Almost splitting sets in integral domains

Gyu Whan Chang

Department of Mathematics, University of Incheon, Incheon, 402-749, Republic of Korea

Received 19 April 2004; received in revised form 6 August 2004

Communicated by A.V. Geramita

Abstract

Let A be an integral domain, S a saturated multiplicative subset of A, and $N(S) = \{0 \neq x \in A | (x, s)_s = A$ for all $s \in S\}$. Then S is called an almost splitting set if for each $0 \neq d \in A$, there is an integer $n = n(d) \geq 1$ such that $d^n = st$ for some $s \in S$ and $t \in N(S)$. Let B be an overring of A, X an indeterminate over B, $R = A + XB[X]$, and $D = A + X^2B[X]$. In this paper, we study almost splitting sets and show that D is an AGCD-domain if and only if R is an AGCD-domain and $\text{char}(A) \neq 0$. As a corollary, we have that D is an AGCD-domain if A is an integrally closed AGCD-domain, $\text{char}(A) \neq 0$, and $B = AS$, where S is an almost splitting set of A.

© 2004 Elsevier B.V. All rights reserved.

MSC: 13A05; 13A15; 13B25

1. Introduction

Let D be an integral domain with quotient field K, S a saturated multiplicative subset of D, and $N(S) = \{0 \neq x \in D | (x, s)_s = D$ for all $s \in S\}$. Then S is called a splitting set if each $0 \neq d \in D$ may be written as $d = sa$ for some $s \in S$ and $a \in N(S)$. Following [5], we say that S is a t-splitting set if for each $0 \neq d \in D$, $dD = (AB)_t$ for some integral ideals A and B of D, where $A_t \cap sD = sA_t$ for all $s \in S$ and $B_t \cap S \neq \emptyset$. It is easy to see that a splitting set is a t-splitting set, but a t-splitting set need not be a splitting set (see Proposition 2.7). However, if $\text{Cl}(D) = 0$, then a t-splitting set S of D is a splitting set. For if $0 \neq d \in D$, then...
We prove in Section 3 that $d D_S \cap D$ is a t-invertible t-ideal of D [5, Corollary 2.3; 25, Lemma 3.17]; hence $d D_S \cap D$ is principal. Thus S is a splitting set [3, Theorem 2.2].

Now we have a very similar and interesting question. “What are the properties of a t-splitting set S of D when $Cl(D)$ is torsion?” Fortunately, by an argument similar to the one given in the proof of the case when $Cl(D) = 0$, we can show that for each $0 \neq d \in D$, there is an integer $n = n(d) \geq 1$ such that $d^n D_S \cap D$ is principal (see the proof of Corollary 2.4). (This is equivalent to the fact that $d^n = s t$ for some $s \in S$ and $t \in N(S)$; see Lemma 2.2.) This type of multiplicative sets was introduced by Dumitrescu et al. [19] to study when t-splitting set S of D when $Cl(D)$ is torsion when S is a splitting set [3, Theorem 2.2].

Let S be a t-splitting set of an integral domain D, and let $\mathcal{T} = (A_1 \cdots A_n) | A_i = (d_i D_S \cap D$ for some $0 \neq d_i \in D)$. Then $D_S = \cap \{D_P \mid P \in t\text{-Max}(D) \text{ and } P \cap S = \emptyset\}$, $D_{\mathcal{T}} = \cap \{D_P \mid P \in t\text{-Max}(D) \text{ and } P \cap S \neq \emptyset\}$, and $D = D_S \cap D_{\mathcal{T}}$, where $D_{\mathcal{T}} = \{x \in K \mid x C \subseteq D$ for some $C \in \mathcal{T}\}$ [5, Lemma 4.2 and Theorem 4.3]. A t-splitting set S of D is a t-complemented t-splitting set if $D_{\mathcal{T}} = D_T$ for some multiplicative subset T of D, and the saturation of T is called the t-complement of S. It is known, and easily proved, that if S is a t-complemented t-splitting set, then $N(S)$ is the t-complement of S and $N(S)$ is also a t-complemented t-splitting set with t-complement $N(N(S)) = S$, the saturation of S in D [5, p. 15]. A t-splitting set was introduced in [5] to show that $D(S) = D + X D_S[X]$ is a PVMD if and only if D is a PVMD and S is a t-splitting set of D. (Recall that D is a Prüfer v-multiplication domain (PVMD) if every finite type v-ideal of D is t-invertible.)

