Coxeter groups as reection groups. Let X be a topological space. A mirror
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structure over I on X is a family M = (Xi)i∈I of closed subspaces of X indexed by
I . Let � be a graph on I and W the associated right-angled Coxeter group.
Given a mirror structure M on X , de�ne an equivalence relation ∼ on W × X

by: (w; x) ∼ (w′; x′) if and only if x = x′ and w−1w′ belongs to the subgroup 〈S(x)〉
generated by S(x) = {si | x ∈ Xi}. Set

U(W;X;M) = (W × X )= ∼ :
There is a natural W -action on U(W;X;M) and X is the orbit space. If Y is any space
with W -action and f :X → Y is any map such that f(Xi) is contained in the �xed point
set of si, for each i ∈ I , then f extends to a W -equivariant map f̃ :U(W;X;M)→ Y by
the formula [w; x]→ wf(x). (Here [w; x] denotes the image of (w; x) in U(W;X;M).)
In particular, if W acts as a reection group on Y and X is a fundamental chamber
and Xi is de�ned to be the intersection of X with the �xed set of si, then the map
U(W;X;M) → Y induced by the inclusion X → Y is a homeomorphism. (Actually,
we can take this to be the de�nition of “W is a reection group on Y ”.)
Next we de�ne a simplicial complex L (=L(�)) and a poset S (=S(�)). L is the

ag complex determined by �. In other words, L is the simplicial complex with vertex
set I such that a nonempty subset J of I spans a simplex if and only if the subgraph
�J spanned by J is the complete graph on J (i.e., L is obtained from � by “�lling in”
all possible simplices of dimension greater than 1). S is the set of all such subsets J
of I together with the empty set. It is partially ordered by inclusion.
Similarly, let S′ and S′′ be the posets associated to �′ and �′′, respectively. Sup-

pose J ′={(j1; �1); : : : ; (jk ; �k)} is a subset of I×{−1; 1}. From the de�nition of �′, we
see that J ′ ∈ S′ if and only if j1; : : : ; jk are distinct elements of I and {j1; : : : ; jk} ∈ S.
In other words, J ′ ∈ S′ if and only if it is the graph of a function � : J → {±1} for
some subset J of I such that J ∈ S. An arbitrary subset J ′′ of I×{0; 1} can be decom-
posed as J ′′=J 0×0∪J 1×1, where for �=0; 1; J � is de�ned by J �={j ∈ I | (j; �)∈ J ′′}.
It follows from the de�nition of �′′, that J ′′ ∈ S′′ if and only if J 1 ∈ S and J 0∩J 1=∅.
Next we de�ne a cubical subcomplexes K of [0; 1]I and K ′ of [−1; 1]I . (The cubical

structure on [− 1; 1]I is de�ned by subdividing it into 2I unit cubes.)
De�ne

K = [0; 1]I ∩
⋃

J∈S

R J ; (5)

K ′ = [− 1; 1]I ∩
⋃

J∈S

R J ; (6)

where RJ denotes the linear subspace of RI de�ned by the equations xi=0; i ∈ I − J .
Next we de�ne certain subcomplexes of K and K ′ indexed by S and S′, respec-

tively. We will also de�ne subcomplexes of K indexed by S′′ and when we are
interested in this system of subcomplexes we will write K ′′ instead of K . Given a
subset J of I , set

KJ = K ∩ {xj = 1}j∈J ; (7)
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where {xj = 1}j∈J denotes the a�ne subspace of RI de�ned by the equations within
the brackets. Clearly, KJ is nonempty if and only if J ∈ S. Given a subset J ′ of
I × {−1; 1} de�ned by the graph of a function J → {−1; 1}, de�ne

K ′
J ′ = K

′ ∩ {xj = �j}( j; �j)∈J ′ : (8)

This time K ′
J ′ is nonempty if and only if J

′ ∈ S′. Finally, for each subset J ′′ = J 0 ×
0 ∪ J 1 × 1 of I × {0; 1} set

K ′′
J ′′ = K ∩ RJ 0 ∩ {xj = 1}j∈J 1 : (9)

We have that K ′′
J ′′ is nonempty if and only if J

0 ∩ J 1 = ∅ and J 1 ∈ S, that is to say,
if and only if J ′′ ∈ S′′.
For each i ∈ I , set Ki =K{i}. This de�nes a mirror structure M= (Ki)i∈I over I on

K . Similarly, we de�ne a mirror structure M′ over I × {−1; 1} on K ′ and a mirror
structure M′′ over I × {0; 1} on K ′′. Set

U=U(W;K;M);

U′ =U(W ′; K ′;M′);

U′′ =U(W ′′; K ′′;M′′):

The cubical complex U is the natural contractible cell complex on which the Coxeter
group W acts with compact quotient. (This follows from the description in [5] and the
fact that a simplicial subdivision of K can be identi�ed with the geometric realization
of the poset S in such a fashion that KJ is the geometric realization of the subposet
S≥J .) The cubical complex K ′ is isomorphic to the cubical complex K(�′) de�ned
by the graph �′ (although, by de�nition, K(�′) is a subcomplex of [0; 1]I×{−1;1}, it
is isomorphic to K ′). It follows that U′ is also the natural contractible complex for
W ′. Since K ′′ 6∼= K(�′′), U′′ is not, a priori, contractible. However, by the following
lemma, it is.

