The minimal e-degree problem in fragments of Peano arithmetic

M.M. Arslanov, C.T. Chong, S.B. Cooper, Y. Yang

Abstract

We study the minimal enumeration degree (e-degree) problem in models of fragments of Peano arithmetic (PA) and prove the following results: in any model M of Σ_2 induction, there is a minimal enumeration degree if and only if M is a nonstandard model. Furthermore, any cut in such a model has minimal e-degree. By contrast, this phenomenon fails in the absence of Σ_2 induction. In fact, whether every Σ_2 cut has minimal e-degree is independent of the Σ_2 bounding principle.

MSC: 03D20; 03F30; 03H15

1. Introduction

This paper is motivated by the study of Turing degrees in fragments of Peano arithmetic (PA), a subject which was developed in the 1980’s. We recommend Chong and Yang [4,5] for the basic notions and results, as well as some open problems in this subject. The study...
of enumeration degrees in PA is however relatively new. In this paper we take the first step by investigating the existence of minimal degrees in this context.

There is a historical significance to this choice. The minimal degree problem has inspired much work in ordinal recursion theory. Its resistance to a complete solution underscores the general difficulty of executing priority arguments in weaker systems, whether over an ordinal satisfying a restricted replacement axiom, or over fragments of arithmetic with a limited induction scheme.

Spector [15] showed the existence of minimal Turing degrees. This was later improved by Sacks [12], who constructed a minimal degree below \emptyset'. The major difference between Turing reducibility and enumeration reducibility, which leads to different conclusions regarding minimal degrees, is that unlike Turing functionals, enumeration operators only deal with positive information. There is also an asymmetry between Σ_n and Π_n sets in the setting of enumeration degrees — a feature which also appears in models of fragments of PA satisfying the Σ_n bounding principle ($B\Sigma_n$) as against the Π_n bounding principle ($B\Pi_n$). However, when one investigates proof-theoretic strengths of theorems in both of these degree structures, there do exist similarities, as the results of this paper will illustrate.

Chong and Mourad [1] studied the minimal Turing degree problem in fragments of PA. They showed that in any nonstandard saturated model, the degree of a cut is minimal. This applies in particular to those which satisfy $B\Sigma_n$ but not $I\Sigma_n$ induction ($I\Sigma_n$). It is still an open question whether a minimal degree exists in any $B\Sigma_2$ (nonsaturated) model.

In this paper, we show that a necessary and sufficient condition for a model M of $I\Sigma_2$ to have a minimal e-degree is that M is nonstandard. Hence `e-minimality’ may be viewed as essentially a set-theoretic notion rather than a recursion-theoretic notion. Indeed our argument proves more: in a nonstandard model of $I\Sigma_2$, any cut is of minimal e-degree. By contrast, this situation fails under the weaker assumption of $B\Sigma_2$. The existence or nonexistence of codes of certain Σ_2 sets turns out to be the differentiating factor.

After a brief introduction of the basic concepts, we show in Section 3 that Gutteridge’s theorem holds for regular degrees (i.e., degrees which contain regular sets) in any model of $B\Sigma_2$. The corollary is that minimal e-degrees are nonregular degrees (Corollary 3.1). In Section 4 we strengthen this observation by proving (Corollary 4.5) that any cut in a nonstandard model of $I\Sigma_2$ has minimal e-degree. Finally in Section 5 we exhibit (Theorems 5.1 and 5.2 respectively) two models of $B\Sigma_2$: one in which a Σ_2 cut has minimal e-degree and one in which no Σ_2 cut has minimal e-degree. The paper concludes with some open problems.

2. Preliminaries

In this section, we describe briefly the basic facts relating to fragments of PA and computability theory referred to in the following. Further materials may be found in Chong and Yang [4]. For basic computability-theoretic notation see Cooper [8] or Soare [14].

A model M in this paper satisfies $PA^- + I\Sigma_0$. M is a $B\Sigma_n$ model if it satisfies $B\Sigma_n$ but not $I\Sigma_n$. We are primarily interested in the case where $n \geq 2$. A feature of all $B\Sigma_n$
models is the existence of a Σ_n cut I, which is a nontrivial subset of \mathcal{M} closed downward and under the successor function.

Lemma 2.1. Let \mathcal{M} be a $B\Sigma_n$ model. Then there is a Σ_n cut I and a Σ_n map $f : I \to \mathcal{M}$ whose range is unbounded in \mathcal{M}.

In any model \mathcal{M}, a set is \mathcal{M}-finite if and only if it has a code in \mathcal{M}. We will not distinguish an \mathcal{M}-finite set from its code (a number in \mathcal{M}) if the context is clear. We denote by $[0, a]$ the set $\{x \in \mathcal{M} : x \leq a\}$. A set $A \subseteq \mathcal{M}$ is regular if for every m in \mathcal{M}, $A \cap [0, m]$ is \mathcal{M}-finite.

Lemma 2.2. Assume that \mathcal{M} is a model of $PA^- + I\Sigma_n$ ($n \geq 1$).

1. If A is Σ_n in \mathcal{M}, then A is regular.
2. If f is a partial Σ_n function whose domain is bounded, then the range of f is also bounded.

The following definitions and lemma capture the essence of coding in $B\Sigma_n$ models. Details can be found in [2].

Definition 2.1. Let A be a subset of \mathcal{M}. A set $X \subseteq A$ is coded on A if there is an \mathcal{M}-finite set K such that $K \cap A = X$.

For example, if X is coded on a cut I then X is an initial segment of an \mathcal{M}-finite set.

Definition 2.2. Let A be a subset of \mathcal{M}. We say that a set X is Δ_n on A if both $A \cap X$ and $A \cap \overline{X}$ are Σ_n.

Lemma 2.3 (Chong and Mourad). Let \mathcal{M} be a model of $PA^- + B\Sigma_n$ and A be an arbitrary subset of \mathcal{M}. Then every bounded set which is Δ_n on A is coded on A.

Consequently, if \mathcal{M} is a model of $PA^- + B\Sigma_n$, then any Δ_n subset of \mathcal{M} is regular.

We now turn to the discussion of enumeration reducibility and enumeration degrees in fragments of arithmetic. For more information on classical e-degree structures, we refer the reader to Cooper [7].

An enumeration operator (or e-operator) is a computably enumerable set Ψ such that

$$\Psi(B) = \{x : (\exists F)((x, F) \in \Psi \land F \subseteq B)\}$$

where F ranges over \mathcal{M}-finite sets. For any set A and B we say that A is weakly (or pointwise) enumeration reducible to B (or A is weakly e-reducible to B, written $A \leq_{e, w} B$) if $A = \Psi(B)$ for some e-operator Ψ. We say that A is strongly e-reducible to B (written $A \leq_{e, s} B$) if the set $\{P : P$ is \mathcal{M}-finite and $P \subseteq A\}$ is weakly e-reducible to B.

