
Theoretical Computer Science 259 (2001) 623–638
www.elsevier.com/locate/tcs

Fast algorithms for the Sylvester equation AX − XBT = C

Peter Kirrinnis
Universit	at Bonn, Institut f	ur Informatik II, R	omerstr. 164, D-53117 Bonn, Germany

Received 23 August 1999; revised 26 May 2000; accepted 18 July 2000
Communicated by V. Pan

Abstract

For given matrices A ∈ Fm×m, B ∈ Fn×n, and C ∈ Fm×n over an arbitrary 2eld F , the
matrix equation AX − XBT = C has a unique solution X ∈ Fm×n if and only if A and B
have disjoint spectra. We describe an algorithm that computes the solution X for m; n6N with
O(N
 · logN) arithmetic operations in F , where
¿ 2 is such that M × M matrices can be
multiplied with O(M
) arithmetic operations, e.g.,
 = 2:376. It seems that before no better bound
than O(m3 · n3) arithmetic operations was known. The state of the art in numerical analysis is
O(n3+m3) ;ops, but these algorithms (due to Bartels=Stewart and Golub=Nash=van Loan) involve
Schur decompositions, i.e., they compute the eigenvalues of at least one of A and B, and can
hence not be transferred for general F . c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Matrix equations; Sylvester equation; Fast algorithms; Algebraic complexity

1. Introduction

The inhomogeneous linear matrix equation

AX − XBT = C (A ∈ Fm×m; B ∈ Fn×n; C; X ∈ Fm×n) (1.1)

is called the Sylvester equation (over the 2eld F). It has a unique solution X if and only
if the coeAcient matrices A and B have no eigenvalues in common [18, Theorem 4:4:6,
16, Section 15:1].

The Sylvester equation appears in various branches of mathematics, in most cases for
F =R or F =C. We recall some special cases — not all with unique solutions — from
[16, Chapter 15]: matrix inversion (AX = I), linear systems (AX =C), computation
of eigenvectors (AX − X�= 0 with �= diag(�1; : : : ; �m)), and commuting matrices
(AX − XA= 0).

E-mail address: kirr@cs.uni-bonn.de (P. Kirrinnis).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00322 -4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82827556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

624 P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638

Another example is block diagonalization of block triangular matrices, also men-
tioned in [16, Chapter 15]: the matrix(

I −X

0 I

)(
A −C

0 BT

)(
I X

0 I

)−1

=

(
A AX − XBT − X

0 BT

)

is block diagonal iK X solves the Sylvester equation AX − XBT =C. The application
of the Sylvester equation for block diagonalization of real Schur canonical forms is
described in [13, Section 7:6:3].

The Sylvester equation plays an important role in control theory. An important spe-
cial case is the Lyapunov equation AX + XAT =C. Another application is solving the
nonlinear matrix equation

AX − XBT = C + XDX

called the algebraic Riccati equation, which arises naturally in systems and control
theory. Some references to the corresponding literature are given in the introduction
of [3]. In the control theory literature, Riccati equations are solved by reduction to
eigenvector problems [3, 22]. The other way round, several methods for re2ning ap-
proximations of invariant subspaces can be reduced to the Riccati equation [9]. A step
of the direct iteration AXk+1 −Xk+1BT =C +XkDXk for solving the Riccati equation is
obviously a Sylvester equation. Newton iteration for the Riccati equation also leads to
a Sylvester equation. Both algorithms are analyzed in [9, Section 4].

As a last application of the Sylvester equation we mention the solution of discretized
elliptic boundary problems on rectangular domains [24]. In [24], an iterative algorithm
for solving the Sylvester equation is proposed.

The standard direct algorithms for the Sylvester equation with matrices over the
reals are the Bartels–Stewart algorithm [5] (see [13, Section 7:6:2] for a simpli2ed
version) and a Hessenberg–Schur method proposed by Golub et al. [14]. In the words
of the latter authors, “the crux of the Bartels–Stewart algorithm” is that the 2rst step
is to compute real Schur decompositions of A and B, i.e., orthogonal matrices U and
V such that UTAU and V TBV are quasi-triangular (i.e., triangular up to some 2× 2
blocks on the diagonal, which originate from pairs of complex conjugate eigenvalues).
For complex matrices, U and V are unitary and the transformations yield triangular
matrices. The LAPACK [2] algorithms for the Sylvester equation also require both the
matrices A and B to be reduced to Schur form.

The Hessenberg–Schur method [14] requires only one of the matrices A or B to
be reduced to Schur form, while for the other one reduction to Hessenberg form is
suAcient. This reduces the operation count (measured in ;ops) by a constant factor.
Both the Bartels–Stewart and the Golub–Nash–Van Loan algorithm use O(m3 + n3)
;oating point operations, if one assumes that an M ×M matrix can be reduced to
Schur form with O(M 3) operations. More precise bounds are given in [5, 14].

