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The energyof a graphG is the sumof the absolute values of the eigen-

values of the adjacency matrix of G. The Laplacian (respectively, the

signless Laplacian)energyofG is the sumof theabsolutevaluesof the

differences between the eigenvalues of the Laplacian (respectively,

signless Laplacian)matrix and the arithmeticmean of the vertex de-

grees of the graph. In this paper, among some results which relate

these energies, we point out some bounds to them using the energy

of the line graph of G. Most of these bounds are valid for both en-

ergies, Laplacian and signless Laplacian. However, we present two

new upper bounds on the signless Laplacian which are not upper

bounds for the Laplacian energy.

© 2010 Elsevier Inc. All rights reserved.

1. Preliminaries

In this paper, we consider simple undirected graphs G, herein just called graphs, with vertex set

V(G) and edge set E(G). We say that G is an (n,m)-graph if G has n vertices vi, 1 � i � n, and m

edges ek = vivj = vjvi, 1 � k � m, with i, j ∈ {1, . . . , n}. The complement of a graph G is denoted
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G. The complete graph on n vertices, Kn, is such that each pair of vertices is connected by an edge.

Then, the null graph is Kn. The line graph L(G) of G is the graph whose vertex set is in one-to-one

correspondence with the edge set of the graph G and where two vertices of L(G) are adjacent if and

only if the corresponding edges in G have a vertex in common [15]. If G is a graph and H one of its

induced subgraphs, then we denote by G−H the graph obtained from G by deleting all the vertices in

V(H) (and therefore, eliminating all the edges with at least one end-vertex in V(H) ).
The adjacency matrix A(G) of G is a (0, 1)-matrix of order n such that aij = 1 if the vertex vi is

adjacent to the vertex vj and 0 otherwise. Let D(G) be the diagonal matrix of order n whose (i, i)-

entry is the degree di of the vertex vi ∈ V(G). Then the matrices L(G) = D(G) − A(G) and L+(G) =
D(G) + A(G) are the Laplacian and the signless Laplacian matrices, respectively. For details on their

spectral properties see [3,4].

The eigenvalues λ1(G), λ2(G), . . . , λn(G) of the adjacency matrix A(G) of the graph G are also

called the eigenvalues of G. For details on spectral graph theory see [2]. The energy of the graph G is

defined as

E(G) =
n∑

j=1

|λj(G)|.

Details on the properties of graph energy can be found in [9,10,13,25,11,17].

Let μ1, μ2, . . . , μn and μ+
1 , μ+

2 , . . . , μ+
n be the eigenvalues of the matrices L(G) and L+(G),

respectively. Then the Laplacian energy of G is defined as [14],

LE(G) =
n∑

i=1

∣∣∣∣μi − 2m

n

∣∣∣∣
and, in analogy to LE(G), the signless Laplacian energy may be defined as

LE+(G) =
n∑

i=1

∣∣∣∣μ+
i − 2m

n

∣∣∣∣ .
Details on the properties of Laplacian energy can be found in [14,24,25,23].

Theconceptofmatrixenergy,put forwardbyNikiforov [20], representsa far-reachinggeneralization

of graph energy. Let C be a real matrix of order s × t, with singular values s1(C), s2(C), . . . , sq(C). Its
energy, E(C), is defined as s1(C)+ s2(C)+ · · ·+ sq(C), where q � min{s, t}. Therefore, if C is real and

symmetric of order n, then si(C), i = 1, . . . , n are equal to the absolute values of their eigenvalues.

According to the above definitions,

E(G) = E(A(G)),

LE(G) = E

(
L(G) − 2m

n
In

)
,

and

LE+(G) = E

(
L+(G) − 2m

n
In

)
,

where In stands for the identity matrix of order n.

2. Energy and signless Laplacian energy

This section begins with the following two well known results which will be used along the paper.

Theorem 1 [6]. Let A, B ∈ R
n×n and let C = A + B. Then

E(C) � E(A) + E(B). (1)
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Moreover, equality holds if and only if there exists an orthogonal matrix P such that PA and PB are both

positive semidefinite matrices.

Consider the matrix B =
(
ATA

)1/2
such that BTB = ATA and denote |A| �

(
ATA

)1/2
. Then, we

have the following version of the polar decomposition theorem.