If the oracle set A in $\Phi(A)$ is a cut, then we may assume that the \mathcal{M}-finite set F in the definition of Φ is a singleton $\{a\}$ which is its maximum element. We write $\langle x, a \rangle$ instead of $\langle x, \{a\} \rangle$ in this case.

In fragments of PA, it is often necessary to distinguish between the notions of “weak” and “strong” reducibilities, as shown by Groszek and Slaman [9] for Turing degrees. The following propositions hold for e-reducibility and their proofs are straightforward.
Proposition 2.1. Let \mathcal{M} be a model satisfying $\text{PA}^- + B \Sigma_1$. Then strong e-reducibility is a transitive relation on subsets of \mathcal{M}.

Proposition 2.2. Let \mathcal{M} be a model satisfying $\text{PA}^- + B \Sigma_n$. Then strong and weak e-reducibilities coincide for Σ_n sets. Hence both reducibilities are transitive.

Thus the notion of an e-degree is well defined in relation to strong reducibility. It is not clear whether weak e-reducibility is transitive.

3. Nonminimality of regular sets

Gutteridge’s theorem states that there is no minimal e-degree for the standard model. In this section we show that this result applies to regular sets in all models of $B \Sigma_2$. The proof makes use of the idea presented in Cooper [6], coupled with the blocking method to carry out an \mathcal{M}-finite injury priority argument (of the unbounded type) over $B \Sigma_2$ models. It consists of two parts: firstly we show that there is no Δ_2 minimal e-degree in any model \mathcal{M} of $B \Sigma_2$; secondly we show that any candidate for a regular minimal e-degree (i.e., one that contains a regular set) must be Δ_2. The latter is actually provable under Σ_1 induction.

It follows as a corollary that in \mathcal{M}, if there is a minimal e-degree, then it is neither regular nor Δ_2.

Recall that an s-operator (singleton operator) is an e-operator of the form

$$\Theta = \{(i, j), \emptyset : \text{for some } i, j\} \cup \{(i, j), \{j\} : \text{for some } i, j\}.$$

We say that (i, j) is crossed in the former case, and is ticked in the latter case.

Clearly, if Θ is an s-operator, then for any set B,

$$\Theta(B) = \{(i, j) : (i, j) \text{ is crossed}\} \cup \{(i, j) : (i, j) \text{ is ticked and } j \in B\}.$$

Notice that we can tick (i, j) first then cross it later. We will say that a number is properly ticked if it is ticked but not crossed. Intuitively crossing has $\Theta(B)$ ‘moving towards’ a Σ_1 set, whereas proper ticking causes it to approach B. In particular, if there is an i such that the whole i-th column is ticked, then $B \leq_e \Theta(B)$ since

$$j \in B \iff (i, j) \in \Theta(B).$$

We are now ready to prove the first part of Gutteridge’s Theorem.

Theorem 3.1. Let $\mathcal{M} \models B \Sigma_2$. In \mathcal{M}, if B is Δ_2 and not Σ_1, then there is an s-operator Θ such that

$$\emptyset <_e \Theta(B) <_e B.$$

Consequently, there is no Δ_2 minimal e-degree.

We modify the original proof as presented in Cooper [6], and use the blocking method in order to carry out the argument for $B \Sigma_2$ models.

Θ is built in stages. Fix a standard enumeration of c.e. sets $\{W_e : e \in \mathcal{M}\}$ and e-operators $\{\Phi_e : e \in \mathcal{M}\}$. The requirements are:

- $P_e: W_e \neq \Theta(B)$;
- $N_e: B \neq \Phi_e(\Theta(B)).$
Let \(L(e, s) \) (and \(l(e, s) \) resp.) be the length of agreement functions between \(W_e \) and \(\Theta(B) \) (and \(B \) and \(\Phi_e(\Theta(B)) \)) resp. at stage \(s \). Let

\[
u(e, x, s) = \begin{cases} \min\{z : B^s(x) = \Phi^e(x)\} & \text{if such } z \text{ exists;} \\ 0, & \text{otherwise.} \end{cases}
\]

The strategy for \(P_e \) is to code \(B \) into \(\Theta(B) \) by ticking the unmarked \((e, j)\) for all \(j < L(e, s) \).

The strategy for \(N_e \) is to make \(l(e, s) \) less dependent on \(B^s \) by crossing those \((i, j)\)'s which are "used" in the calculation \(\Phi_e(\Theta(B)) \) with \(i > e \). This crossing action fixes all \(\Phi_e(\Theta(B))(x) \)-computations up to \(x \leq l(e, s) \), whenever it is defined. Thus if all numbers in some column \(i > e \) are crossed, then \(\Phi_e(\Theta(B)) \) is c.e., since it only depends on the first \(e \) columns, which have only finitely many marked elements (as we shall show).

To deal with the limitation of induction available, we use the blocking method which arranges the set of requirements into \(J \)-many blocks, where \(J \) is a \(\Sigma_2 \) cut to be determined in the course of the construction. Let \(I \) be a \(\Sigma_2 \) cut in \(\mathcal{M} \) and let \(f : I \to \mathcal{M} \) be the associated unbounded function with computable approximation \(f(k, s) : [0, a] \times \mathcal{M} \to \mathcal{M} \) such that \(\lim_s f(i, s) = f(i) \) for all \(i \in I \), where \(a \) is an upper bound of \(I \). We first form \(a \)-many blocks of requirements at stage \(s \):

\[
B_{k,s} = \{ R_e : b_{k,s} \leq e < b_{k+1,s} \}
\]
dynamically, where the \(R_e \)'s are requirements all of which are of the type \(P_e \) or all \(N_e \). Initially we have \(b_{k,0} = f(k, 0) \) and keep \(b_{k,s} \geq f(k, s) \) for every stage \(s \); moreover, if at stage \(t \) an \(R_e \) in block \(B_{k,t} \) acts, we define \(b_{k+1,t} = \max\{t, f(k + 1, t)\} \).

Construction. Stage 0. Set \(\Theta = \emptyset \), and for all \(k < a \), \(b_{k,0} = f(k, 0) \).