As the Sylvester equation is a linear equation, the entries of the solution X are
rational expressions in the entries of A, B, and C. Opposed to that, the entries of a

P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638 625

Schur form of the matrix A (i.e., the matrix UTAU) need not be rational expressions
in the entries of A, B, and C. If for instance all entries of A, B, and C are rational
numbers, then so are the entries of X , while the diagonal elements of a Schur form of
A are the eigenvalues of A, which need not be rational.

In numerical analysis, Schur decompositions are usually computed in two steps:
2rst, A is transformed into Hessenberg form with Householder transforms, and then
QR iteration is used to get rid of the subdiagonal. Hence, there are intermediate results
that are not computed exactly, but approximated by an iterative numerical process.
This is appropriate for numerical analysis, but it raises the question whether there is
a competitive (say, O(m3 + n3)) algorithm that uses only rational operations and can
hence be used for arbitrary 2elds.

A brute force attack in this direction is to rewrite the Sylvester equation in matrix
vector form, using the Kronecker Product

U ⊗ V = (uijV)

and the vec operator, which maps an m× n matrix to the m · n vector of its columns (see
[18, Chapter 4]). With the relation vec(AXB) = (BT ⊗A)vec(X), the Sylvester equation
AX − XBT =C can be written as

(In ⊗ A− B⊗ Im)vec(X) = vec(C): (1.2)

This mn×mn system can be solved by Gaussian elimination with O(m3n3) ;ops, but
this is unacceptable. In [24], it is proposed to solve (1.2) numerically by an iterative
algorithm. So the second question is whether the special structure of the large linear
system (1.2) can be exploited using only rational operations.

A third question is whether asymptotically fast matrix multiplication algorithms can
be used to solve the Sylvester equation. It is now accepted that Strassen’s O(M 2:81)
algorithm [26] and Winograd’s variant [27] for multiplying and inverting M ×M ma-
trices are of practical relevance, see, e.g. [16, Chapter 22], [15], [4]. Although the
present paper does not discuss practical issues like numerical stability, there is hope
that exploiting fast matrix multiplication for the Sylvester equation will eventually also
be useful for numerical analysis.

Throughout this paper, F denotes a 2eld, and
¿2 is such that M × M matrices
over F can be multiplied with O(M
) arithmetic operations in F . According to the
best complexity bound currently known — due to Coppersmith and Winograd [8] —
we can choose
¡2:376 for any 2eld F . The assumption
¿2 has technical reasons.
The case
 = 2 brings in additional logarithmic factors in the time bounds and must
be dealt with separately in the proofs, see the remark at the bottom of p. 310 in [20].

The complexity bounds in this paper refer to the total complexity of algebraic com-
putation trees as de2ned in [6, Section 4:4]. We refer to the complexity as to “time”
or the “number of arithmetic operations” (i.e., +, −, ∗, =), although tests for equality
are counted, too. Our main result is the following complexity bound:

626 P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638

Theorem 1.1. Let A∈Fm×m and B∈Fn×n with disjoint spectra; let C ∈Fm×n; and let
m; n6N . Then the (unique) solution X of the Sylvester equation AX − XBT =C can
be computed with O(N
 · log N) arithmetic operations.

If M ×M matrices can be inverted with O(M
) operations, then O(M
) is also an
upper bound for the complexity of M ×M matrix multiplication. As matrix inversion
is a special case of the Sylvester equation, the time bound in Theorem 1.1 is sharp up
to the logarithmic factor.

Note that Theorem 1.1 does not apply to the particularly interesting and important
case of eigenvector computation, because we have assumed that A and B have disjoint
spectra.

2. Outline of the algorithm

The idea of the algorithm is to transform the coeAcient matrices A and B to a special
form for which the Sylvester equation can be solved easily. The Sylvester equation is
invariant w.r.t. similarity transforms in the following sense:

Lemma 2.1. Let A∈Fm×m; B∈Fn×n; and C ∈ Fm×n. Let U ∈GL(m) and V ∈GL(n)
and de9ne A′ =U−1AU and B′ =V−1BV . Then Y ∈ Fm×n solves the equation
A′Y − Y (B′)T =U−1C(V−1)T if and only if X =UYV T solves AX − XBT =C.

The Bartels–Stewart and Golub–Nash–Van Loan algorithms are both based on this
lemma, and so is the one presented here.

The characteristic polynomial of a matrix U ∈Fk×k is denoted by �U (z) =
det(z · Ik − U). First, we show that if B= (bi; j) is an upper Hessenberg matrix (i.e.,
bi; j = 0 for all i¿j + 1) with all subdiagonal entries bi+1; i equal to 1, then the last
column xn of the solution X ful2lls the linear equation �B(A)xn =d, where d∈Fm can
be computed from A; B, and C. Once xn is known, the other columns of X can be
computed from (1.2) by backward substitution. The Sylvester equation for Hessenberg
matrices is discussed in detail in Section 3.

If B is a companion or Frobenius matrix, i.e.,

B =

0 0 · · · 0 −b0

1 0 · · · 0 −b1

0 1 · · · 0 −b2
...

. . .
...

