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Abstract

This paper presents a linear integer programming framework for effective power management in storage systems. A
sample memory system with different data banks is considered for optimal energy consumption during data operations by 
manipulating the data among banks. The memory bank four-level power state schemes, namely, active, stand-by, nap, and power 
down states, are included for superior power management of the storage system by formulating a linear integer optimization 
framework that includes plausible data manipulations, energy consumption levels, data migration, and compression options. The 
numerical results illustrate the efficiency of the proposed framework in terms of power management of storage systems with 
respect to available approaches with two-level power state operations.

"Keywords: Storage optimization; integer programming; power optimization" 

1. Introduction 

Technological developments on electronic data systems have attracted renewed interest on optimal storage 
system speed, capacity, or power consumption formulations. Due to popularity, large storage and limited power 
capabilities of mobile electronic devices, the power consumption concerns have resulted in associated optimization 
frameworks. Furthermore, intensive code execution and associated power consumption have also yielded power 
management techniques for more efficient compiler operations. Due to a large fraction of overall energy 
consumption in storage systems [1, 2], energy optimization techniques including integer linear programming (ILP)
with realistic constraints are used for multiple banked memories [1], loop optimizations of multiple bank memories 
[2] and for parallelizing applications in on-chip multiprocessors for faster code execution [3]. A single memory unit 
is typically divided into several banks [2] for superior power management in which only the required portion of the 
memory unit is maintained at active state while the rest of the unused memory regions are forced to power saving 
modes. However, the number of different power operation levels for memory banks in storage systems indicates a 
potential to improve the power efficiency of the memory unit in spite of anticipated higher formulation complexity 
for adaptive power management schemes, in addition to available storage system improvements.

Storage system operations have benefitted from several approaches. A self-organized distributed storage 
system has utilized a swarm-inspired algorithm, i.e., an ant colony optimization, in order to locate stored data in a 
large scale storage network [4] by exploiting the swarm intelligence method strength on complex systems, its 
adaptability in varying environments and its robustness against failure while noticing a need for constant 
optimization due to its probability to fail. An optimization framework which uses the addresses and the transmission 
of the information as a base was proposed for network oriented storage optimization [5] for search engines and 
multimedia applications. The uncertainty concerns about the size of temporary data storages in a large scale 
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distributed storage system during stream processing applications for both incoming and intermediate results yielded 
an approach using the retention value functions which are helpful in placing as well as retaining of data of highest 
value for the corresponding optimization schemes [6]. A security-aware cache replacement algorithm in storage 
systems has presented an optimization scheme to ensure highest bandwidth under various desired security levels [7]. 

This paper improves storage system power consumption by extending earlier research results [1] on an ILP 
based energy optimization for banked memories in a dynamic random access memory (DRAM). The earlier 
approach using two power levels for memory banks is enhanced by defining four power levels with associated new 
cost and constraint functions in a new ILP formulation that is a subset of linear programming while ensuring some 
or all of optimization variables as integers, also called as mixed integer programming in which integer and non-
integer decision variables coexist. The objective and cost functions of the ILP are linear and a global optimal 
solution is guaranteed with low computational complexity, if a solution exists, in many different applications 
including superior memory operations [8-13]. The paper consists of the following; Section I introduces storage 
optimization perspectives, Section II presents the storage system power management principles, Section III 
describes the ILP power optimization framework, Section IV covers the numerical results, and Section V concludes.

2. Storage System Power Management

Multi-level storage systems exhibit different operation characteristics under different data exchange schemes 
and provide an opportunity to effectively manage the energy consumption by exploiting the operation characteristics. 
Among many different storage systems, a DRAM with multi-banks, as shown in Fig. 1 for an n-bank memory 
module, can be considered for typical optimal power management approaches. A single DRAM module is divided 
into banks of equal sizes. Different operation levels and execution sequence steps are utilized to formulate a power 
optimization scheme under system constraints for various operation levels. The power management concept can be 
extended to storage system clusters including different technology, power consumption characteristics, and speed.

Figure 1: A memory module with its n banks.