Stage \(s + 1 \). Suppose that we have blocks (for \(R = P \) or \(N \)) \(B_{k,s} = \{ R_e : b_{k,s} \leq e < b_{k+1,s} \} \). Let the length of agreement functions for block \(k \) be defined by \(\hat{L}(k, s) = \max\{L(e, s) : P_e \in B_{k,s}^P \} \) and \(\hat{l}(k, s) = \max\{l(e, s) : N_e \in B_{k,s}^N \} \) respectively. Also define \(\hat{r}(k, s) \) by replacing \(l(e, s) \) in the definition of \(r(e, s) \) by \(\hat{l}(k, s) \).

We say that the requirement block \(B_{k,s}^P \) requires attention if \(\hat{L}(k, s) \) increases. Also, \(B_{k,s}^N \) requires attention if

\[
\exists(i, j) \leq \hat{r}(k, s)[(i, j) \in \Theta^s(B^t) \text{ and } i > e].
\]

The actions are: find the least requirement block requiring attention. If it is \(B_{k,s}^P \), then tick all \((k, j)\) which are less than \(\hat{L}(k, s) \). If it is \(B_{k,s}^N \), then cross those \((i, j) \leq \hat{r}(e, s) \) such that \((i, j) \in \Theta^s(B^t) \) and \(i > k \).

Let

\[
b_{k,s+1} = \begin{cases} s + 1, & \text{if block } k \text{ requires attention} \\ \max\{b_{k,s}, f(k, s + 1)\}, & \text{otherwise.} \end{cases}
\]

End of Construction.
Lemma 3.1. For all $j \in J$,

1. every $P_e \in B_j^P$ is satisfied; furthermore, there is a stage s after which P_e has no action for all $P_e \in B_j^P$;
2. every $N_e \in B_j^N$ is satisfied; furthermore, there is a stage s after which N_e has no action for all $N_e \in B_j^P$;
3. $j + 1 \in J$; hence J is a Σ_2 cut;
4. for any $e \in M$ there is $j \in J$ such that P_e and N_e are in the permanent blocks B_j^P and B_j^N respectively.

Proof. Fix $j \in J$. By the definition of J, there is a stage s_0 such that for all $t \geq s_0$, for all $j' \leq j$, we have $b_{j',t} = b_{j',s_0} = b_{j'}$. Consequently, all permanent blocks B_j^R are formed by stage s_0. In the discussion below, all stages are greater than or equal to s_0.

We first establish statement (1). Suppose, for the sake of contradiction, that some $P_e \in B_j^P$ is not satisfied. Fix such an e. Then $\Theta(B) = W_e$.

Notice that $B \Sigma_2$ ensures that any Σ_2 set D settles down uniformly on initial segments, i.e., if $D = \lim_s D^s$ then

$$\forall a \exists \forall s > t \forall x < a[D^s(x) = D^t(x)].$$

Since B is Δ_2 and Θ is an s-operator, $\Theta(B)$ is Δ_2. Thus, $\Theta^s(B^t)$ settles down uniformly on initial segments. Hence $\lim_s L(e, s) = \infty$. Thus all elements in column j are marked. Since no requirement in block B_{j-1}^N acts after stage s_0, only M-finitely many are crossed. Thus, with the exception of an M-finite set, all elements in column j are properly ticked. Hence $B \subseteq_e \Theta(B) = W_e$, contradicting the fact that B is not c.e. We conclude that P_e is satisfied.

Thus for all $P_e \in B_j^P$, there is a stage s_e after which $L(e, s)$ never changes. By $B \Sigma_2$, there is a stage j after which $\widehat{L}(j, s)$ never changes. Therefore, no action is taken for the sake of $P_e \in B_j^P$ after stage t.

We now prove (2). Suppose, for the sake of contradiction, some $N_e \in B_j^N$ is not satisfied, i.e., $B = \Phi_e(\Theta(B))$. First we show that $\lim_t I(e, s) = \infty$. Fix a. By $B \Sigma_2$, there is a stage s_1 such that for all $t > s_1$, $B^{s_1} \upharpoonright (a + 1) = B^t \upharpoonright (a + 1)$ and $B^t \upharpoonright (a + 1) \subseteq \Phi_e(\Theta^s(B^t))$. Then for all $x \leq a$ and $x \not\in B$, we have $\forall t > s_1 \Phi_e(\Theta^s(B^t))(x) = 0$. This is true since otherwise the computation for the least x is preserved forever by the construction. Thus $I(e, s) \geq a$ forever. Clearly $\lim_t \widehat{I}(j, s) = \infty$.

Thus for each $(x, y) \in \Theta(B)$, with $x > j$, there is a step s for which $(x, y) \in \Theta^s(B^t)$ and $(x, y) \leq \widehat{I}(j, s)$. So each such (x, y) is crossed by construction. By (1), there are only M-finitely many marked elements in columns $M^{\leq j}$. So we conclude that $\Phi_e(\Theta(B)) = \Phi_e(F \cup C)$, where F is an M-finite subset of $M^{\leq j}$ and C is a set containing
only the crossed part in Θ. Consequently, $\Phi_e(\Theta(B))$ is Σ_1. If $B = \Phi_e(\Theta(B))$, then B is c.e., which gives us the desired contradiction.

Furthermore, since $B \neq \Phi_e(\Theta(B))$, there is a point of disagreement a. Let s_2 be a stage such that for all $t > s_2$, $B^t \upharpoonright (a + 1) = B^{s_2} \upharpoonright (a + 1)$ and

$$\forall t > s_0 B \upharpoonright (a + 1) \subseteq \Phi_e(\Theta(B^t)).$$

At any stage $t > s_2$, for all $x \leq a$ and $x \not\in B$, if $\Phi_e(\Theta(B^t))(x) = 1$, then the computation for the least x is preserved. It can only happen once (in fact, only for a). After that N_e never acts. By $B \Sigma_2$ again, there is a stage after which no N_e from the block B^N_j will act.

Now (3) follows easily from (1) and (2): let t_1, t_2 be the stages after which no $P_e \in B^P_j$ and $N_e \in B^N_j$ ever acts, and let t_0 be the stage where $f(j+1, t_0) = f(t_0)$. Obviously, for any $t > \max\{t_0, t_1, t_2\}$, $b_{j+1, t}$ never moves. Hence J is a cut.

Finally, we prove (4). Given any e, let s_e be the least stage such that there is an $i < a$ with $e < f(i, s_e) \leq b_{i, s_e}$. Then the (partial) map $g : [0, i] \to M$ defined by $g(j) = s$ which is the stage when e leaves the j-th block, i.e., $b_{j, s-1} \leq e$ and $b_{i, s} > e$, is Σ_1. By $I \Sigma_1$, the range of g is bounded, so there is a stage after which e never changes its block. \hfill \Box

We now build the second s-operator which will imply that any candidate for a regular minimal e-degree is Δ_2.