0 0 · · · 1 −bn−1

 ;

then the characteristic polynomial of B is �B(z) = zn + bn−1zn−1 + · · · + b1z + b0. If
A is also a Frobenius matrix, then the equation �B(A)xn =d can be translated into a
polynomial equation that can be solved by polynomial GCD computation. Moreover,
the r.h.s. d can be computed eAciently and the backward substitution for the other

P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638 627

columns of X can be performed fast due to the sparsity of A and B. In Section 4,
we show that for Frobenius matrices A∈Fm×m and B∈Fn×n with disjoint spectra, the
Sylvester equation AX − XBT =C can be solved with O(m · n) operations.

The general case is reduced to the Frobenius matrix case by Keller-Gehrig’s [20]
asymptotically fast version of the Krylov method for computing the characteristic poly-
nomial [11, Section 7:8]. In the generic case, i.e., if the entries of A and B are indeter-
minates, this algorithm produces nonsingular matrices U and V such that A′ =U−1AU
and B′ =V−1BV are Frobenius matrices. This reduction is dealt with in Section 5.

In general Keller-Gehrig’s algorithm produces matrices A′ and B′ that are upper
block triangular and have Frobenius matrices on the block diagonal. For such matrices,
the Sylvester equation is solved by reduction to the Frobenius matrix case with a divide
and conquer algorithm. This algorithm is described in Section 6. Its analysis yields a
proof for Theorem 1.1.

3. The Sylvester equation for Hessenberg matrices

In this section, we show that if in the Sylvester equation AX − XBT =C the matrix
B is an upper Hessenberg matrix with all subdiagonal entries equal to 1, then the last
column xn of the solution X ful2lls the linear equation p(A)xn =d for some d∈Fm,
where p is the characteristic polynomial of B. Once xn is known, the other columns
of X can be computed by backward substitution from (1.2). The relations derived here
give rise to an eAcient algorithm for the case where both A and B are Frobenius
matrices, see Section 4. The results hold for matrices over an arbitrary 2eld F .

The equation for xn is derived by “inserting” the matrix A into a polynomial equation.
“Inserting” a matrix A∈Fm×m into a matrix polynomial P(z)∈F[z]n×n is meant in the
sense of generalizing the concept of Kronecker product:

Lemma 3.1. Let A∈Fm×m. Then

"A : F[z]n×n → (Fm×m)n×n

(pi; j(z))16i; j6n �→ (pi; j(A))16i; j6n

de9nes a homomorphism of F-algebras. In particular; "A(B) =B ⊗ Im for B∈Fn×n

and "A(zk · In) = In ⊗ Ak for k ∈N.

This concept should not be mixed up with another standard concept of inserting
a matrix into a matrix polynomial for the special case m= n, namely

∑d
k=0 Pkzk �→∑d

k=0 PkAk for coeAcient matrices P0; : : : ; Pd ∈Fn×n.
In the following, R denotes a commutative ring with unity, e.g., the ring F[z] of

univariate polynomials over F .

628 P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638

De!nition 3.2. Let B= (bi; j)∈Rn×n. For 16i; j6n, let B〈i; j〉 ∈R(n−1)×(n−1) denote
the matrix de2ned by deleting the ith row and the jth column of B. The cofactor
of bi; j is yj; i = (−1)i+j · det B〈i; j〉. The matrix Y = (yi; j)16i; j6n is called the adjoint
of B.

The following fact can be found in almost all textbooks on linear algebra, e.g.,
[17, 0.8.2]:

Lemma 3.3. Let B∈Rn×n; and let Y be its adjoint. Then Y · B=B · Y = det B · In.

Lemma 3.4. Let B∈Rn×n be upper Hessenberg with all subdiagonal elements equal
to −1. Let Bk = (bi; j)16i; j6k . Then (with the notation of De9nition 3:2) the entries
of the last row of Y are yn;1 = 1 and yn; k = det Bk−1 for k¿1.

Proof. The matrix B〈k; n〉 has the form(
Bk−1 C

0 D

)
;

where D is an upper triangular (n − k)× (n − k) matrix with all diagonal elements
equal to −1. Hence

yn; k = (−1)k+n · det B〈k; n〉= (−1)k+n · det Bk−1 · det D

= (−1)k+n · detBk−1 · (−1)n−k = det Bk−1:

Corollary 3.5. Let B∈Fn×n be upper Hessenberg with all subdiagonal elements equal
to 1. Then the last row of the adjoint Y (z) of zIn − B is

(1; �B1 (z); �B2 (z); : : : ; �Bn−1 (z)): (3.1)

Proof. Apply Lemma 3.4 to R=F[z] and zIn − B in place of B.

Lemma 3.6. Let B be as in Corollary 3:5. Let A∈Fm×m; C ∈Fm×n with columns
c1; c2; : : : ; cn; and let X ∈Fm×n be a solution to the Sylvester equation AX −XBT =C.
Then the last column xn of X ful9ls

�B(A) · xn = d;

where (with �B0 (z) = 1)

d =
n−1∑
k=0

�Bk (A) · ck+1:

Proof. Let Y (z)∈F[z]n×n be the adjoint of zIn − B. Then

Y (z) · (zIn − B) = �B(z) · In (3.2)

P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638 629

in F[z]n×n because of Lemma 3.3. The last row of Y (z) is given by (3.1). Applying
the F-algebra-homomorphism "A (Lemma 3.1) to (3.2) yields

"A(Y) · (In ⊗ A− B⊗ Im) = In ⊗ �B(A):

With the vectorized form (1.2) of the Sylvester equation, this implies

"A(T) · vec(C) = (In ⊗ �B(A)) · vec(X):

This is an equation in (Fm)n. On the r.h.s., the vector of the last m entries is d because
of (3.1), and on the l.h.s. it is �B(A) · xn.