In Section 2, we study almost splitting sets. In particular, we show that an almost splitting set is a t-complemented t-splitting set and that if S is an almost splitting set of D, then $Cl(D)$ is torsion if and only if $Cl(D_S)$ and $Cl(D_{N(S)})$ are both torsion. We also give an example of a t-complemented t-splitting set S of D which is not an almost splitting set such that both $Cl(D_S)$ and $Cl(D_{N(S)})$ are torsion, but $Cl(D)$ is not torsion. Let B be an overring of an integral domain A, X an indeterminate over B, $R = A + X B[X]$, and $D = A + X^2 B[X]$. We prove in Section 3 that D is an AGCD-domain if and only if R is an AGCD-domain and $char(A) \neq 0$. As a corollary, we have that D is an AGCD-domain if A is an integrally closed AGCD-domain, $char(A) \neq 0$, and $B = A_S$, where S is an almost splitting set of A.

Throughout this paper, D is an integral domain with quotient field K, $U(D)$ is the group of units of D, and $char(D)$ is the characteristic of D. An overring of D means a ring between D and K. As usual, for $f \in K[X]$, the content A_f of f is the fractional ideal of D generated by the coefficients of f. Recall that for a nonzero fractional ideal I of D, $I^{-1} = \{x \in K \mid x I \subseteq D\}$, $I_v = (I^{-1})^{-1}$, and $I_l = \cup \{(a_1, \ldots, a_n) \mid (0) \neq (a_1, \ldots, a_n) \subseteq I\}$. We say that I is a divisorial ideal or v-ideal (resp., t-ideal) if $I = I_v$ (resp., $I = I_t$), while I_v is a finite type v-ideal if $I_v = (a_1, \ldots, a_n)$ for some $(0) \neq (a_1, \ldots, a_n) \subseteq I$. Let $t\text{-Max}(D)$ be the set of ideals maximal among proper integral t-ideals of D. It is well known that (i) $t\text{-Max}(D) \neq \emptyset$ if D is not a field, (ii) every ideal in $t\text{-Max}(D)$ is prime, (iii) $D = \cap_{P \in t\text{-Max}(D)} D_P$, and (iv) every
prime ideal minimal over a t-ideal is a t-ideal, in particular, every height-one prime ideal is a t-ideal.

A nonzero fractional ideal I of D is said to be t-invertible if $(II^{-1})_t = D$. It is well known that the set $T(D)$ of t-invertible fractional t-ideals of D is an abelian group under the t-multiplication $I * J = (IJ)_t$. Let $\text{Prin}(D)$ be its subgroup of nonzero principal fractional ideals. We recall that as in [14,15], the (t)-class group of D is the quotient group $\text{Cl}(D) = T(D)/\text{Prin}(D)$. If D is a Krull domain, then $\text{Cl}(D)$ is just the divisor class group (see [21]). Many researchers have studied the class group of integral domains; for example, see [3,7–9,13,15,20,22].

Let S be a multiplicative subset of D. Then the set $N(S) = \{0 \neq t \in D | (s,t)_v = D \text{ for all } s \in S\}$ is a saturated multiplicative subset of D called the m-complement of S. It is clear that $S \cap N(S) \subseteq U(D)$ (equality holds if S is saturated) and that S is a splitting set if and only if S is saturated and $SN(S) = D\setminus \{0\}$. The reader is referred to [2,6,10] for the m-complement of a multiplicative set, to [2,3,5,10,16,18] for splitting or t-splitting sets, and to [8,11,12] for integral domains of the form $A + X^2 B[X]$. Any undefined concepts or notation are standard as in [23,26].

2. Almost splitting sets

We begin this section with the following well-known results. The reader may consult [25] or Zafrullah’s survey article [28] for the t-operation.

Lemma 2.1. Let I be a nonzero fractional ideal of an integral domain D, and let S be a multiplicative subset of D.

1. If I_t is of finite type, then $(ID_S)^{-1} = I^{-1}D_S$ and $(ID_S)_v = (I_vD_S)_v$. In particular, if I is t-invertible, then $(ID_S)_v = I_vD_S$.
2. $(ID_S)_t = (I_tD_S)_t$ for any I.
3. $(ID)_t \cap D$ is a t-ideal of D.
4. I is t-invertible if and only if I_t is of finite type and I is t-locally principal.
5. If I is a t-ideal, then $I = \cap_{P \in \text{Max}(D)} ID_P$.
6. If $I = I_t \subseteq D$ and $(I, s)_t = D$ for all $s \in S$, then $ID_S \cap D = I$.