Theorem 3.2. Let M be a model of $B \Sigma_2$. There is an s-operator Θ such that for any regular set B,

1. if $\Theta(B)$ is c.e., then B is Δ_2;
2. if for some e-operator Φ_e, $\Phi_e(\Theta(B)) = B$, then B is Σ_1.

Consequently, any regular minimal e-degree is Δ_2.

We follow the proof as in Cooper [6]. We build Θ and a Δ_2 function h satisfying the following requirements.

- P_j: $j \in B \iff (h(j), j) \in \Theta(B)$.
- $N_{e, x, F}$ (where max $F < x$): $(x, D) \in \Phi_e$ and $\Theta(F) \subseteq \Theta(D)$ implies that $\Theta(D)$ only depends on $\Theta(F)$.

If we index the requirement in this way, then Θ can be constructed via a typical Friedberg–Muchnik-type finite injury argument, which can be carried out inside $PA^- + I \Sigma_1$. We include the proof for the sake of completeness and of pointing out where $I \Sigma_1$ is used.

The idea is to make $\Phi_e(\Theta(B))(x)$ only depend on $B \upharpoonright x$.

The strategy for P_j is as follows. We will make the j-th row M-finitely marked, with the last element $(h(j), j)$ properly ticked and for all $k < h(j)$, (k, j) is crossed. The intuition is that we code $B(j)$ into $\Theta(B)$ in a “Δ_2 way”. Observe that P_j is satisfied as long as we do not cross the whole row.
The strategy for \(N_{(e,x,F)} \) is as follows. If \(\langle x, D \rangle \in \Phi_e \) such that \(D = F \cup S \) where \(\max F < x \) and \(\min S \geq x \), then we cross every element in \(S \). (This will fix \(x \) in \(\Phi_e(D') \) for any \(D' \) “consistent” with \(F \).)

Construction. Stage 0. Set \(\Theta = \emptyset \).

Stage \(s + 1 \). We say that the requirement \(N_{(e,x,F)} \) requires attention if

\[
\exists D[\langle x, D \rangle \in \Phi_e, D = \Theta^s(F) \cup S \text{ and } S \subseteq \{(i, j) : j \geq e, x\}].
\]

and at least one of the elements of \(S \) is not yet crossed.

The actions are: find the least requirement requiring attention. Cross all numbers in \(S \); for each \(j < s \) and \(j \in B_s \), make sure that there is a unique number in row \(j \) which is properly ticked.

End of Construction.

We now verify that the construction works.

Lemma 3.2. Let \(\mathcal{M} \) be a model of \(\text{PA}^- + B \Sigma_2 \) and \(B \) be a regular subset of \(\mathcal{M} \).

1. For all \(j \in \mathcal{M} \), the \(j \)-th row of \(\Theta \) is \(\mathcal{M} \)-finitely marked.
2. If \(\Theta(B) \) is \(\Sigma_1 \) then \(B \) is \(\Delta_2 \).
3. If \(\Phi_e(\Theta(B)) = B \) then \(B \) is c.e.

Proof. For (1), notice that row \(j \) can only be marked by \(N_{(e,x,F)} \) with \(e, x < j \) and \(F \) an \(\mathcal{M} \)-finite subset of numbers less than \(j \). Fix \(j \). There are only \(\mathcal{M} \)-finitely many such \(N_{(e,x,F)} \)'s, say \(d_j \) many. Since each \(N \) acts only once in isolation, \(N_{d_j} \) can act at most \(2^{d_j+1} \) times. Let \(g : [0, d_j] \times [0, 2^{d_j+1}] \to \mathcal{M} \) be defined by \(g(d, m) = s \) if \(N_d \) acts for the \(m \)-th time at stage \(s \). Then \(g \) is a \(\Sigma_1 \) function with a bounded domain. By \(I \Sigma_1 \), the range of \(g \) is bounded. Therefore, there is a bound \(s \) after which there is no action of \(N_d \) for any \(d \leq d_j \).

Hence the \(j \)-th row is \(\mathcal{M} \)-finitely marked.

(2) follows easily from (1) by construction.

We now prove (3). Suppose that \(\Phi_e(\Theta(B)) = B \). Define a computable approximation \(A^s \) as follows.

\[
A^0 = B \upharpoonright (e + 1). \text{ (It is } \mathcal{M} \text{-finite by regularity.)}
\]

\[
A^{s+1} = A^s \cup \Phi_e^s(\Theta^s(A^s)).
\]

We claim that \(B = \bigcup_s A^s \).

Proof of claim.

“\(\supseteq \)”: Fix an \(x \). By regularity, \(B \upharpoonright (x + 1) \) is \(\mathcal{M} \)-finite. Using \(B \upharpoonright (x + 1) \) as a parameter, we can apply \(I \Sigma_1 \) to prove

\[
\forall s A^s \upharpoonright (x + 1) \subseteq B \upharpoonright (x + 1).
\]

“\(\subseteq \)”: Suppose that there is an \(x \in B \setminus \bigcup_s A^s \). By regularity, \(B \upharpoonright (x + 1) \) is \(\mathcal{M} \)-finite. Hence the set

\[
\left\{ y \leq x : y \in B \upharpoonright (x + 1) \land y \notin \bigcup_s A^s \right\}
\]

is computable.
is Π_1, and thus has a least element $x_0 > e$. Note that $B \upharpoonright x_0 \subseteq A^t$ for some t. Since $x_0 \in B$, $x_0 \in \Phi_e(\Theta(B))$. Therefore, there is an M-finite set D of B such that $x_0 \in \Phi_e(\Theta(D))$. By construction, $N(e, x_0, F)$ will receive attention (possibly for some other D') at some stage v, where $F = D \upharpoonright x_0$ which is also $B \upharpoonright x_0$. Hence $x_0 \in \Phi_e(\Theta^v(A^v)) = \Phi_e(\Theta^v(B \upharpoonright x_0)) \subseteq \Phi_e(\Theta^v(A^v))$; hence $x_0 \in A^v+1$.

This ends our proof of the claim and the theorem. □

The following corollary may be seen as a generalization of Gutteridge’s Theorem for nonstandard models.

Corollary 3.1. If a model of $B\Sigma_2$ has a minimal e-degree, then the degree is not regular.

4. Minimality of cuts under Σ_2 induction

We focus our attention primarily on models of $PA^- + I \Sigma_2$ in this section. However, the analysis of the e-degree of cuts proceeds from the ground up, starting with Σ_2 cuts, which only exist in $B\Sigma_2$ models. As will be seen in the course of the proofs, the arguments apply to all models which satisfy $B\Sigma_2$, except at a crucial point where Σ_2 induction is required (and for good reason as will become evident in the next section).