Note that �B(A) is nonsingular (and hence xn is uniquely determined) if and only if
A and B have no eigenvalues in common. In any case, the other columns x1; : : : ; xn−1

of X are determined by xn and can be computed by backward substitution in (1.2):

Lemma 3.7. Let A; B; C; X be as in Lemma 3:6. Then the 9rst n−1 columns x1; : : : ;
xn−1 of X are given recursively by

xk−1 = Axk − bk; kxk − bk; k+1xk+1 − · · · − bk; nxn − ck for n¿k¿2:

Proof. This follows from a closer look at (1.2) for this special case (I = Im):

A− b1;1I −b1;2I −b1;3I · · · −b1; nI
−I A− b2;2I −b2;3I · · · −b2; nI

−I A− b3;3I · · · −b3; nI
. . .

. . . : : :
−I A− bn; nI

x1

x2

x3
...
xn

 =

c1

c2

c3
...
cn

 :

4. Fast algorithms for Frobenius matrices

If A is a Frobenius matrix, then computing q(A) for a polynomial q can be reduced to
polynomial multiplication and division, and linear equations of the form q(A)x =d (like
in Lemma 3.6) can be solved by polynomial GCD algorithms. This section shows how
to exploit relations of this type to solve the Sylvester equation for Frobenius matrices
A and B eAciently.

Let us 2rst recall some results about polynomial arithmetic. Let (: N→R be such
that univariate polynomials of degree 6n with coeAcients in F can be multiplied with
O(((n)) arithmetic operations in F . Then we may take ((n) = n · log n if F supports
Fast Fourier Transforms and ((n) = n · log n · log log n for arbitrary F . See, e.g., [1,
Section 7:4] or [6, Sections 2:1, 2:2] for algorithms, complexity results, and further
references.

Polynomial division is speci2ed as follows: For given f; g∈F[z] with degf = n¿m
= deg g, we want to compute the quotient q and remainder r ∈F[z] determined

630 P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638

(uniquely) by f = q · g + r and deg r¡m. With the usual school algorithm, q and
r can be computed with O(m · n) operations in F . For asymptotically fast algorithms,
the bound O(((n−m)+((m)) is stated in [6, Corollary (2:26)]. With the school method
for “blocks” of O(m) coeAcients, which are then processed with asymptotically fast
techniques, polynomial division can be performed with O((n=m) · ((m)) operations.

The greatest common divisor d of two polynomials f; g∈F[z] with degf6n and
deg g6n can be computed with O(((n) · log n) arithmetic operations. Corresponding
cofactors, i.e., polynomials u; v∈F[z] with u ·f + v · g=d and deg (d · u)¡deg g and
deg(d · v)¡degf, can be computed within the same time bound. This follows from
[6, Corollary (3:14)].

Polynomial division and GCS computation are discussed further, e.g., in [1, Sections
8:3, 8:8]. The history of algorithms for these problems and further references are given,
e.g., in [6, Sections 2:8, 3:8].

The algorithm for the Sylvester equation with Frobenius (companion) matrices A
and B is based on the fact that if A is a Frobenius matrix and q is a polynomial, then
the equation q(A) ·y =d can be written in terms of polynomial arithmetic. The crucial
result is Corollary 2:2 from [10]:

Lemma 4.1. Let A∈Fm×m be a Frobenius matrix. Let q∈F[z]; and let y = (y0; y1;
: : : ; ym−1)T and d= (d0; d1; : : : ; dm−1)T ∈Fm. Let py(z) =y0+y1z+· · ·+ym−1zm−1 and
pd(z) =d0 +d1z+ · · ·+dm−1zm−1. Then q(A) ·y =d if and only if q ·py ≡ pd mod �A.

Lemma 4.2. Assume that in Lemma 3:6 the matrix B∈Fn×n is a Frobenius matrix.
Then the r.h.s. d in Lemma 3:6 is d=

∑n−1
k=0 ·Ak · ck+1.

Proof. If B is a Frobenius matrix, then �Bk (z) = zk for 06k6n− 1.

Lemma 4.3. Let A∈Fm×m be a Frobenius matrix. Then d as in Lemma 4:2 can be
computed with O(m · n) arithmetic operations.

Proof. Multiplication of a vector with A can be done with 2m−1 operations. The vector
d=

∑n−1
k=0 Ak · ck+1 can be computed via Horner’s rule with n− 1 multiplications of A

with a vector and n− 1 additions in Fm.