Proof. For (1) and (2), see [25, Lemma 3.4] or [28, Lemma 1.4]. Conditions (3)–(5) appear in [25, Corollary 2.7, Proposition 2.8(3), and Lemma 3.17]. (6) For $0 \neq x \in ID_S \cap D$, let $A = (I : x) = \{a \in D | ax \in I\}$. Then $I \subseteq A$ and $A \cap S \neq \emptyset$ because $x \in ID_S$, and so $A_t = D$. Note that $A_t = A$ since I is a t-ideal [23, Exercise 1, p. 406]. Hence $A = D$, and thus $x \in I$. The reverse inclusion is clear. \qed

Let S be a saturated multiplicative subset of an integral domain D. Recall that S is a splitting set if and only if for each $0 \neq d \in D$, $dD_S \cap D$ is principal [3, Theorem 2.2] and that S is a t-splitting set if and only if for each $0 \neq d \in D$, $dD_S \cap D$ is t-invertible [5, Corollary 2.3]. The following lemma is the almost splitting set analog which appears in [6, Proposition 2.7]. We recall it for easy reference of the reader.
Lemma 2.2. Let S be a saturated multiplicative subset of an integral domain D. Then S is an almost splitting set if and only if for each $0 \neq d \in D$, there is an integer $n = n(d) \geq 1$ such that $d^n D_S \cap D$ is principal.

Our first result shows that an almost splitting set is a t-complemented t-splitting set. Hence “splitting set \Rightarrow almost splitting set \Rightarrow t-complemented t-splitting set \Rightarrow t-splitting set”. However, the converse implications do not hold; for example, see Proposition 2.7 and [5, p. 15].

Proposition 2.3. An almost splitting set is a t-complemented t-splitting set.

Proof. Let S be an almost splitting set of an integral domain D, and let $N(S) = \{0 \neq x \in D | (x, s)_v = D$ for all $s \in S\}$. We first show that S is a t-splitting set. By Anderson et al. [5, Corollary 2.3], we need only show that for each $0 \neq d \in D$, $d D_S \cap D$ is t-invertible. Let $A = d D_S \cap D$, and let $n = n(d) \geq 1$ be an integer such that $d^n = st$ for some $s \in S$ and $t \in N(S)$. Then $d^n D_S \cap D = st D_S \cap D = t D_S \cap D = t D$ by Lemma 2.1(6). If $d^n D_S \cap D = (A^n)_t$, then $(A^n)_t = t D$. So $(A^n)_t$, and hence A, is t-invertible. Thus it suffices to show that $d^n D_S \cap D = (A^n)_t$.

Since $A = d D_S \cap D$ and $d \in A$, we have $d D_S = AD_S$, and hence $d^n D_S = A^n D_S = (A^n D_S)_t \supseteq (A^n)_t D_S \supseteq A^n D_S$ by Lemma 2.1(2). So $d^n D_S = (A^n)_t D_S = A^n D_S$ and $(A^n)_t \subseteq d^n D_S \cap D$. For the reverse containment, let $x \in d^n D_S \cap D$ and $I = ((A^n)_t : x) = \{a \in D | xa = (A^n)_t\}$. Then I is a t-ideal [23, Exercise 1, p. 406], and since $d^n D_S = (A^n)_t D_S$, we have $I \cap S = \emptyset$. Moreover, since $t \in d^n D_S \cap D \subseteq d D_S \cap D = A$, it follows that $t^n \in A^n \subseteq (A^n)_t \subseteq I$. Let $s \in I \cap S$. Then $D = (s, t^n)_v \subseteq I$, and thus $x \in x D = x(s, t^n)_v \subseteq x I \subseteq (A^n)_t$.

We next show that S is t-complemented. Let $T = \{A_1 \cdots A_k | A_i = d_i D_S \cap D$ for some $0 \neq d_i \in D\}$; then $D_T = \cap \{D_P | P \cap S \neq \emptyset$ and $P \in \text{t-Max}(D)\}$ [5, Lemma 4.2 and Theorem 4.3]. We claim that $D_N(S) = D_T$. Clearly, $D_N(S) \subseteq D_T$ since $t D_S \cap D = D$ for all $t \in N(S)$ by Lemma 2.1(6). For the reverse containment, let $x \in D_T$. Then $x A_1 \cdots A_k \subseteq D$ for some $A_1 \cdots A_k \in T$. Since $A_i = d_i D_S \cap D$ for some $0 \neq d_i \in D$, there is an integer $m \geq 1$ such that $((A_1 \cdots A_k)^n)_t = a D$ for some $a \in N(S)$ (see the above paragraph). Hence $xa \in x((A_1 \cdots A_k)^n)_t \subseteq x(A_1 \cdots A_k)_t \subseteq D$, and thus $x \in D_N(S)$. □

Corollary 2.4. Let D be an integral domain with $C_l(D)$ torsion, and let S be a saturated multiplicative subset of D. Then S is an almost splitting set if and only if S is a t-splitting set.