Suppose that in M there is a Σ_2 cut I with an unbounded Σ_2 map $f : I \rightarrow M$. Let a be an upper bound of I. Let T be the set $\{y \leq a : y \not\in I\}$. Clearly T is computably isomorphic to a Π_2 cut. By abusing the terminology “cut”, we regard T also as a Π_2 cut.

Proposition 4.1.

(a) If a set A is e-reducible to I then A is Σ_2.

(b) If a set A is e-reducible to T then A is Π_2.

Proof. (a) follows from the definition of e-reducibility and the fact that I is Σ_2, and (b) follows from $B\Sigma_2$ by pushing the bounded existential quantifier inside. □

Proposition 4.2. I and T form a minimal pair.

Proof. Suppose $A = \Phi(I)$ and $A = \Psi(T)$ where Φ and Ψ are e-operators. Then $x \in A$ if and only if

$$\exists i, n[i < n \land \langle x, i \rangle \in \Phi \land \langle x, n \rangle \in \Psi].$$

Therefore A is Σ_1. □

Proposition 4.3. (a) All nonregular bounded Σ_2 sets have the same e-degree.

(b) All nonregular bounded Π_2 sets have the same e-degree.

Proof. The proof is similar to the Turing degree case (see Chong and Yang [4]). For the sake of completeness, we give a proof below.

Let Y be a nonregular Σ_2 set bounded by b. Assume that Y is defined by $\exists v \psi(v, y)$, where $\psi(v, y)$ is a I_1 formula. For each $y \in Y$, let v_y be the least v such that $\psi(v, y)$. As Y is not regular, the set $\{v_y : y \in Y\}$ is unbounded in M.
Given any Σ^2_2 set $X = \{ x : \exists u \varphi(u, x) \}$ bounded by a, we show that $X \leq_e Y$ and $\overline{X} \leq_e \overline{Y}$. Consider the following set D of pairs in $a \times Y$:

$$(w, y) \in D \iff \exists u < v < y \varphi(u, w).$$

It is easy to see that D is Δ^2_2 on $a \times Y$. By the Coding Lemma (Lemma 2.3), D is coded on $a \times Y$. Let D^* be a code. For any M-finite set E, $E \subseteq X$ if and only if the second components of $(E \times \{y\}) \cap D^*$ are in Y, which establishes (b). Next, by $B \Sigma^2_2$, $E \subseteq X$ if and only if there is a u which bounds all witnesses u_x for $x \in E$. Thus $E \subseteq X$ if and only if there exists $y \in Y$ such that $(E \times \{y\}) \subseteq D^*$, which establishes (a). □

Corollary 4.1.

(a) All Σ^2_2 cuts have the same e-degree.

(b) All Π^2_2 cuts have the same e-degree.

(c) If A is nonregular and $A \leq_e I$ then $I \leq_e A$.

(d) If A is nonregular and $A \leq_e I$ then $I \leq_e A$.

As cuts have a simple structure, they are natural candidates for having minimal e-degrees. The following results point in that direction. A total enumeration degree is an e-degree containing a set A and its complement \overline{A} in the degree. Recall the definition of quasi-minimality:

Definition 4.1. We say that an enumeration degree a is **quasi-minimal** if there is no total enumeration degree b such that $0 < e_b < e_a$.

Lemma 4.1. Let M be a model of $PA^- + B \Sigma^2_2$. Let I be a Σ^2_2 cut in M. If a Δ^2_2 set A is weakly e-reducible to I, then A is Σ^1_1.

Proof. Let Φ be an e-operator such that

$$x \in A \iff (\exists p)[(x, p) \in \Phi \land p \in I].$$

Notice that if $x \notin A$ and $(x, j) \in \Phi$ then $j \in \overline{I}$. (Informally, we call such a j an error.) Consider the following two cases.

Case 1. There exist (downward) unboundedly many errors in \overline{I}. Formally,

$$(\forall n \in \overline{I})(\exists j < n)(\exists x)[x \notin A \land (x, j) \in \Phi].$$

It follows that

$$n \in \overline{I} \iff (\exists j < n)(\exists x)[x \notin A \land (x, j) \in \Phi].$$

As A is Δ^2_2, this would imply that \overline{I} is Σ^2_2. Hence Case 1 is vacuous.

Case 2. The negation of Case 1 holds. In other words there is a bound on errors. Formally,

$$(\exists n \in \overline{I})(\forall j < n)(\forall x)[(x, j) \in \Phi \rightarrow x \in A].$$

Using n as a parameter, we have

$$x \in A \iff (\exists p < n)[(x, p) \in \Phi],$$

which says that A is Σ^1_1. □
Corollary 4.2. The degree of the Σ_2 cut I is properly Σ_2 and it is quasi-minimal.

Proof. If $X \oplus \overline{X} \leq_{e,w} I$, then X is Δ_2. □

By a similar argument, we get the symmetric results for Π_2 cuts.

Lemma 4.2. If a Δ_2 set A is weakly e-reducible to T, then A is Σ_1.

Proof. Let Φ be an e-operator such that $A = \Phi(T)$. As A is Δ_2, A is regular. Thus $A \upharpoonright f(i)$ is M-finite for each $i \in I$, where f is the unbounded function associated with I.

Case 1: A requires full I to compute. Formally,

$(\forall n \in T)(\exists x)[x \in A \land (\forall n' > n)[\langle x, n' \rangle \notin \Phi]]$.

It follows that

$n \in T \iff (\exists x)[x \in A \land (\forall n' > n)[\langle x, n' \rangle \notin \Phi]]$.

As A is Δ_2, we conclude that T is Σ_2, which implies that Case 1 is empty.

Case 2: The negation of Case 1 holds. Informally, this says that A only requires a finite piece of T to compute. Formally,

$(\exists n \in T)(\forall x)[x \in A \rightarrow (\exists n' > n)[\langle x, n' \rangle \in \Phi]]$.

Using n as a parameter, we obtain

$x \in A \iff (\exists n' > n)[\langle x, n' \rangle \in \Phi]]$,

which shows that A is Σ_1. □

Corollary 4.3. Any Π_2 cut T is quasi-minimal.

The general restriction on cuts now follows:

Corollary 4.4. If J is a cut in a model M of $PA^- + B \Sigma_2$, then any Δ_2 set that is weakly e-reducible to J is Σ_1.