Lemma 4.4. Let A∈Fm×m and B∈Fn×n be Frobenius matrices with disjoint spectra
and C ∈Fm×n. Then the last column xn of the solution X of AX − XBT =C can be
computed with O(m · n + ((m) · log m) arithmetic operations.

Proof. According to Lemma 3.6, the vector xn is the solution of the linear equa-
tion �B(A) · xn =d, where the r.h.s. d∈Fm is as in Lemma 4.2. Because of Lemma
4.1, this equation for xn is equivalent to the polynomial relation �B ·px ≡pdmod �A,
where px and pd are the polynomials with coeAcient vectors xn and d, respectively.
The characteristic polynomials �A and �B are relatively prime, because A and B have

P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638 631

disjoint spectra. If u is a polynomial with u · �B ≡ 1 mod �A, then px can be computed
from the congruence px ≡ u ·pd mod �A, because then �B ·px ≡ �B · u ·pd ≡pdmod �A.

The coeAcients of �A and �B are given for free, because A and B are Frobenius
(companion) matrices. The r.h.s. pd can be computed with O(m · n) operations because
of Lemma 4.3. The representative r of �B mod �A of degree ¡m can be computed with
O(m · n) operations (school method for polynomial division), and then u with deg u¡m
and u · r≡ u · �B ≡ 1 mod �A can be computed with O(((m) · logm) operations with an
extended GCD algorithm. Finally, px can be computed from u and pd with O(((m))
operations.

Theorem 4.5. Let A∈Fm×m and B∈Fn×n be Frobenius matrices with disjoint spectra
and C ∈Fm×n. Then the solution X of AX−XBT =C can be computed with O(m · n)
arithmetic operations.

Proof. We may assume m6 n w:l:o:g: (otherwise transpose the equation). Then ((m) ·
logm= O(m2) = O(m · n). Hence the last column of X can be computed within the as-
serted time bound because of Lemma 4.4. As B is a Frobenius matrix, the other columns
of X are given recursively by xk−1 =Axk − bk; nxn − ck for n¿k¿2, cf. Lemma 3.7.
Each step of this recursion can be done with O(m) operations, hence xn−1; : : : ; x1 can
be computed with O(m · n) operations.

5. The generic case: reduction to Frobenius form

For the case of generic matrices A and B (i.e., the entries of A and B are indeter-
minates), the problem can be reduced to the Frobenius case by similarity transforms,
using Keller-Gehrig’s algorithm for computing the characteristic polynomial. The algo-
rithm exploits fast matrix multiplication. Reduction to Frobenius Form is based on the
following lemma.

Lemma 5.1. Let A∈Fn×n and v∈Fn\{0}. If the matrix U =U (A) = (v; Av; A2v; A3v;
: : : ; An−1v) is nonsingular; then U−1AU is a Frobenius matrix. If the entries of A
are algebraically independent over a sub9eld F0 of F and v∈Fn

0 \{0}; then U (A) is
nonsingular.

Proof. Assume that U is nonsingular. Let ej denote the jth unit vector. Then U−1AUej
=U−1AAj−1v=U−1Ajv=ej+1 for 16j¡n. So U−1AU is a Frobenius matrix.

Now let A have algebraically independent entries and v∈Fn
0 . Choose v2; : : : ; vn ∈Fn

0

such that v= v1; v2; : : : ; vn are a basis of Fn
0 . Let B∈Fn×n

0 be such that Bvi = vi+1

for 16i¡n. Then substitute B for the indeterminate matrix A in U (A). This pro-
duces U (B) = (v1; v2; : : : ; vn), which is nonsingular. Therefore det U (B) �= 0 and hence
det U (A) �= 0.

A simple algorithm described by Keller-Gehrig [20, Section 3] shows that U (A) can
be computed with O(n
 · log n) operations:

632 P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638

Lemma 5.2. If the entries of A are algebraically independent; then the matrix U in
Lemma 5:1 can be computed with O(n
 · log n) operations.

The inverse of a nonsingular n× n matrix can be computed with O(n
) operations,
see [26] or [6, Section 16:4]. Now we have all ingredients to prove a time bound for
the Sylvester equation in the generic case.

Proof of Theorem 1.1 (Generic case): Due to Lemma 5.2, matrices U ∈GL(m) and
V ∈GL(n) such that A′ =U−1AU and B′ =V−1BV are Frobenius matrices can be com-
puted with O(N
 · logN) operations. The matrix C′ =U−1C(V−1)T can be computed
with O(N
) operations. The solution Y of the equation A′Y−Y (B′)T =C′ can be com-
puted with O(m · n)6O(N
) operations, and the solution X =UYV T of AX−XBT =C
can then be computed from Y with O(N
) operations.