The storage system power management framework development procedure includes the following steps: 
Gather the total number of execution steps, ‘S’ in Table 1, and the usage of different memory modules, ‘M’ 
in Table 1, and data inside those modules.
Analyze the memory usage for every memory step and study the execution pattern for constraint 
development.
Define system-level, user-defined, a-priori known parameters, as shown in the first column of Table 1, user-
defined and a-priori known energy consumption variables among different power state transitions, as shown 
in the third column of Table 1, and binary (0-1) variables, as shown in Table 2, for subsequent cost and 
constraint functions.
Develop the associated linear constraints by using the system-level variables for memory module operations. 
The constraints should closely reflect the memory module operations under different operation conditions 
and different changes in states of the memory banks.
Develop memory bank power states for different operational properties. There are four states defined in this 
study: a) Active state implies memory block access, i.e., read or write, operations; b) Stand-by state is the 
first low power state with highest energy consumption among stand-by, nap, and power-down states; c) Nap 
state is the second low power state with medium level energy consumption; and d) Power-down state is the 
lowest energy consumption state. The operational overhead for moving from low power states to the active 
state increases, with stand-by and power-down yielding lowest and highest overhead amounts, respectively.
Define a linear cost function in terms of power consumption. 
Solve the constrained power optimization problem by using the linear integer programming approach. 
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Table 1: The System-level Parameter and Energy Consumption Variable Descriptions
Variable System Level Parameters Variable Energy Consumptions

N Total number of banks in each memory module AE By an  active and accessed memory bank
S Total number of steps during execution NE For the bank which is Non accessed and active

M Total number of memory blocks DE By deactivation of a memory block

Rm,s
Indicates whether the block ‘m’ is being accessed at ‘s’ 
(0-1 variable)

ME By migrating a block

Sizeblock Size of an individual memory block CompE For compressing a data block
Sizebank Size of an individual bank DecompE For decompressing a data block

RP Performance overhead of activating a bank SBE In standby state

DP
Overhead occurred for moving a bank from power 
down from active

NAE In Nap state

NP Overhead for moving a bank from power down to nap SAE In moving a block from standby to active state

SP
Overhead occurred from moving a bank from power 
down to standby

NACE In moving a block from nap to active

PSA Overhead for moving a bank from standby to active PDACE In moving a block from power down to active
PNA Overhead for moving a bank from nap to active PDNAE In moving a block from power down to nap

PNASB Overhead for moving a bank from nap to standby PDSBE In moving a block from power down to standby
PSBNA Overhead for moving a bank from standby to nap ACSBE In moving a block from active to standby
PACSB Overhead for moving a bank from active to standby ACNAE In moving a block from active to nap
PACNA Overhead for moving a bank from active to nap SBNAE In moving a block from standby to nap

O Overhead Occurred SBPDE In moving a block from standby to power down
Omax Maximum overhead possible NASBE In moving a block from nap to standby

CP Compression Overhead NAPDE In moving a block from nap to power down
DEP Decompression Overhead PDE By a bank in power down state

PSBPD
Overhead for moving a bank from standby to power 
down

PNAPD Overhead for moving a bank from nap to power down

Table 2: The Storage System Power Management Binary (0-1) Variables

Variable Description Variable Description

Lm,s,n if ‘m’ is in ‘n’ at ‘s’ SAn,s If the bank ‘n’ is moved from standby to active at ‘s’

CAn,s If the bank ‘n’ is activated at ‘s’ NACn,s If a bank ‘n’ is moved from nap to active at ‘s’

PAn,s If bank ‘n’ is previously activated in ‘s’ NASBn,s If a bank ‘n’ is moved from nap to active at ‘s’

An,s If bank ‘n’ is active at ‘s’ SBNAn,s If a bank ‘n’ is moved from standby to nap at ‘s’

Xn,s If the bank  ‘n’ is activated from power down at ‘s’ ACSBn,s If a bank ‘n’ is moved from active to standby at ‘s’

Yn,s If the bank ‘n’ is sent to power down from active at ‘s’ ACNAn,s If a bank ‘n’ is moved from active to nap at ‘s’

Zm,s If block ‘m’ is migrated at ‘s’ SBPDn,s
If a bank ‘n’ is moved from standby to power down at 
‘s’

Vm,s If the block ‘m’ is compressed at ‘s’ NAPDn,s If a bank ‘n’ is moved from nap to power down at ‘s’

Wm,s If the block ‘m’ is decompressed at ‘s’ PDn,s If a bank ‘n’ is in power down mode at ‘s’

PDNAn,s If the bank ‘n’ is moved from power down to nap at ‘s’ SBn,s If a bank ‘n’ is in standby state at ‘s’

PDSBn,s
if the bank ‘n’ is moved from power down to standby at 
‘s’

NAn,s If a bank ‘n’ is in nap state at ‘s’