Proof. By Lemmas 4.1 and 4.2 we may assume that J is neither Σ_2 nor Π_2. Repeating the proof of Lemma 4.1, we conclude that Case 1 does not apply since otherwise it would show that J is Π_2. Hence Case 2 applies and A is Σ_1. □

Theorem 4.1. Let M be a nonstandard model of $PA^- + I \Sigma_2$. If J is a cut in M, and A is regular set which is weakly e-reducible to J, then A is Σ_1.

Proof. By Corollary 4.4, it is sufficient to show that A is Δ_2. Let Φ be an e-operator such that $\Phi(J) = A$. Since J is a cut, we may again assume that the positive conditions are single points in Φ. Call a number j good if there is an x such that $\langle x, j \rangle \in \Phi$ and no $j' < j$ satisfies $\langle x, j' \rangle \in \Phi$.

Observe that the collection G of all good j’s is a Σ_2 subset of the interval $[0, a]$, where a is an upper bound of J. Our first step is to effectively collapse G into an interval of the form $[0, b]$ for some b, such that $G \cap J$ will collapse to a new cut. We will make essential use of the downward closeness of the new cut.
Claim 1. One may assume that there is a b such that every $x < b$ is good, and A is enumerated by a cut in the set $[0, b]$ via some e-operator.

Proof of Claim 1. First of all, if $G \cap J = G \cap [0, j]$ for some $j \in J$, then A is enumerated via Φ by the \mathcal{M}-finite set $[0, j]$, which immediately implies that $A \in \Sigma_1$.

Thus assume that the set of $G \cap J$ is unbounded in J. Now if the set $G \cap \mathcal{J}$ is bounded below above J, i.e., there is a $c \notin J$ such that $G \cap J = G \cap [0, c]$, then again A is enumerated by Φ via the \mathcal{M}-finite set $[0, c]$, again showing that $A \in \Sigma_1$.

By $I \Sigma_2$, the set G is an \mathcal{M}-finite subset of $[0, a]$. Thus there is a computable order-preserving bijection between G and $[0, b]$ for some number $b < a$. This bijection effectively ‘compresses’ G down to a closed interval, proving the claim. Note that under this compression operation, $G \cap J$ is mapped to a cut. We will still use J to denote this cut. This should not cause any confusion as we will be dealing with the cut for the rest of the proof.

Fix the interval $[0, b]$ as given by Claim 1. If $(x, j) \in \Phi$, let $j(x)$ be the least such j. $B \Sigma_2$ ensures that such a number exists and is computable in \mathcal{Y}.

Claim 2. For any t, there is a $j_t \in J$ such that if $x < t$ is in A, then $j(x) < j_t$.

Proof of Claim 2. Since A is regular, $A \cap [0, t]$ is \mathcal{M}-finite. Now by $B \Sigma_2$ and the fact that $j(x)$ is a Σ_2 map, the range of $j(x)$ is \mathcal{M}-finite; hence a uniform bound j_t as required exists. This proves Claim 2.

Claim 3. Let x be such that $(x, j) \in \Phi$ for some $j \in [0, b]$. Then there is a t such that

$$\{j(x')|x' < t \land (\exists j < b)(x', j) \in \Phi\}$$

contains either the interval $[0, j(x)]$ or the interval $[j(x), b]$. Moreover, the former occurs if and only if $x \in A$.

Proof of Claim 3. First of all, assume that $x \in A$. By Claim 1, for each $j \leq j(x)$, there is an x_j such that $j(x_j) = j$. Hence if $t > x_j$ for each $j \leq j(x)$, it will satisfy the requirement of Claim 3.

On the other hand, suppose $x \notin A$. Then $j(x) \notin J$. By Claim 1, there is a t such that for all j with $b \geq j \geq j(x)$, there is an x_j satisfying $j(x_j) = j$ and $x_j < t$. Moreover, by the regularity of A, $A \cap [0, t]$ is \mathcal{M}-finite, and its image under j is bounded above in J. Thus, if $x \in A$ then there is some $j' \in J$ which is not in the set

$$\{j(x')|x' < t \land (\exists j < b)(x', j) \in \Phi\}.$$

This proves Claim 3.

We now prove that A is weakly Turing reducible to \emptyset', and hence Δ_2. Given x, first check whether there is a $j \in [0, b]$ such that $(x, j) \in \Phi$. If no such j exists, x is not in A. Otherwise, apply Claim 3 to find a t such that the set

$$\{j(x')|x' < t \land (\exists j < b)(x', j) \in \Phi\}$$

either contains all $[0, j(x)]$ or all $[j(x), b]$. By Claim 2, we see that in the first case x belongs to A, while in the second case x lies in \overline{A}. □
Theorem 4.2. Let \mathcal{M} be a model of $PA^- + B\Sigma_2$. If J is a cut in \mathcal{M} and A is a nonregular set that is weakly e-reducible to J, then J is e-reducible to A.

Proof. It is sufficient to assume that A is bounded, say by a. Let Φ be an e-operator such that $A = \Phi(J)$. Choose an upper bound b of J. We are thus considering an \mathcal{M}-finite set $X = \{(x, j) \in \Phi | x < a \land j < b\}$.

For each x in the first coordinate of X, let $j(x)$ be the least corresponding j in the second coordinate. The map from x to $j(x)$ is computable in \emptyset'. By $B\Sigma_2$, it is actually an \mathcal{M}-finite map. Note that if $x \in A$, then $j(x) \in J$. We consider two cases.

Case 1. There is a $j \in J$ such that $j(x) < j$ for all $x \in A$. Then $x \in A$ if and only if $j(x) < j$. But then A would be \mathcal{M}-finite, which is a contradiction.

Case 2. There is no j as in Case 1. Define Θ such that $\langle j, x \rangle \in \Theta \iff j \leq j(x)$. Then it is straightforward to verify that J is e-reducible to A via Θ. □

The following corollary proves the main result of this section.

Corollary 4.5. Let \mathcal{M} be a model of $PA^- + I\Sigma_2$. Then \mathcal{M} has a minimal e-degree if and only if \mathcal{M} is nonstandard. Indeed, if \mathcal{M} is nonstandard, then every cut in \mathcal{M} is of minimal e-degree.