6. The general case: divide and conquer

In general, a (square) matrix need not be similar to a Frobenius matrix. However,
every matrix is similar to a block diagonal matrix, where the block diagonal entries
are Frobenius matrices, e.g., its 9rst rational canonical form or Frobenius canonical
form, where the Frobenius blocks correspond to the invariant factors ik of A, which
are de2ned as follows: For each eigenvalue � of A, let .1(�)¿.2(�)¿ · · ·¿.n(�)¿0
denote the sizes of the Jordan blocks corresponding to � in the Jordan canonical form
of F . Let �1; : : : ; �l denote the distinct eigenvalues of A. Then ik(z) =

∏l
j=1(z−�j).k (�j)

is the kth invariant factor of A. In particular, i1 is the minimal polynomial of A; i2
is the minimal polynomial of what remains when a largest Jordan block for each
eigenvalue is removed, etc. The invariant factors are in F[z]; ik+1 divides ik for each k,
and i1; : : : ; in = �A. Another rational canonical form is the second rational canonical
form, where the Frobenius blocks correspond to the elementary divisors of A, i.e., the
characteristic polynomials of the Jordan blocks. For further information and proofs see
[11, Sections 7:1–7:5] or [17, Section 3:4].

Unfortunately, the known algorithms for computing such canonical forms are not
suited for the complexity bound of Theorem 1.1: Giesbrecht’s O(N
 · logN) algorithm
[12] is nondeterministic. The fastest known deterministic algorithm for the Frobenius
canonical form (Storjohann, [25]) has no better complexity bound than O(N 3) and does
not provide a transformation matrix. The known algorithms that compute a transforma-
tion matrix as well do not yield better time bounds than O(N 4), see [25] for further
references.

Keller-Gehrig’s algorithm for computing the characteristic polynomial in the general
case transforms the matrix into a form that is more complicated and shows less infor-
mation about the structure of the operator, but suAces for our purpose. The following
de2nition is motivated by the fact that the aforementioned canonical forms correspond
to the decomposition of the space into cyclic subspaces.

P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638 633

De!nition 6.1. We call a matrix A∈Fn×n semicyclic if it is upper block triangular,

A =

F1 ∗ ∗ · · · ∗
0 F2 ∗ ∗
0 0 F3 ∗
0 0 0

. . .
...

0 0 0 · · · Fl

with Frobenius matrices F1; : : : ; Fl on the block diagonal.

The asterisks ∗ denote arbitrary entries. The following lemma is a direct consequence
of this de2nition:

Lemma 6.2. Any semicyclic matrix A∈Fn×n can be partitioned as

n1

n0

n2

 A1 ∗ ∗

0 A0 ∗
0 0 A2

 ;

where A1 ∈Fn1×n1 and A2 ∈Fn2×n2 are semicyclic; A0 ∈Fn0×n0 is a Frobenius matrix;
n1; n2; n0;¿0; n = n1 + n2 + n0; and n1; n26n=2.

The dimensions n1; n2; n0 are allowed to be zero. This simpli2es the description of
special cases. If, e.g., A itself is a Frobenius matrix, then we choose n1 = n2 = 0 and
A0 =A. The spectra of A1; A2, and A0 are contained in the spectrum of A.

The crucial step in Keller-Gehrig’s algorithm for computing the characteristic poly-
nomial of a matrix A (not necessarily generic) is to transform A into a semicyclic
matrix. An algorithm for this task is described in [20, Section 5] and [6, Section 16:6].
It yields the following time bound:

Lemma 6.3. For A∈Fn×n; a nonsingular matrix U such that U−1AU is semicyclic
can be computed with O(n
 · log n) arithmetic operations.

The divide and conquer algorithm for the Sylvester equation uses the following
simple complexity result for rectangular matrix multiplication:

Lemma 6.4. For m6n; the product of an m × m matrix A with an m × n matrix B
can be computed with O(m
−1 · n) operations.

Proof. Partition B= (B1|B2| · · · |Bl) into l= �n=m� blocks of size m× m and compute
the products ABj with O(m
) operations each. This yields the overall complexity bound
O(m
 · l) = O(m
−1 · n).

In the remainder of this section, we discuss the complexity of solving the Sylvester
equation AX − XBT =C for A∈Fm×m and B∈Fn×n with disjoint spectra.

634 P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638

Lemma 6.5. Let A be semicyclic; B be a Frobenius matrix; and m6n. Then X can
be computed with O(m
−1 · n) arithmetic operations.

Proof. If m= 1, then A is a Frobenius matrix. If A is a Frobenius matrix, then X can
be computed with O(m · n) = O(m
−1 · n) operations because of Theorem 4.5. If A is
not a Frobenius matrix, then we partition A according to Lemma 6.2 and partition the
rows of X and C accordingly. Then the Sylvester equation reads

 A1 U1 U2

0 A0 U3

0 0 A2

 X1

X0

X2

−

 X1

X0

X2

BT =

C1

C0

C2

or equivalently

A2X2 − X2BT = C2; (6.1)

A0X0 − X0BT = C0 − U3X2; (6.2)

A1X1 − X1BT = C1 − U1X0 − U2X2: (6.3)

Let T (M;N) denote a time bound for solving the Sylvester equation for the special case
speci2ed in the lemma with m6M and n6N . Then X2 can be computed from (6.1)
in time T (M=2; N). The r.h.s. of (6.2) can be computed in time O(M
−1 ·N) because
of Lemma 6.4. The solution X0 of (6.2) can be computed with O(M ·N) operations
because of Theorem 4.5. The r.h.s. of (6.3) can also be computed in time O(M
−1 ·N),
and X1 can then be computed from (6.3) in time T (M=2; N). This shows that T (M;N)
ful2ls the recursive estimate

T (M;N)62 · T (M=2; N) + O(M
−1 · N); T (1; N)6O(N);

which implies the assertion of the lemma.