3. Linear Integer Programming Power Management Framework

The optimization framework includes a linear cost function and linear constraints. The parameters and 
variables in Tables 1-2 are used to derive the associated constraints under different operation power state changes 
and overhead values associated with data migration and compression/decompression operations. The first 25 
constraint functions are given in Table 3, in which the C1-C13 constraints involve power state changes. The C1 
constraint denotes the condition for a bank activated at step ‘s’ and not active at ‘(s-1)’, while X denotes the 
activation of the bank from power down mode and A denotes the active state of the bank. The C2 constraint denotes 
a bank going to the power down mode and which is active at ‘(s-1)’ and not active at ‘s’, while Y denotes the bank 
‘n’ moving from active to power down at step ‘s’. The C3 constraint denotes a bank n moved to active from stand by
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state at step‘s’. The C4 constraint denotes a bank moved to the active state from nap state at step‘s’. The C5 
constraint denotes a bank ‘n’ moved to the standby state from nap state at step ‘s’. The C6 constraint denotes a bank 
‘n’ moved from standby to nap state at step‘s’. The C7 constraint denotes a bank ‘n’ moved from power down to nap 
state at step ‘s’. The C8 constraint denotes a bank ‘n’ moved from power down to standby state at step ‘s’. The C9 
constraint denotes a bank ‘n’ moved from power down to active state at step ‘s’. The C10 constraint denotes a bank 
‘n’ moved from active to standby state at step ‘s’. The C11 constraint denotes a bank ‘n’ moved from active state to 
nap state at step ‘s’. The C12 constraint denotes a bank ‘n’ moved from standby to power down at step ‘s’. The C13 
constraint denotes a bank ‘n’ moved from nap state to power down at step ‘s’. The C14 constraint denotes a required 
condition to satisfy if a particular block migrates from one bank to another and includes a block ‘m’ migrated at ‘s’ 
from one bank to another, where Z represents the migration of a block ‘m’ at step‘s’. The C15 constraint denotes the 
condition that a data ‘m’ block can only be in one bank at a given time. The C16 constraint represents the condition 
that the size of the blocks should not exceed the size of the bank at any given step‘s’ during the execution, i.e., a 
relationship between the sizes of the memory blocks and banks. The C17 constraint denotes the condition that if a 
bank ‘n’ is being accessed, then it is in active state, where R denotes if the memory block ‘m’ is being accessed at 
step ‘s’. The C18 and C19 constraints indicate the operation preferences of an activated bank remaining active from 
k steps if there no subsequent access to it, while k-step choices may yield different execution as well as power 
management patterns. The C20 and C21 constraints denote the condition that a bank ‘n’ is active if there is a current 
or previous activation. The C22 constraint ensures the condition for compression as variable V tells if a block ‘m’ is 
compressed at step ‘s’. The C23 constraint shows the condition for decompression of a data block as the W variable 
represents decompression of a block ‘m’ at step ‘s’. The overhead concerns for each operation during the 
optimization formulation are integrated in the C24 expression. The system limitations impose that the overhead is 
tracked at each step to avoid a violation of maximum possible overhead. The overheads associated with the storage 
system operation are expressed in Eqns. 1a-14a in Table 4. Then, the C24 expression contains the total overhead 
‘O’, while the C25 constraint ensures that the total overhead is not larger than the maximum overhead possible.

Table 3: The Storage System Power Management Linear Integer Programming Constraints
Eq 
n. 
No

Expression Eqn. 
No

Expression

C1 , , , ( 1), ,n s n s n s n sX A A C13 , , , ( 1), ,n s n s n s n sNAPD Y NA
C2 , , ( 1) , , ,n s n s n s n sY A A C14 , , , , ( 1), , , ,m s m s n m s n m n sZ L L

C3 , , , ( 1), ,n s n s n s n sSA A SB C15
1

, , , , ,1
N

i
m s i m s nL

C4 , , , ( 1), ,n s n s n s n sNAC A NA C16
1

, , bank  , , ,( )*( ) (Size )
M

i
block i s n m s nSize L

C5 , , , ( 1), ,n s n s n s n sNASB SB NA C17 , , * , , , , ,n s m s m s n m n sA R L

C6 , , , ( 1), ,n s n s n s n sSBNA NA SB C18 , , , ,,n s n t n s tPA CA

C7 , , , ( 1), ,n s n s n s n sPDNA NA Y C19 s k t s
C8 , , , ( 1), ,n s n s n s n sPDSB SB Y C20 , , ,,n s n s n sA CA
C9 , , , ( 1), ,n s n s n s n sX A Y C21 , , ,,n s n s n sA PA

C10 , , , ( 1), ,n s n s n s n sACSB SB A C22 , , , , ( 1), , ,1,m s m s n m s n m s nV C L

C11 , , , ( 1), ,n s n s n s n sACNA NA A C23 , , , , ( 1), , ,1,m s m s n m s n m s nW L C

C12 , , , ( 1), ,n s n s n s n sSBPD Y SB C25 maxO O

C24 , ,

1 1 1 1

(1 2 3 .. 12 ) (13 14 ),
N S M S

m s n

i j i j

O a a a a a a
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The optimization framework cost, i.e., objective, function considers energy consumptions due to memory bank 
operations, data migration and compression/decompression operations. Using the 1b-17b Eqns. in Table 4, the total 

energy consumption for different states and state changes can be expressed as ,

1 1

1 2 3 ... 17 ,
N S

n s

i j

B b b b b .