Proof. Assume that S is a t-splitting set, and let $0 \neq d \in D$. Then $d D = (AB)_t$ for some t-invertible integral ideals A and B of D such that $A_t \cap S = s A_t$ for all $s \in S$ and $B_t \cap S \neq \emptyset$. Since $C_l(D)$ is torsion, there is an integer $n \geq 1$ such that $(A^n)_t = a D$ for some $0 \neq a \in D$. Clearly $(a, s)_v = D$ for all $s \in S$; so $a D_S \cap D = a D$ by Lemma 2.1(6). Since $d D = (AB)_t$, it follows that $d^n D_S = ((A B^n)_t D_S)_t = ((A^n)_t D_S)_t$ (Lemma 2.1(2)). So $d^n D_S \supseteq (A^n)_t D_S \supseteq (A^n B^n)_t D_S \cap D = d^n D_S$, or $d^n D_S = (A^n)_t D_S$. Hence $d^n D_S \cap D = (A^n)_t D_S \cap D = a D$. Thus S is an almost splitting set by Lemma 2.2. The converse always holds by Proposition 2.3. □
Remark 2.5. Let D be an integral domain, X an indeterminate over D, and $\emptyset \neq S \subseteq \{ f \in D[X] | (A_f)_v = D \}$ a saturated multiplicative subset of $D[X]$. In [16, Proposition 3.7], we showed that S is a t-complemented t-splitting set. Note that $\text{Cl}(D) = \text{Cl}(D[X])$ if and only if D is integrally closed [22, Theorem 3.6]. Thus if D is an integrally closed domain with $\text{Cl}(D)$ torsion, then S is an almost splitting set by Corollary 2.4.

Recall that an integral domain D is a GCD-domain (resp., UMT-domain) if and only if $D \setminus \{0\}$ is a splitting set (resp., t-splitting set) in $D[X]$ [3, Example 4.7] (resp. [16, Corollary 2.9]). An integral domain D is called a UMT-domain if every upper to zero in $D[X]$ is a maximal t-ideal. It is well known that if D is an integrally closed UMT-domain if and only if D is a PVMD [24, Proposition 3.2]. We next give the almost splitting set analog.

Proposition 2.6. Let D be an integrally closed domain and X an indeterminate over D. Then $D \setminus \{0\}$ is an almost splitting set in $D[X]$ if and only if D is an AGCD-domain.

Proof. Recall that an integrally closed domain D is an AGCD-domain if and only if D is a PVMD with $\text{Cl}(D)$ torsion [27, Corollary 3.8 and Theorem 3.9].

(\Rightarrow) Suppose that $D \setminus \{0\}$ is an almost splitting set in $D[X]$, and let $0 \neq f \in D[X]$. Then there is an integer $n = n(f) \geq 1$ such that $f^n = ag$ for some $0 \neq a \in D$ and $g \in D[X]$ with $(d, g)_v = D[X]$ for all $0 \neq d \in D$. Clearly, $(A_g)_v = D$; hence $(A_{f^n})_v = (A_f)_v = (A_{ag})_v = aD$ as D is integrally closed [23, Proposition 34.8]. Thus A_f is t-invertible, which implies that D is a PVMD. Moreover, since $(A_{f^n})_v$ is principal, we can conclude that $\text{Cl}(D)$ is torsion.

(\Leftarrow) Assume that D is an AGCD-domain, and let $0 \neq f \in D[X]$. Then there is an integer $n = n(f) \geq 1$ such that $(A_{f^n})_v = aD$ for some $a \in D$; so $(A_{f^n})_v = aD$ [23, Proposition 34.8] because D is integrally closed. Let $g = f^n/a$. Then $f^n = ag$ and $g \in D[X]$ with $(A_g)_v = D$; so $(d, g)_v = D[X]$ for all $0 \neq d \in D$ [24, Proposition 1.1]. Thus $D \setminus \{0\}$ is an almost splitting set. □

We next give an example of a t-complemented t-splitting set which is not an almost splitting set.