Lemma 6.6. Let A be semicyclic; B be a Frobenius matrix; and m¿n. Then X can
be computed with O(m
) arithmetic operations.

Proof. Let T (M;N) denote a time bound for the case discussed here with m6M and
n6N . We reduce to smaller cases by partitioning A as in the proof of Lemma 6.5.
The time for computing the r.h.s. of (6.2) and (6.3) is bounded by O(M
). (We do not
exploit the fact that the matrix multiplications involved here can be computed cheaper
if n is small compared with m, see Section 7.) The recursive estimate is as follows:

T (M;N)62 · T (M=2; N) + O(M
); T (N; N)6O(N
):

This implies T (M;N) = O(M
).

We summarize Lemmas 6.5 and 6.6. The role of A and B may be exchanged by
transposing the equation.

P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638 635

Corollary 6.7. Let A; B be semicyclic; one of them a Frobenius matrix; and m; n6N .
Then X can be computed with O(N
) arithmetic operations.

Lemma 6.8. Let A; B be semicyclic and m; n6N . Then X can be computed with
O(N
) arithmetic operations.

Proof. We partition both A and B according to Lemma 6.2. The Sylvester equation
has the form

 A1 U1 U2

0 A0 U3

0 0 A2

X − X

 BT

1 0 0
V T

1 BT
0 0

V T
2 V T

3 BT
2

 = C:

The matrices C and X are partitioned accordingly,

X =

 X1;1 X1;0 X1;2

X0;1 X0;0 X0;2

X2;1 X2;0 X2;2

 ; C =

C1;1 C1;0 C1;2

C0;1 C0;0 C0;2

C2;1 C2;0 C2;2

 :

This implies nine smaller Sylvester equations for the Xi; j (i; j∈{1; 0; 2}), in which the
underlined matrix can be computed from the ones computed previously:

A2X2;2 − X2;2BT
2 = C2;2;

A2X2;0 − X2;0BT
0 − X2;2V T

3 = C2;0;

A2X2;1 − X2;1BT
1 − X2;0V T

1 − X2;2V T
2 = C2;1;

A0X0;2 + U3X2;2 − X0;2BT
2 = C0;2;

A0X0;0 + U3X2;0 − X0;0BT
0 − X0;2V T

3 = C0;0;

A0X0;1 + U3X2;1 − X0;1BT
1 − X0;0V T

1 − X0;2V T
2 = C0;1;

A1X1;2 + U1X0;2 + U2X2;2 − X1;2BT
2 = C1;2;

A1X1;0 + U1X0;0 + U2X2;0 − X1;0BT
0 − X1;2V T

3 = C1;0;

A1X1;1 + U1X0;1 + U2X2;1 − X1;1BT
1 − X1;0V T

1 − X1;2V T
2 = C1;1:

The r.h.s. of all these equations can be computed with O(N
) operations. Five of
the equations involve one of the Frobenius matrices A0 or B0 as a coeAcient matrix.
These equations can be solved with O(N
) operations because of Corollary 6.7. The
remaining four equations are solved recursively. The time bound T (N) is estimated

636 P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638

recursively by

T (N)64 · T (N=2) + O(N
);

which implies T (N)6O(N
).

Proof of Theorem 1.1 (General case): Compute nonsingular matrices U ∈Fm×m and
V ∈Fn×n such that A′ =U−1AU and B′ =V−1BV are semicyclic. U and V can be
computed with O(N
 · log N) operations (Lemma 6.3), and A′ and B′ can then be
computed with O(N
) operations. The matrices A′ and B′ have disjoint spectra, and
the (unique) solution Y ∈Fm×n of A′Y−Y (B′)T =U−1C(V−1)T can be computed ac-
cording to Lemma 6.8 with O(N
) operations. The solution X =UYV T of the original
equation AX − XBT =C can now be computed with O(N
) operations.

7. Conclusion

We have shown that if the Sylvester equation has a unique solution, then this so-
lution can be computed with O(N
 · log N) rational operations, where we can choose

¡2:376. The present algorithm is the 2rst rational algorithm that is competitive (in
terms of arithmetic operations) with and even faster than the classical algorithms from
numerical linear algebra. This is aesthetically pleasing and useful for generalizations
for other 2elds than R or C.

Before discussing major open questions, we wish to point out that it should be
checked out whether even better time bounds for solving the Sylvester equation for
m�n can be obtained via rectangular matrix multiplication. Namely, the product of
an N × N matrix with an N × N0 matrix can be computed with O(N 2+1) operations
for any 1¿0, if 0¡0:294 [7]. Generations of this result are given in [19].