Theorem2 [18]. If A ∈ R
n×n, then there exist positive semidefinitematrices X, Y ∈ R

n×n and orthogonal

matrices P,Q ∈ R
n×n, such that A = PX = YQ. Moreover, X = |A| , Y =

(
AAT

)1/2
are unique matrices

that satisfy these equalities. In addition, the matrices P and Q are uniquely determined if and only if A is

nonsingular.

The inequality LE(G) � E(G)+∑n
i=1

∣∣∣di − 2m
n

∣∣∣wasproven in [21] and the equality casewas studied

in [22]. In an analogous manner it can be shown that

LE+(G) � E(G) +
n∑

i=1

∣∣∣∣di − 2m

n

∣∣∣∣ . (2)

If the graph G is connected then the equality holds if and only if G is regular.

The Zagreb index of a graph G is defined as

Zg(G) =
n∑

i=1

d2i . (3)

So, using this invariant, we can obtain:

Theorem 3. If G is a connected (n,m)-graph, then

LE+(G) � E(G) +
√
nZg(G) − 4m2. (4)

This inequality holds as equality if and only if G is regular.

Proof. By Cauchy–Schwarz inequality, we get

n∑
j=1

|dj − 2m
n

| �

√√√√√n

n∑
j=1

[
dj − 2m

n

]2 =
√
nZg(G) − 4m2.

The inequality holds as equality if and only if
∣∣∣dj − 2m

n

∣∣∣ = c, ∀j = 1, . . . , n. Thus, from inequality (2),

the result follows. �

Let G be an (n,m)-graph with edge set {e1, e2, . . . , em} and let G(ek), k∈{1, 2, . . . ,m} be a span-

ning subgraph ofGwith only one edge ek connecting the vertices vi and vj for some i, j ∈ {1, 2, . . . , n}.
Then, the signless Laplacian matrix of G(ek) is

L+(G(ek))rs =
⎧⎨
⎩ 1 if r, s ∈ {i, j}

0 otherwise.

If α ∈ R, then

E(L+(G(ek)) − α In) = (n − 1) |α| + |2 − α| . (5)

Therefore, for k = 1, . . . ,m, the signless Laplacian matrix of G can be expressed in terms of

L+(G(ek)) as

L+(G) =
m∑

k=1

L+(G(ek)). (6)



2368 N. Abreu et al. / Linear Algebra and its Applications 435 (2011) 2365–2374

In order to conclude that the upper bound for the Laplacian energy, obtained in [22, Theorem 7], is

also valid for the signless Laplacian energy of an (n,m)-graph, we need the following:

Lemma 4 [22]. Let 0 < a < 1 and consider the matrices

A =
⎡
⎣ a 1

1 a

⎤
⎦ , S = 1√

2

⎡
⎣ 1 −1

1 1

⎤
⎦ , Q =

⎡
⎣ 0 1

1 0

⎤
⎦ , D =

⎡
⎣ a + 1 0

0 a − 1

⎤
⎦ .

Then, A = SDS−1, |A| = S|D|S−1 and A = Q |A|.
In the above Lemma, |A| and |D| stand for the matrix functions, pertaining to the ordinary function

f (x) = |x|. Thus, in particular,

|D| =
⎡
⎣ |a + 1| 0

0 |a − 1|

⎤
⎦ .

Using Lemma 4 and adapting the proof given in [22], it is straightforward to conclude the next

upper bound on LE+(G).

Theorem 5. Let G be an (n,m)-graph. Then

LE+(G) � 4m
(
1 − 1

n

)
. (7)

The equality holds if and only if either G is a null graph (that is a graph with n vertices and without edges)

or G is a graph with only one edge plus n − 2 isolated vertices.