Proposition 2.7. Let D be an integral domain, X an indeterminate over D, and $S = \{ uX^n | u \in U(D) \}$ and $n = 0, 2, 3, \ldots \). Then:

1. S is a saturated multiplicative subset of $D[X^2, X^3]$.
2. S is a t-complemented t-splitting set of $D[X^2, X^3]$ and the t-complement of S is $D[X^2, X^3] \setminus X^2D[X]$.
3. S is an almost splitting set of $D[X^2, X^3]$ if and only if $\text{char} \ (D) \neq 0$.
4. S is not a splitting set of $D[X^2, X^3]$.

Proof. Recall that $X^2D[X]$ is a height-one maximal t-ideal of $D[X^2, X^3]$ and if Q is a maximal t-ideal of $D[X^2, X^3]$, then either $Q = X^2D[X]$ or $Q \cap S = \emptyset$ [8, Lemma 1]. Also, note that $D[X^2, X^3]_S = D[X, X^{-1}] = D[X]_S$.

(1) This is clear.
(2) We first show that S is a t-splitting set. To do this, it suffices to show that for each $0 \neq f \in D[X^2, X^3]$, $fD[X] \cap D[X^2, X^3]$ is t-invertible [5, Corollary 2.3]. Let $I = fD[X] \cap D[X^2, X^3]$. Then $ID[X] \cap D[X^2, X^3]$ (note that $(a + Xg)(a - Xg) = a^2 - X^2g^2 \in D[X^2, X^3]$ for all $a \in D$ and $g \in D[X]$), and I is a t-ideal of $D[X^2, X^3]$ by Lemma 2.1(3).

Let Q be a maximal t-ideal of $D[X^2, X^3]$. If $Q = X^2D[X]$, then $ID[X^2, X^3]Q = D[X^2, X^3]Q$. Assume that $Q \neq X^2D[X]$. Then $Q \cap S \neq \emptyset$, and so $ID[X^2, X^3]Q = (ID[X^2, X^3]S)Q = fD[X^2, X^3]Q$. Thus I is t-locally principal. Hence if I is of finite type, then I is t-invertible by Lemma 2.1(4). Let $g \in I \setminus X^2D[X]$. Then $fD[X^2, X^3]g \in (g, X^2f)_vD[X^2, X^3] \subseteq I = fD[X^2, X^3]$; so $(g, X^2f)_vD[X^2, X^3] = I = fD[X^2, X^3]$. Hence $I = (g, X^2f)_v$ for all maximal t-ideals Q of $D[X^2, X^3]$, and thus $I = (g, X^2f)_v$ by Lemma 2.1(5).

We next show that S is t-complemented. Let Q be a maximal t-ideal of $D[X^2, X^3]$ such that $Q \cap S \neq \emptyset$. Then $Q = X^2D[X]$, and hence $\cap (DQ | Q \cap S \neq \emptyset$ and $Q \in t$-Max(D)) = $D[X^2, X^3]Q$. Thus S is t-complemented with t-complement $D[X^2, X^3]Q$.

(3) (\Rightarrow) Assume that S is an almost splitting set, and let $f = X^2(1 + X)$. Then $f \in D[X^2, X^3]$, and since S is an almost splitting set, there is an integer $n = n(f) \geq 1$ such that $f^nD[X] \subseteq D[X^2, X^3]$ for some $0 \neq g \in D[X^2, X^3]$ by Lemma 2.2. It is clear that $g(0) \neq 0$, $f^nD[X] = gD[X]$, and $f^n \in gD[X^2, X^3]$. So $f^n = uX^ng$ for some $u \in U(D)$ and integer $m \geq 0$, and hence $(1 + X)^n = ug$ because $g(0) \neq 0$. Note that $g \in D[X^2, X^3]$ and $(1 + X)^n = 1 + nX + [n(n + 1)/2]X^2 + \cdots + X^n$; so $nX = 0$. Thus $char(D) \neq 0$.

(\Leftarrow) Assume that $char(D) = p \neq 0$, and let $0 \neq f = X^n g \in D[X^2, X^3]$, where $n \geq 0$ is an integer and $g \in D[X]$ with $g(0) \neq 0$. Then $g^p \in D[X^2, X^3]$ and $f^pD[X] = g^pD[X]$. If $h \in D[X]$ such that $g^p h \in D[X^2, X^3]$, then $h \in D[X^2, X^3]$ because $g^p(0) \neq 0$ and $g^p \in D[X^2, X^3]$. So $f^pD[X] \cap D[X^2, X^3] = g^pD[X] \cap D[X^2, X^3] = g^pD[X^2, X^3]$. Thus by Lemma 2.2, S is an almost splitting set.