The energy consumption due to data migration is given as , ,

1 1

( * ),
M S

i j m s

i j

Emig Z ME . The memory block data 

compression/decompression operations also result in energy consumption that is stated as

,

1 \ 1

(( , * ) ( , * )),
M S

m s

i J j

Ecomp Vi j CompE Wi j DecompE . Consequently, the storage system power optimization problem 

can now be written as

Minimize (B+ Emig+ Ecomp) (1)
subject to

Constraints C1-C25

Table 4: The Expressions for Overhead Occurrences during Different Operations on the Storage Device (For equations 1a-12a: i=n, j=s, for all n,
s and for 13a and 14a: i=m, j=s, for all m, s), and for Energy Consumptions in Different Cases (i=n, j=s, for all n, s)

Eq.
No Equation Overhead occurrence by Eq.

No Equation Energy consumed by

1a , *i jPDNA NP moving a bank ‘n’ from 
power down to nap

1b , *jCA AE an active and accessed 
bank

2a , *i jPDSB SP moving a bank ‘n’ from 
power down to standby

2b , ,( )*i j i jA CA NE an active and not accessed 
bank

3a , *i jSA PSA moving a bank ‘n’ from 
standby to active

3b , *i jSB SBE the standby state by a bank

4a , *i jNAC PNA moving a bank ‘n’ from nap 
to active

4b , *i jNA NAE the nap state by a bank

5a , *i jNASB PNASB moving a bank ‘n’ from nap 
to standby

5b , *i jY DE moving a bank from active 
to power down

6a , *i jSBNA PSBNA moving a bank ‘n’ from 
standby to nap

6b , *i jSA SAE moving a bank from 
standby to active

7a , *i jX RP activating a bank 7b , *i jNAC NACE a bank to move from nap to 
active

8a , *i jY DP a bank ‘n’ to go to power 
down mode from active

8b , *i jPDAC PDACE a bank to move from power 
down to active

9a , *i jACSB PACSB a bank ‘n’ from moving from 
active to standby

9b , *i jPDNA PDNAE a bank to move from power 
down to nap

10a , *i jACNA PACNA a bank ‘n’ from moving from 
active to nap

10b , *i jPDSB PDSBE a bank to move from power 
down to standby

11a , *i jSBPD PSBPD moving a bank from standby 
to power down

11b , *i jACSB ACSBE a bank to move from 
Active to standby

12a , *i jNAPD PNAPD moving a bank from nap to 
power down

12b , *i jACNA ACNAE a bank to move from active 
to nap

13a , *i jV CP compressing a memory block 
‘m’

13b , *i jSBNA SBNAE a bank to move from 
standby to nap state

14a , *i jW DEP decompressing a memory 
block ‘m’

14b , *i jSBPD SBPDE a bank to move from 
standby to power down

15b , *i jNASB NASBE a bank to move from nap to 
standby

16b , *i jNAPD NAPDE a bank to move from nap to 
power down

17b , *i jPD PDE a bank in power down 
mode



331 Muhittin Yilmaz et al.  /  Procedia Computer Science   12  ( 2012 )  326 – 331 

The 1a-14a expressions in Table 4 indicate various overhead terms during storage operations, resulting in a 
compact expression of C24 for the total overhead in Table 3. The 1b-17b expressions in Table 4 define energy 
consumptions for different memory bank operations, resulting in the total energy consumption B in the optimization 
cost function.

4. Numerical Simulations

The numerical simulations for two-level power states [1], i.e., active and power down, and for four-level
power states, i.e., active, stand by, nap, and power down, in this study are obtained by implementing the storage 
system power management optimization framework in Eqn.1. The constraints and the objective functions were 
defined for two-level and four-level power state conditions. The binary integer programming frameworks for both 
two-level and proposed four-level power states were implemented in Matlab [14] by assuming a particular execution
pattern, various power state changes, and a-priori known, same overhead and power consumption levels, and by 
verifying size and location conditions.

Based on the binary integer programming results for the same system parameters and assumptions, the 
proposed four-level power state framework outperformed the two-level power state framework [1] in reduced 
energy consumption by 12.7%, indicating an effective optimization tool for storage system power management.

5. Conclusions

An integer linear programming framework for storage system power optimization is successfully presented 
for effective data operations. The simulation results have indicated superior power management by defining higher 
number of power states for each memory bank. Although the results have been developed for a DRAM memory 
module with a number of banks, the same proposed framework can easily be extended to storage systems that 
include new and old electronic components for low- and high-demand operations with optimal power management. 

The proposed power management system is currently being extended to hybrid and distributed practical 
storage systems with a number of different memory modules.  
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