3. Relations between Laplacian and signless Laplacian energy

It is well known that the spectra of L(G) and L+(G) coincide if and only if the graph G is bipartite

(see [7,8]). Then, of course, LE(G) = LE+(G). It is also elementary to see that if the graph G is regular,

then LE(G) = LE+(G) = E(G). Therefore, the concept of signless Laplacian energy could be of interest

only for non-bipartite, non-regular graphs, in which case LE+(G) would differ from LE(G).
There exist non-bipartite non-regular graphs for which the inequality

LE+(G) < LE(G) (8)

holds, and other such graphs for which

LE+(G) > LE(G) (9)

is satisfied. The graphs G1 and G2, depicted in Fig. 1, are examples for the validity of (8) and (9),

respectively. Whether there are non-bipartite, non-regular graphs satisfying

LE+(G) = LE(G) (10)

remains an open problem.

By using Theorem 1 we may prove the following result.

Theorem 6. Let G be an (n,m)-graph. Then∣∣∣LE+(G) − LE(G)
∣∣∣ � 2E(G). (11)

The equality holds if G is the null graph.
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Proof. From the equalities

L(G) − 2m
n

In = D(G) − 2m
n

In − A(G)

L+(G) − 2m
n

In = D(G) − 2m
n

In + A(G)

it follows that(
L+(G) − 2m

n
In

)
−

(
L(G) − 2m

n
In

)
= 2A(G).

Then,

L(G) − 2m
n

In = −2A(G) +
(
L+(G) − 2m

n
In

)
and

L+(G) − 2m
n

In = 2A(G) +
(
L(G) − 2m

n
In

)
.

By application of Theorem 1, we obtain

LE(G) = E
(
L(G) − 2m

n
In

)
� E (−2A(G)) + E

(
L+(G) − 2m

n
In

)
= 2E(G) + LE+(G) (12)

LE+(G) = E
(
L+(G) − 2m

n
In

)
� E(2A(G)) + E

(
L(G) − 2m

n
In

)
= 2E(G) + LE(G) (13)

and thus the inequality in (11) follows. Finally, if G is the null graph, then it is immediate that the

inequality (11) holds as equality. �

Theorem 7. Let G be an (n,m)-graph, A = A(G) its adjacency matrix and D = D(G) − 2m
n
In. Then,

max{2E(G), 2E(D)} � LE+(G) + LE(G) � 2E(G) + 2E(D).

All the inequalities hold as equalities if and only if G is regular.

Notice that E(D) = n∑
i=1

∣∣∣di − 2m
n

∣∣∣, cf. Eq. (2).

Proof. Consider the 2n × 2n matrices X =
⎛
⎝D A

A D

⎞
⎠ and J = 1√

2

⎛
⎝In In

In −In

⎞
⎠. It is not difficult to prove

that J2 = I2n and

JXJ =
⎛
⎝D + A 0

0 D − A

⎞
⎠ = Y .

Therefore, E(X) = E(Y) = LE+(G) + LE(G). We observe that

X =
⎛
⎝D 0

0 D

⎞
⎠ +

⎛
⎝0 A

A 0

⎞
⎠

and by applying Theorem 1, the right inequality is obtained. This result may also be obtained from

Theorems 1 and 4 in [22]. According to [22], the right inequality holds as equality if and only if G is
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regular. Regarding the left inequality, since thematrices X and Z =
⎛
⎝ D −A

−A D

⎞
⎠ are similar, by applying

Theorem 1, we obtain

4E(D) = E(X + Z) � E(X) + E(Z) = 2E(X) ⇒ 2E(D) � E(X)

and

4E(A) = E(X − Z) � E(X) + E(Z) = 2E(X) ⇒ 2E(A) � E(X).

Thus, the left inequality follows. From Theorem 1, the left inequality holds as equality if and only if

there exist orthogonal matrices P and Q such that PX = M1, PZ = M2, QX = N1,Q(−Z) = N2 are

positive semidefinite matrices. From Theorem 2, M1 = |X| = |Z| = M2, and N1 = |X| = |Z| = N2,

which implies X = Z or X = −Z. In both cases G is a regular graph. �

As direct consequence of Theorems 6 and 7, we may conclude that if G is an (n,m)-graph, then∣∣LE+(G) − LE(G)
∣∣

2
� E(G) � LE+(G) + LE(G)

2
.

Based on the results obtained in Section 2 and also in [12], it seems that the Laplacian and signless

Laplacian energies satisfy bounds of equal form.However, herewepoint out somedifferences between

both graph invariants. In particular,we introduce somebounds for the signless Laplacian energywhich,

for certain kind of graphs, are not valid for the Laplacian energy.