(4) Let $f = X^2(1 + X) \in D[X^2, X^3]$. Then $fD[X] \cap D[X^2, X^3]$ is not principal, and thus S is not a splitting set [3, Theorem 2.2].

Corollary 2.8 (cf. Anderson et al. [11, Theorem 2.5]). Let D be an integral domain, X an indeterminate over D, and $S = \{ux^n | u \in U(D)$ and $n = 0, 2, 3, \ldots \}$. Let I be a nonzero integral ideal of $D[X]$ such that $ID[X] \subseteq D[X] = I$. Then I is a t-ideal of $D[X]$ if and only if $I \cap D[X^2, X^3]$ is a t-ideal of $D[X^2, X^3]$.

Proof. Let $T = \{ux^n | u \in U(D)$ and $n = 0, 1, 2, \ldots \}$, and note that $D[X]T = D[X^2, X^3]$. (\Rightarrow) Assume that I is a t-ideal of $D[X]$. Then $ID[X]T = ID[X] \subseteq D[X^2, X^3] [3, Corollary 3.5]$ since T is a splitting set in $D[X]$ [3, Example 4.5], and hence $I \cap D[X^2, X^3] = (ID[X] \cap D[X^2, X^3])ID[X^2, X^3] = ID[X] \cap D[X^2, X^3]$ is a t-ideal of $D[X^2, X^3]$ by Lemma 2.1(3). (\Leftarrow) Assume that $I \cap D[X^2, X^3]$ is a t-ideal of $D[X^2, X^3]$, and let $J = I \cap D[X^2, X^3]$. Then $JD[X] = ID[X] \cap D[X^2, X^3] = I = JD[X] \cap D[X]$ since S is a t-splitting set in $D[X^2, X^3]$ (Proposition 2.7(2)). Thus $I = ID[X] \cap D[X] = JD[X] \subseteq D[X]$ is a t-ideal of $D[X]$ (Lemma 2.1(3)).
It is well known that if S is a splitting set of an integral domain D, then $\text{Cl}(D) = \text{Cl}(D_S) \oplus \text{Cl}(D_{N(S)})$ [3, Corollary 3.8]. This result cannot be generalized to a t-splittable set [5, Remark 4.13]. We next give an example which shows that [3, Corollary 3.8] cannot be extended to an almost splitting set.

Example 2.9. Let D be an integral domain with quotient field K, X an indeterminate over D, $S = \{uX^n | u \in U(D) \text{ and } n = 0, 2, 3, \ldots \}$, and $N(S) = \{ f \in D[X^2, X^3] | (f, uX^n)_v = D[X^2, X^3] \text{ for all } uX^n \in S \}$. Then S is a t-splittable set iff there is an integer $n \geq 1$ such that $(S_1)_v = (S_1)_v \cap (N_1)_v$, for some $\emptyset \neq S_1 \subseteq S$ and $\emptyset \neq N_1 \subseteq N(S)$.

Theorem 2.10. Let D be an integral domain, S an almost splitting set of D, and $N(S) = \{ 0 \neq t \in D | (s, t)_v = D \text{ for all } s \in S \}$. Then S is a t-splittable set iff $N(S)$ is torsion, and let S be a t-splittable set.

(1) If I is a t-invertible integral t-ideal of D, then there is an integer $n \geq 1$ such that $(I^n)_v = ((S_1)_v) = (S_1)_v \cap (N_1)_v$, for some $\emptyset \neq S_1 \subseteq S$ and $\emptyset \neq N_1 \subseteq N(S)$.

(2) $\text{Cl}(D)$ is torsion if and only if $\text{Cl}(D_S)$ and $\text{Cl}(D_{N(S)})$ are torsion.

Proof. (1) Let $I = (a_1, \ldots, a_k)_v$. Then there is an integer $n \geq 1$ such that $a^n_i = s_it_i$ for some $s_i \in S$ and $t_i \in N(S)$. Since I is t-invertible, $(I^n)_v = (a^n_1, \ldots, a^n_k)_v = (s_it_1, \ldots, s_k t_k)_v$ [1, Lemma 3.3]. Let Q be a maximal t-ideal of D. Then since $Q \cap S = \emptyset$ or $Q \cap N(S) = \emptyset$, we have $(s_1t_1, \ldots, s_k t_k)_Q = ((s_1, \ldots, s_k)(t_1, \ldots, t_k))_Q$. So by Lemma 2.1(1),

$((I^n)_v)_Q = (((s_1t_1, \ldots, s_k t_k)_v)_Q = (((s_1, \ldots, s_k)(t_1, \ldots, t_k))_Q \supseteq (((s_1, \ldots, s_k)(t_1, \ldots, t_k))_Q \supseteq (((s_1, \ldots, s_k t_k)_v)_Q = ((I^n)_v)_Q$.