Two major questions are still open: 2rst, can these ideas be used to construct a
numerically stable (and practically useful, at least for
 = 2:81) algorithm, following
the lines of, e.g., [16, Chapter 22, 15, 4], and second, what about the case where the
spectra of A and B are not disjoint? While we do not have an answer for the latter
problem, we can say a little bit about numerical stability.

Many people consider Keller-Gehrig’s algorithm to be numerically unstable. Nev-
ertheless, it provides a stable way to compute the characteristic polynomial and, in
combination with a fast zero 2nding method, the eigenvalues of a complex matrix.
This leads to favourable bit complexity bounds for the problem of computing eigen-
values [23, Section 21].

The problem with Keller-Gehrig’s algorithm is that the transformation matrix U
of Lemma 5.2 resp. Lemma 6.3, which transforms a matrix A to semicyclic form,
may be ill-conditioned. It is possible to control this condition problem and derive a
numerical version of our algorithm for the Sylvester equation which is numerically
stable in a restricted sense. The analysis of this algorithm yields that under reasonable
normalizing conditions a matrix X with ‖AX − XBT − C‖62−s can be computed

P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638 637

with O(N
+o(1) · (N · s)) bit operations, where (L) is a time bound for L bit integer
multiplication, e.g., (L) = O(L · log L · log log L). A precise speci2cation and details
can be found in [21].

Acknowledgements

I am grateful for helpful comments from and discussions with T. Ahrendt, M. BlTaser,
D. Lauer, and A. SchTonhage.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK Users’ Guide, 2nd Edition, SIAM, Philadelphia,
PA, 1995.

[3] W.F. Arnold, A.J. Laub, Generalized eigenproblem algorithms and software for algebraic Riccati
equations, Proc. IEEE 72 (1984) 1746–1754.

[4] D.H. Bailey, H.R.P. Ferguson, A Strassen–Newton algorithm for high-speed parallelizable matrix
inversion, Proc. Supercomputing ’88: November 14–18, Orlando, FL, vol. 1, IEEE Computer Society
Press, Silver Spring, MD, USA, 1988, pp. 419–424.

[5] R.H. Bartels, G.W. Stewart, Algorithm 432: solution of the matrix equation AX +XB=C, Comm. ACM
15 (9) (1972) 820–826.

[6] P. BTurgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory, Springer, Berlin, 1997.
[7] D. Coppersmith, Rectangular matrix multiplication revisited, J. Complexity 13 (1) (1997) 42–49.
[8] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput.

9 (1990) 251–280.
[9] J. Demmel, Three methods for re2ning estimates of invariant subspaces, Computing 38 (1987) 43–57.

[10] C.M. Fiduccia, An eAcient formula for linear recurrences, SIAM J. Comput. 14 (1) (1985) 106–112.
[11] F.R. Gantmacher, Matrizentheorie, Springer, Berlin, 1986.
[12] M. Giesbrecht, Nearly optimal algorithms for canonical matrix forms, SIAM J. Comput. 24 (5) (1995)

948–969.
[13] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd Edition, John Hopkins Studies in the

Mathematical Sciences, The Johns Hopkins University Press, Baltimore, MD, USA, 1996.
[14] G.H. Golub, S. Nash, C. Van Loan, A Hessenberg–Schur method for the matrix problem AX +XB=C,

IEEE Trans. Automat. Control AC-24 (6) (1979) 909–913.
[15] N.J. Higham, Exploiting fast matrix multiplication within the level 3 BLAS, ACM Trans. Math. Software

16 (4) (1990) 352–368.
[16] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[17] R.A, Horn, C.A. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[18] R.A, Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1994.
[19] X. Huang, V.Ya. Pan, Fast rectangular matrix multiplication and applications, J. Complexity 14 (2)

(1998) 257–299.
[20] W. Keller-Gehrig, Fast algorithms for the characteristic polynomial, Theoret. Comput. Sci. 36 (1985)

309–317.
[21] P. Kirrinnis, Fast computation of invariant subspaces and bit complexity in numerical linear algebra,

Habilitationsschrift, University of Bonn, Department Computer Science, Bonn, November 1999.
[22] A.J. Laub, Invariant subspace methods for the numerical solution of Riccati equations, Chapter 7,

in: A.J. Laub, S. Bittanti, J.C. Willems (Eds.), Ricatti Equations, Springer, Berlin, June 4–6 1990,
pp. 163–196.

638 P. Kirrinnis / Theoretical Computer Science 259 (2001) 623–638

[23] A. SchTonhage, The fundamental theorem of algebra in terms of computational complexity, Technical
Report, University of TTubingen, 1982.

[24] G. Starke, W. Niethammer, SOR for AX − XB = C, Linear Algebra Appl. 154=156 (1991) 355–375.
[25] A. Storjohann, An O(n3) algorithm for the Frobenius normal form, in: O. Gloor (Ed.), ISSAC 98:

Proc. 1998 Internat. Symp. on Symbolic and Algebraic Computation, August 13–15, 1998, University
of Rostock, Germany, ACM Press, New York, 1998, pp. 101–105.

[26] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969) 354–356.
[27] S. Winograd, On multiplication of 2 × 2 matrices, Linear Algebra Appl. 4 (1971) 381–388.