Let G be an (n,m)-graph whose vertex degrees are d1, . . . , dn and eigenvalues λ1 ≥ · · · ≥ λn.

Then, the following is known:

1. The line graph L(G) hasm vertices and q edges, where

q = −m + 1

2

n∑
i=1

d2i . (14)

2. According to [16],

E(G) ≤ λ1 + √
n − 1

√
2m − λ2

1. (15)

Furthermore, if G is an (n,m)-graph with m ≥ n, using (14), (15) and Theorem 9-(b) and (c), we

arrive at the inequalities

LE+(G) ≤ E(L(G)) ≤ λ1(L(G)) + √
m − 1

√
2q − λ2

1(L(G)), (16)

where λ1(L(G)) denotes the index of L(G).
In some cases,we can see thatwhile the above upper bound is true for the signless Laplacian energy,

it is not valid for the Laplacian energy. For instance, considering the graph G1 depicted in Fig. 1, we

obtain

5.123 = LE+(G1) ≤ λ1(L(G1)) + √
m − 1

√
2q − λ2

1(L(G1))

= 5.773 < 6 = LE(G1).

Fig. 1. The graphs G1 and G2 are such that LE+(G1) < LE(G1) and LE+(G2) = 8.666 > 8.456 = LE(G2).
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Taking into account the definition of Zagreb index (3) and the equality (14), it is straightforward to

conclude that

q = −m + 1

2
Zg(G). (17)

Let us consider an (n,m)-graph G. Then, it follows:

1. As proven in [1] and [19], the inequalities

2
√

m � E(G) �
√

2mn (18)

hold and the upper bound is attained if and only if G is either the null graph or m copies of K2.

2. As proven in [16], the inequality

E(G) � 2m

n
+

√√√√(n − 1)

[
2m −

(
2m

n

)2
]

(19)

holds and the upper bound is attained if and only if G is either the null graph,m copies of K2, the

complete graph Kn−1 or a strongly regular connected graph with two non-trivial eigenvalues,

both having the absolute value equal to

√(
2m −

(
2m
n

)2)
/(n − 1).

Therefore, using the lower bound in (18) and the upper bound (19) (since, for every graph, the upper

bound in (18) is worse than the (19)), it follows√
2Zg(G) − 4m � E(L(G)) � ϒ+(G), (20)

where

ϒ+(G) = 1

m

[
Zg(G) − 2m +

√
(m − 1)

(
Zg(G) − 2m

)
(m2 − Zg(G) + 2m)

]
.

Therefore, applying (20) and Theorem 9, beyond the inequality√
2
(
Zg(G) − 2m

) � LE+(G) (21)

we arrive at the inequalities

LE+(G) �
⎧⎨
⎩ ϒ+(G), if m � n

ϒ+(G) + 4m
n

(n − m) if m < n.
(22)

The upper bound (22) (form ≥ n) also shows us that LE+(G) and LE(G) behave differently. In fact,

using the same graph displayed in Fig. 1, we get

5.123 = LE+(G)

�
Zg(G) − 2m +

√
(m − 1)

(
Zg(G) − 2m

)
(m2 − Zg(G) + 2m)

m
= 5.854

< 6 = LE(G).

Now, let us compare ϒ+(G) with the lower bound in (21). Since,

Zg(G) =
n∑

i=1

d2i = ∑
ij∈E(G)

(di + dj) ≤ 2m�(G) ⇒ Zg(G) − 2m ≤ 2m(�(G) − 1),
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where �(G) denotes the maximum degree of the vertices of G, and

4m2 =
⎛
⎝ n∑

i=1

di

⎞
⎠2

� n

n∑
i=1

d2i ⇒ 2m
(
2m
n

− 1
)

� Zg(G) − 2m.