Hence $(s_1t_1, \ldots, s_k t_k)_v = ((s_1, \ldots, s_k)(t_1, \ldots, t_k))_v$ for all maximal t-ideals Q of D. Thus $(I^n)_v = ((s_1, \ldots, s_k)(t_1, \ldots, t_k))_v = (s_1, \ldots, s_k)_v \cap (t_1, \ldots, t_k)_v$ by Lemma 2.1(5) and the fact that $(s_1, \ldots, s_k) + (t_1, \ldots, t_k) = D$.

(2) \Rightarrow Recall that almost splitting sets are t-splittable sets (Proposition 2.3); hence the map $\phi : \text{Cl}(D) \to \text{Cl}(D_S) \oplus \text{Cl}(D_{N(S)})$, given by $[I] \to ([ID_S], [ID_{N(S)})]$, is surjective [5, Remark 4.13]. Thus if $\text{Cl}(D)$ is torsion, then $\text{Cl}(D_S) \oplus \text{Cl}(D_{N(S)})$, and hence both $\text{Cl}(D_S)$ and $\text{Cl}(D_{N(S)})$, are torsion.

\Leftarrow Assume that $\text{Cl}(D_S)$ and $\text{Cl}(D_{N(S)})$ are both torsion, and let I be a t-invertible integral t-ideal of D. Then ID_S and $ID_{N(S)}$ are t-invertible, and thus there exists an integer $n \geq 1$ such that $(ID_S)_v = ((I)^n)_v$, $ID = aD_S$ and $(ID_{N(S)})_v = ((I)^n)_v$, $D_{N(S)} = bD_S$ for some $a, b \in D$ (see Lemma 2.1(1) for the equalities). Since $(I^n)_v$ is a t-invertible t-ideal
and S is an almost splitting set, by (1) we can choose another integer $m \geq 1$ such that $(I^{nm})_{t} = (((I^{n})_{t})^{m})_{t} = ((S_{1})_{t}(N_{1}))_{t}$, $a^{m} = s't$, and $b^{m} = st'$ for some $\emptyset \neq S_{1} \subseteq S$, $\emptyset \neq N_{1} \subseteq N(S)$, $s,s' \in S$, and $t, t' \in N(S)$. Also, since I is t-invertible, by Lemma 2.1(1)

\[(N_{1})_{t}D_{S} = (I^{nm})_{t}D_{S} = ((I^{n})_{t}D_{S})^{m}_{t} = a^{m}D_{S} = tD_{S}
\]

and $(S_{1})_{t}D_{N(S)} = (I^{nm})_{t}D_{N(S)} = ((I^{n})_{t}D_{N(S)})^{m}_{t} = b^{m}D_{N(S)} = sD_{N(S)}$. Therefore, $(I^{nm})_{t} = ((S_{1})_{t}(N_{1}))_{t} = (S_{1})_{t} \cap (N_{1})_{t} = ((S_{1})_{t}D_{N(S)} \cap D) \cap ((N_{1})_{t}D_{S} \cap D) = (sD_{N(S)} \cap D) \cap (tD_{S} \cap D) = sD \cap tD = stD$ by Lemma 2.1(6). This means that $Cl(D)$ is torsion.

Let S be a t-complemented t-splitting set of an integral domain D. As we noted in the proof of (\Rightarrow) of Theorem 2.10(2), if $Cl(D)$ is torsion, then $Cl(D_{S})$ and $Cl(D_{N(S)})$ are both torsion (or see [5, Remark 4.13]). Our next example shows that the converse does not hold.