Lemma 1. U′′ is contractible.

Proof. By Corollary 10:3 in [5], we need to show that K ′′
J ′′ is acyclic for each J

′′ ∈ S′′

and that K ′′ is simply connected. Equation (9) can be rewritten as

K ′′
J ′′ = KJ 1 ∩ K(�I−J 0 ) = K(�I−J 0 )J 1 : (10)

In other words, K ′′
J ′′ is the J

1-face of the complex K(�I−J 0 ) corresponding to the
subgraph K(�I−J 0 ). But for any graph �̂ the complex K(�̂) and each of its nonempty
faces are contractible (they are cones).

We are now in position to prove the �rst half of the theorem.

Lemma 2. The homomorphism � :W ′→ker’ de�ned by (3) is an isomorphism.
Moreover; there is a natural �-equivariant homeomorphism U′ → U′′.



234 M.W. Davis, T. Januszkiewicz / Journal of Pure and Applied Algebra 153 (2000) 229–235

Proof. For each i ∈ I , let �ti = �(ti) = risiri ∈ W ′′ and let �T denote the subset {�ti}i∈I
of W ′′. The subgroup 〈S ∪ �T 〉 of W ′′ is clearly in the kernel of ’. The group (Z=2)I
(∼= 〈R〉) acts as a reection group on [− 1; 1]I with fundamental chamber [0; 1]I . The
subcomplex K ′ is (Z=2)I -stable and K ′ ∩ [0; 1]I = K ′′. Thus, K ′′ is the fundamental
chamber for the (Z=2)I -action on K ′. It follows that we can identify K ′ with a union
of copies of K ′′ in U′′ as

K ′ = 〈R〉K ′′

where the right-hand side denotes the union of chambers gK ′′, g ∈ 〈R〉. The elements
of S ∪ �T act as reections on U′′ and one sees that K ′ = 〈R〉K ′′ is precisely the
intersection of the corresponding half-spaces. Since the only other walls of U′′ which
can intersect K ′ are those indexed by R, it follows that K ′ is a fundamental domain
for the 〈S ∪ �T 〉-action on U′′. Since K ′ is the union of 2I copies of K ′′, it follows
that 〈S ∪ �T 〉 is of index 2I in W ′′. Since this is also the index of ker’, we have that
〈S ∪ �T 〉 = ker’, and hence, that � maps W ′ onto ker’. It follows from the general
theory of groups generated by reections that 〈S∪ �T 〉 is a Coxeter group and that S∪ �T
is a fundamental set of generators for it. (The proof is the same as that of Th�eor�eme
1, p. 74 in [3] or Proposition 4:3 in [5].) Since si �ti = sirisiri = (siri)2 we see that si �ti
has in�nite order. Also, for i 6= j; �ti �tj = risirirjsjrj = (rirj)(sisj)(rirj) so �ti �tj has the
same order as does sisj. It follows that the product of any two elements in S ∪ �T have
the same order as the corresponding elements of S ∪ T . Hence, � :W ′ → 〈S ∪ �T 〉 is an
isomorphism of Coxeter groups.
To prove the last sentence of the lemma, note that the natural inclusion K ′ ,→ U′′

induces a W ′-equivariant homeomorphism U′ → U′′.

As is shown in [4], an Eilenberg–MacLane space for the Artin group A is the
subcomplex A of T I is given by

A=
⋃

J∈S

TJ ;

where TJ is the torus formed by identifying opposite faces of [0; 2]J . Let { �ri}i∈I denote
the standard set of generators for (Z=2)I . Let �ri act on T I by reection across the
hyperplane xi =1. Its �xed set consists of two parallel copies of T I−{i} corresponding
to the hyperplanes xi = 0 and xi = 1. This de�nes an action of (Z=2)I as a reection
group on T I with fundamental chamber [0; 1]I . The subcomplex A is (Z=2)I -stable. A
fundamental chamber for its action on A is K (=K ′′). Set K̂=K . (We introduce a new
symbol since we are going to de�ne a new mirror structure on K .) The (Z=2)I -action
gives a mirror structureM̂ = (K̂ i)i∈I which is closely related to the mirror structure
M′′ = (K ′′

(i; �))(i; �)∈I×{0;1}. In fact,

K̂ i = K ′′
(i;0) ∪ K ′′

(i;1):

Set

Û=U((Z=2)I ; K̂ ;M̂):
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The fact that (Z=2)I is a reection group on A gives an identi�cation of Û with A.
On the other hand, the inclusion K ′′ ,→ Û and the homomorphism � :W ′′ → (Z=2)I
give a �-equivariant map U′′ → Û which is obviously a covering projection. Thus,

A ∼= Û ∼= U′′= ker �:

Lifting this homeomorphism to the universal covers, we obtain a �-equivariant home-
omorphism Ã → U′′, where Ã is the universal cover of A and � :A → ker � is
the homomorphism de�ned by (4). As an immediate corollary, we have the following
lemma which gives the other half of the theorem.

Lemma 3. The homomorphism � :A → ker � is an isomorphism and the cubical
complexes U′; U′′ andÃ can be naturally identi�ed with each other.
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