Denoting d̄(G) = 2m
n
, it follows:

ϒ+(G) = 1

m

[√
Zg(G) − 2m +

√
(m − 1)(m2 − Zg(G) + 2m)

]√
Zg(G) − 2m

� 1

m

[√
2m(�(G) − 1) +

√
2m(m − 1)

(
m

2
−

(
d̄ − 1

))]√
Zg(G) − 2m

=
⎛
⎜⎜⎝
√

�(G) − 1

m
+

√√√√ (m − 1)
(
m
2

−
(
d̄(G) − 1

))
m

⎞
⎟⎟⎠
√
2
(
Zg(G) − 2m

)

≤
⎛
⎜⎜⎝
√
m − 1

m
+

√√√√ (m − 1)
(
m
2

−
(
d̄(G) − 1

))
m

⎞
⎟⎟⎠
√
2
(
Zg(G) − 2m

)

≤
(
1 +

√
m

2
−

(
d̄(G) − 1

))√
2
(
Zg(G) − 2m

)
.

Therefore,

√
2
(
Zg(G) − 2m

) � LE+(G) ≤ ϒ+(G)

�
(
1 +

√
m

2
−

(
d̄(G) − 1

))√
2
(
Zg(G) − 2m

)
.

Finally, we conclude that the above inequalities give the range where LE+(G) may vary in function

of the parameter
√
2
(
Zg(G) − 2m

)
.

4. A bound for the Laplacian energy of trees

In this section, denoting the number of edges of a graph G by m(G), we prove a proposition which

is an application of the following results given in [5,12].

Theorem 8 [5]. Let H be an induced subgraph of G. Then

E(H) + E(G − H) � E(G).

Equality holds if and only if each edge of G is in H.

Theorem 9 [12]. If G is a graph with n � 2 vertices and m(G) = m � 1, then the following statements

hold:

(a) If m < n, then LE+(G) − 4m
n

(n − m) � E(L(G)) < LE+(G). The left-hand equality is attained if

and only if G is the direct sum of m copies of the complete graph K2.
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(b) If m > n, then LE+(G) < E(L(G)) < LE+(G) + 4(m − n).
(c) Finally, LE+(G) = E(L(G)) if and only if m = n.

Based on the above results, we may prove the following theorem.

Theorem 10. Let T be a tree on n vertices and H a connected subgraph of T on k vertices. Then

LE(H) + LE(T − H) < LE(T) + 4(1 + δ),

where δ is the number of connected components of T − H.

Proof. Since the number of edges of T is m = n − 1 and the subgraph H is connected (therefore a

subtree) of order k, it follows that the number of connected components of T − H is

δ = n − 1 − (k − 1) − m(T − H) = n − k − m(T − H).

Notice that δ also coincides with the number of edges between the vertices of T which are in and out

of the subtree H. Hence,m(T − H) = n − k − δ. Taking into account that T is bipartite, it follows that

LE+(T) = LE(T) (cf. [7,8]). By using Theorem 9-(a), we obtain

LE(T) − 4 (n − 1)

n
� E(L(T)) < LE(T),

where the left-hand side inequality is attained as equality if and only if T ∼= K2.

It is immediate that, if H is a subtree of T , then L(H) is an induced subgraph of L(T). Then, by
applying Theorem 8, we have

E(L(H)) + E(L(T) − L(H)) � E(L(T)). (23)

Since L(G − H) is an induced subgraph of L(T) − L(H), then

E(L (G − H)) � E(L(T) − L(H))

and from (23), we arrive at the inequality

E(L(H)) + E(L(T − H)) � E(L(T)).

Now, applying Theorem 9-(a) to the subtree H and to the subgraph T − H, it follows

LE(H) − 4 (k − 1)

k
� E(L(H)) < LE(H)

and

LE(T − H) − 4 (n − k − δ)

n − k
δ � E(L(T − H)) < LE(T − H).

By adding the above inequalities, we arrive at

LE(H) + LE(T − H) − 4
(k − 1)(n − k) + (n − k − δ)kδ

(n − k)k

� E(L(H)) + E(L(T − H)) � E(L(T)) < LE(T).

This implies,
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LE(H) + LE(T − H) < LE(T) + 4
(k − 1)(n − k) + (n − k − δ)kδ

(n − k)k

= LE(T) + 4

(
k − 1

k
+ n − k − δ

n − k
δ

)

< LE(T) + 4(1 + δ)

since (k − 1)/k and (n − k − δ)/(n − k) are both less than 1. �
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