Proof. If \mathcal{M} is standard, then Gutteridge’s Theorem states that \mathcal{M} has no minimal e-degree. Suppose \mathcal{M} is nonstandard. Then Corollary 3.1 says that one needs to look only at nonregular sets. Let J be a cut in \mathcal{M}. By Theorem 4.1 and Corollary 4.4, any regular set e-reducible to J is Σ_1. On the other hand, by Theorem 4.2, any nonregular set weakly e-reducible to J also enumerates J. Hence J is of minimal e-degree. □

5. E-minimality of cuts under Σ_2 bounding

Let \mathcal{M} be a $B\Sigma_2$ model with f a Σ_2 function mapping a Σ_2 cut I cofinally into \mathcal{M}. The proof of Theorem 4.1 makes essential use of Σ_2 induction. The situation in \mathcal{M} where only Σ_2 bounding holds is much more complicated. To begin with, in contrast with Corollary 4.5, it turns out that not every cut in a $B\Sigma_2$ model is necessarily of minimal e-degree (in fact it is not even clear that one exists). The source of this bifurcation goes back to the proof of Theorem 4.1, where under Σ_2 induction the set of good $j \in J$ is Σ_2, and hence \mathcal{M}-finite (i.e., coded). Such a coding need not exist in \mathcal{M}. But if it does, then J will be of minimal e-degree in \mathcal{M}. To make this precise, we introduce the notion of ‘Σ_2 bi-clustering’ on a cut. Call a sequence of \mathcal{M}-finite sets a Σ_2 sequence if it is the range of a Σ_2 function with domain I.

Definition 5.1. Let J be a cut in \mathcal{M}. A Σ_2 sequence C of pairwise disjoint nonempty \mathcal{M}-finite sets $C_i, i \in I$, is said to bi-cluster on J if for all $c \in J$ and $d \in J$, the sets $|i|C_i \cap J \cap [c, d] \neq \emptyset$ and $|i|C_i \cap T \cap [c, d] \neq \emptyset$ are each unbounded in I.

Observe that for such a C, $\bigcup_{i \in I} C_i$ is not \mathcal{M}-finite, since by $B \Sigma_2$, no \mathcal{M}-finite set F can be a union of a Σ_2 sequence of nonempty \mathcal{M}-finite sets. Indeed, suppose that the union is an \mathcal{M}-finite set. For $x \in \bigcup_i C_i$, let $h(x) = i$ if and only if $x \in C_i$. The disjointness of the sequence ensures that this is well defined. Then h is Σ_2, so by $B \Sigma_2$ its image is bounded in I. This is a contradiction since the C_i's are pairwise disjoint.

Lemma 5.1. Let J be a cut in \mathcal{M}. If there is no Σ_2 sequence of nonempty \mathcal{M}-finite sets which bi-clusters on J, then J is of minimal e-degree.

Proof. Let b be an upper bound of J. First of all, Theorem 4.2 holds for J as it does not concern Σ_2 bi-clustering. For Theorem 4.1, note that since the set G of ‘good’ j’s is Σ_2, say defined by $\exists u \forall \varphi(x, u, v)$, it may be considered as a union of I-many \mathcal{M}-finite sets $\{G_i | i \in I\}$, where

$$G_i = \{x < a | \exists u < f(i) \forall \varphi(x, u, v) \land \exists w \forall u \leq f(i - 1) \exists v < w \varphi(x, u, v)\}.$$

Our assumption on the nonexistence of a Σ_2 bi-clustering sequence on J implies that there exist $c \in J$ and $d \in \mathcal{T}$ such that either $[i|G_i \cap J \cap [c, d] \neq \emptyset]$ is bounded in I or $[i|G_i \cap \mathcal{T} \cap [c, d] \neq \emptyset]$ is bounded in I. In the former case let $i_0 \in J$ be the least value such that for all $i \geq i_0$, $G_i \cap J \cap [c, d]$ is empty. Now if $J' = \bigcup_{i < i_0} G_i \cap J$ is bounded in J, then the set A enumerated by Φ using J actually uses only a bounded segment of J and is therefore Σ_1. If J' is unbounded in J, then the set $J'' = \bigcup_{i < i_0} G_i \cap \mathcal{T} \cap [c, d]$ is not bounded below in \mathcal{T} (otherwise, say it is bounded below by e, then J is the downward closure of the \mathcal{M}-finite set $\bigcup_{i < i_0} (G_i \cap [0, e])$). Then using the \mathcal{M}-finite set $\bigcup_{i < i_0} G_i$ as the set of ‘good’ j’s for J, one may repeat the proof of Theorem 4.1 (Claims 1 to 3) to show that A is Δ_2, and hence Σ_1 by Lemma 4.1.

The case where $[i|G_i \cap \mathcal{T} \cap [c, d] \neq \emptyset]$ is bounded in I is argued similarly. \(\square \)

Thus a necessary condition for a cut J not to have minimal e-degree is to construct a Σ_2 sequence which bi-clusters on it. Taking our cue from this, we now show that there exists a $B \Sigma_2$ model in which no Σ_2 cut has minimal e-degree.

Theorem 5.1. There is a $B \Sigma_2$ model \mathcal{M} in which no Σ_2 cut is of minimal e-degree.

Proof. Chong and Yang [3] exhibited a $B \Sigma_2$ model \mathcal{M} with the set of natural numbers $\omega = I$ as a Σ_2 cut for which there is a Σ_2 subset X that is not coded on I. Let

$$X^* = \{(i, j)|\text{the least } \Sigma_2 \text{ witness of } i \in X \text{ that showed up between } f(j - 1) \text{ and } f(j)\}.$$

Then X^* is Δ_2 on $I \times I$ and so by Lemma 2.3 there is an \mathcal{M}-finite set \hat{X}^* whose intersection with $I \times I$ is X^*. We may assume that \hat{X}^* is a function on $[0, b]$ where b is an upper bound of I. Furthermore, for each y in the range of \hat{X}^*, by taking the least x such that $\hat{X}^*(x) = y$, we may assume that \hat{X}^* is one–one. Then the set $C = \{\hat{X}^*(i) | i \in I\}$ is Σ_2. We view C as the union of the Σ_2 sequence of singleton sets $C_i = \{\hat{X}^*(i)\}$ for $i \in I$.

Claim 1. $C = \{C_i\}_{i \in I}$ is a bi-clustering on I.
Proof of Claim 1. Observe first of all that $\tilde{X}^s(i)\{i \in X\}$ is cofinal in I, since otherwise X would be \mathcal{M}-finite. Next, if $i \in I \setminus X$, then $\tilde{X}^s(i) \in I$. This is true since $\tilde{X}^s \cap I \times I = X^s$. Now if $\tilde{X}^s(i)\{i \in I \setminus X\}$ is bounded away from I, i.e., all of its elements are greater than any number that we have seen. Otherwise, there is some $\langle x, 0 \rangle$ which bi-clusters \mathcal{M}-finite set X on I, contradicting our choice of X. This is the place where we made the crucial use of the fact that X is not coded on I. Hence \mathcal{C} is a Σ_2 sequence which bi-clusters on I.

