TREATMENTS FOR UPPER-LIMB POSTSTROKE SPASTICITY: A CRITICAL EVALUATION

Olvey EL1, Grizzle AJ1, Armstrong EP1, Shah MV2
1University of Arizona, Tucson, AZ, USA, 2Allergan, Inc, Irvine, CA, USA

OBJECTIVE: The purpose of this study was to conduct a critical analysis of the current treatments for upper-limb post-stroke spasticity. METHODS: Using search terms including spasticity, stroke, hemiplegia, phenol, baclofen, tizanidine, dantrolene, benzodiazepine, and botulinum toxin, the databases MEDLINE, EMBASE, and Cochrane Controlled Trials Register were used to identify studies in English published from 2004–December 2007. Citations of the extracted articles were reviewed to identify any further articles not captured through the database search. Articles were excluded for the following reasons: lower extremity treatments, pediatric studies, commentaries, duplicate studies, and those that focused on the use of treatments for spasticity secondary to a non-stroke etiology (e.g. multiple sclerosis, cerebral palsy, etc.). RESULTS: A total of 34 studies were reviewed and assessed using the Oxford Levels of Evidence quality scale. Fourteen clinical trials, two pooled analyses, two meta-analyses, one cost-effectiveness study, two retrospective cohort studies, three case reports/case-series, five systematic reviews, and five non-systematic reviews were identified. Thirty-one studies focused on botulinum toxin. All clinical trials compared botulinum toxin to either placebo or no treatment. Eleven studies followed patients through one treatment cycle (generally, 12–16 weeks) to determine the duration of treatment efficacy. Three clinical trials completed multiple treatment cycles which lasted 24–42 weeks. Most clinical trials measured spasticity in multiple locations of the arm, such as the fingers, wrist and shoulder. All studies used multiple outcome measures, including instruments that assessed spasticity, pain, quality of life, disability, and functional status. All clinical trials showed a significant difference in spasticity when botulinum toxin was used, as compared either to baseline measurements or placebo. CONCLUSION: This analysis showed that botulinum toxin effectively reduces upper-limb spasticity in post-stroke patients. Despite utilization of broad search criteria, no current trials demonstrating the efficacy of other treatments were identified.

RESPIRATORY-RELATED DISORDERS—Clinical Outcomes Studies

A MIXED TREATMENT COMPARISON META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS OF PHARMACOLOGIC TREATMENTS FOR CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Baker WL, Baker EL, Coleman CI
Hartford Hospital, Hartford, CT, USA

OBJECTIVE: The comparative efficacy of commonly prescribed drugs for the treatment of chronic obstructive pulmonary disease (COPD) is under debate. Therefore, we conducted a mixed-treatment comparison meta-analysis (MTC) to assess the efficacy and tolerability of these agents. METHODS: A systematic literature search through October 2007 was performed to identify randomized controlled trials of long-acting beta-agonist (LABA), tiotropium, inhaled corticosteroid (ICS), and/or combination ICS/LABA therapy in patients with COPD. MTC methods were used to combine direct, within-trial and between-drug comparisons with indirect evidence from the other trials while maintaining randomization. Evaluated endpoints included the incidence of having ≥1 exacerbation, mortality and study withdrawals. Statistics are reported as odds ratios (ORs) with 95% credible intervals (CrIs). RESULTS: Forty-three eligible trials including 31,020 COPD patients were identified. MTC demonstrated LABA (OR 0.84, 95% CrI 0.76–0.92), tiotropium (OR 0.69, 95% CrI 0.61–0.76), ICS (OR 0.85, 95% CrI 0.75–0.97), and combination ICS/LABA (OR 0.76, 95% CrI 0.67–0.85) therapies each decreased the odds of having an exacerbation compared to placebo. Moreover, tiotropium reduced the odds of having an exacerbation compared to both LABA (OR 0.82, 95% CrI 0.72–0.93) or ICS (OR 0.81, 95% CrI 0.69–0.94) therapies. Each of the 4 drug classes were associated with significantly fewer study withdrawals compared to placebo with odds reductions ranging from 26–41%. Additionally, both tiotropium and combination ICS/LABA therapy significantly decreased study withdrawals as compared to either LABA or ICS therapy alone. The only agent to demonstrate a mortality benefit was combination LABA/ICS therapy, which showed superiority to placebo (OR 0.71, 95% CrI 0.49–0.96) and LABA therapy (OR 0.75, 95% CrI 0.52–1.00). CONCLUSION: Combination ICS/LABA therapy appeared to have the greatest effect on outcomes, including exacerbations and mortality, while resulting in fewer study withdrawals. Upon comparing bronchodilator therapies, tiotropium was associated with a lesser odds of developing an exacerbation or study withdrawal compared to LABA therapy.