Thus let b be an upper bound of I. Effectively partition \mathcal{M} into b-many unbounded pairwise disjoint computable sets B_i for $i \leq b$. Without loss of generality, we may assume that C is a subset of $[0, b]$ which divides it into a Σ_2 part and a Π_2 part, each of which is not \mathcal{M}-finite. We define an e-operator Φ that has the following property:

(*) i is ‘good’ (in the sense defined in Theorem 4.1) if and only if $i \in C$. Furthermore, if $i \notin C$, then $\Phi[i] \subset \Phi[0]$, where $\Phi[i] = \{x|\langle x, i \rangle \in \Phi\}$.

Thus assume that $i \in C$ if and only if $(\exists u)(\forall v)\Phi(u, v, i)$ for some Σ_0 formula Φ. At stage s, if $\Phi[i] \subset \Phi[0]$ then enumerate $\langle x, i \rangle$ into Φ for some $x \in B_i$ which is larger than any number that we have seen. Otherwise, there is some $x \in B_i \cap (\Phi[i] \setminus \Phi[0])$. Check if $\forall u < x \exists v < s \Phi(u, v, i)$. If this holds, enumerate $\langle x, 0 \rangle$ into Φ. If not, go to the next stage.

Notice that by $B \Sigma_2$, if $i \notin C$, then for any $x \in B_i \cap \Phi[i]$ there is a stage s at which we enumerate $\langle x, 0 \rangle$ into Φ.

It is not difficult to verify that Φ satisfies condition (*). Let $A = \Phi(I)$. Clearly A is Σ_2. We will show that A occupies an intermediate e-degree, i.e. the e-degree of A is strictly between θ_e and the e-degree of I.

Claim 2. A is a regular set.

Proof of Claim 2. Fix any $m \in \mathcal{M}$. We show that $A \upharpoonright [0, m]$ is \mathcal{M}-finite. Notice that $A \upharpoonright [0, m]$ is the disjoint union of the following two sets:

$$A_0 = \{x < m|x, 0 \in \Phi\},$$

and

$$A_1 = \{x < m|\exists i \in I\langle x, i \rangle \in \Phi\} \setminus A_0.$$ Consider

$$\{i \in I|\exists x(x \in A_1 \land \langle x, i \rangle \in \Phi)\}$$

which is a subset of

$$\{i \in C|\exists u < m)(\forall v)\Phi(u, v, i)\} \cap I.$$ Since I is ω, this set is a (real) finite set. Hence A_1 is a finite set. Therefore $A \upharpoonright m$ is \mathcal{M}-finite.

Claim 3. A is not Δ_2.

Proof of Claim 3. Suppose that A is Δ_2. We show that \tilde{T} is Σ_1 in A. Indeed $i \in \tilde{T}$ if and only if there is an $i' < i$ such that $\exists x(\langle x, i' \rangle \in \Phi \land x \in \mathcal{A})$. To see this, note that if $i \in \tilde{T}$,
then as \(C \) bi-clusters on \(I \), there is an \(i' \in C \cap T \) below \(i \). For this \(i' \), only those \(x \)'s less than the least \(\Sigma_2 \) witness (say \(z \)) for \(i' \) are ‘passed on’ to \(\Phi^0 \). The number \(z \) is however retained by \(i' \) and so never enters \(A \). This implies that \(T \) is \(\Sigma_2 \). However, as \(I \) is a \(\Sigma_2 \) cut we have a contradiction. This proves Claim 3.

Now \(I \) is not e-reducible to \(A \) since this would imply that there is a regular minimal e-degree, which contradicts Corollary 3.1. This proves that \(I \) is not of minimal e-degree. By Corollary 4.1, no \(\Sigma_2 \) cut in \(\mathcal{M} \) has minimal e-degree. This completes the proof of the Theorem. \(\Box \)

Our final task is to show that in contrast to Theorem 5.1, there is a \(B \Sigma_2 \) cut (and hence all \(\Sigma_2 \) cuts) of minimal e-degree.

Theorem 5.2. There is a \(B \Sigma_2 \) model all of whose \(\Sigma_2 \) cuts have minimal e-degree.

Proof. A model is **saturated** if every set of natural numbers is coded on \(\omega \). Mytilinaios and Slaman [11] constructed a \(B \Sigma_2 \) model \(\mathcal{M} \) which is saturated and in which the set of natural numbers \(\omega \) is a \(\Sigma_2 \) cut. Let \(I = \omega \). We show that \(I \) has minimal e-degree.

Let \(\Phi(I) = A \). By Theorem 4.2, it is sufficient to assume that \(A \) is regular. Then for each \(i \in I \) there is a least \(j \in I \), denoted \(j_i \), such that \(A \upharpoonright f(i) \) is enumerated by \(\Phi \) using \([0, j_i] \) as oracle. This fact follows from \(B \Sigma_2 \). Then the function \(g : i \rightarrow j_i \) is coded on \(I \). Hence there is an \(\mathcal{M} \)-finite set \(X \) such that \(X \cap I \times I = g \). But then given \(x < f(i) \), where \(f \) is a \(\Sigma_2 \) cofinal map from \(I \) into \(\mathcal{M} \), we have \(x \in A \) if and only if it is enumerated by \(\Phi \) using \([0, j_i] \). This shows that \(A \) is \(\Delta_2 \), and hence \(\Sigma_1 \) by Lemma 4.1. \(\Box \)

We end this paper with some open problems:

Open problems:

1. Is weak e-reducibility a transitive relation for \(\Pi_n \) sets in \(B \Sigma_n \) models?
2. Is weak e-reducibility a transitive relation for \(\Sigma_n \) sets in \(I \Sigma_{n-1} \) models?
3. Is there a minimal e-degree in every model of \(B \Sigma_2 \)? Despite the negative result presented in this section, we conjecture that the answer is positive.
4. Is there a minimal e-degree in every model of \(\Sigma_1 \) induction? In view of Slaman’s result [13] that \(B \Sigma_2 \) is equivalent to \(\Delta_2 \) induction over \(PA^- \), this question becomes quite natural, as \(I \Sigma_1 \) is now the only level of induction where nothing is known about the existence of minimal e-degrees.

Acknowledgements

The first author was partially supported by RFBR 02-01-00169 and by SPRINT program, Department of Mathematics, National University of Singapore, when he visited the National University of Singapore in 1998. The second, third and last authors were partially supported by NUS Grant No. R-146-000-028-112 (Singapore). The first and third authors were partially supported by the INTAS-RFBR project *Computability and Models*, n. 97-2139. The third and last authors were partially supported by NSFC grant No. 60310213 “New Directions in Theory and Applications of Models of Computation” (China).
References