Example 2.11. Let the notation be as in Example 2.9. Assume that D is an integrally closed domain with $Cl(D)$ torsion. Then $Cl(D[X^{2}, X^{3}_{N(S)}]) = 0$ and $Cl(D[X^{2}, X^{3}_{S}]) = Cl(D[X]) = Cl(D)$ is torsion [22, Theorem 3.6]. But since $Cl(D[X^{2}, X^{3}]) = Cl(D) \oplus K$ [8, Corollary 7], $Cl(D[X^{2}, X^{3}])$ is not torsion if and only if $char(K) = 0$, if and only if S is not an almost splitting set (cf. Proposition 2.7(3) and Theorem 2.10(2)). For example, if $D = \mathbb{Z}$ is the ring of integers, then $Cl(\mathbb{Z}[X^{2}, X^{3}_{N(S)}]) = Cl(\mathbb{Z}[X^{2}, X^{3}_{S}]) = 0$ but $Cl(\mathbb{Z}[X^{2}, X^{3}]) = \mathbb{Q}$ is torsion-free, where \mathbb{Q} is the additive group of rational numbers.

Let D be an integral domain and $X^{1}(D)$ the set of height-one prime ideals of D. Then D is called a weakly Krull domain if $D = \cap_{p \in X^{1}(D)}D_{p}$ and the intersection has finite character. Recall that D is an almost weakly factorial domain (AWFD) if for each nonzero nonunit $x \in D$, some positive power of x is a product primary elements. It is known that D is an AWFD if and only if D is a weakly Krull domain and $Cl(D)$ is torsion [4, Theorem 3.4]. For more on weakly Krull domains and AWFD’s, see [4,12].

Corollary 2.12. Let S be an almost splitting set of an integral domain D and $N(S) = \{0 \neq x \in D | (x,s)_{v} = D$ for all $s \in S\}$.

(1) D is an AGCD-domain if and only if D_{S} and $D_{N(S)}$ are AGCD-domains.

(2) D is weakly Krull if and only if D_{S} and $D_{N(S)}$ are weakly Krull.

(3) D is an AWFD if and only if D_{S} and $D_{N(S)}$ are AWFDs.

Proof. (1) Assume that both D_{S} and $D_{N(S)}$ are AGCD-domains, and let $0 \neq a, b \in D$. Then as S is an almost splitting set, there is an integer $n \geq 1$ such that $a^{n} = s_{1}t_{1}$ and $b^{n} = s_{2}t_{2}$ for some $s_{1} \in S$ and $t_{1} \in N(S)$. By assumption and [27, Lemma 3.6], there is another integer $m \geq 1$ such that $s_{1}^{m}D_{N(S)} \cap s_{2}^{m}D_{N(S)} = sD_{N(S)}$ and $t_{1}^{m}D_{S} \cap t_{2}^{m}D_{S} = tD_{S}$ for some $s, t \in D$. Recall that for any $0 \neq x, y, d \in D$, if $xD_{N(S)} \cap yD_{N(S)} = dD_{N(S)}$, then $x^{k}D_{N(S)} \cap y^{k}D_{N(S)} = d^{k}D_{N(S)}$ for all integers $k \geq 1$ [27, Lemma 3.6]. Thus as S and $N(S)$ are almost splitting sets, we may assume that $s \in S$ and $t \in N(S)$. So $s_{1}^{m}D \cap s_{2}^{m}D = (s_{1}^{m}D_{N(S)} \cap D) \cap (s_{2}^{m}D_{N(S)} \cap D) = sD_{N(S)} \cap D = sD$ by Lemma 2.1(6). Similarly, $t_{1}^{m}D \cap t_{2}^{m}D = tD$. Thus $a^{nm}D \cap b^{nm}D = s_{1}^{nm}D \cap s_{2}^{nm}D = s_{1}^{m}D \cap s_{2}^{m}D \cap t_{1}^{m}D \cap t_{2}^{m}D = sD \cap tD = stD$.

The converse always holds for any multiplicative subset of D. The proof is analogous.
(2) It is well known that if D is weakly Krull, then D_N is also weakly Krull for any multiplicative subset N of D. The converse follows directly from the fact that $D = D_S \cap D_{N(S)}$ [2, Proposition 1.1].

(3) This is an immediate consequence of (2) and Theorem 2.10(2) since D is an AWFD if and only if D is weakly Krull and $CI(D)$ is torsion [4, Theorem 3.4].

3. AGCD-domains of the form $A + X^2B[X]$

Let B be an overring of an integral domain A, X an indeterminate over A, and $R = A + XB[X]$. In [19, Theorem 3.1], the authors showed that R is an integrally closed AGCD-domain if and only if A is an integrally closed AGCD-domain and $B = A_S$, where S is an almost splitting set in A. They also gave some examples of non-integrally closed AGCD-domains. For example, if A is an integrally closed AGCD-domain of char $(A) = p \neq 0$ such that $A \neq A^p$, then $A[X^p, X^{p+1}, \ldots, X^{2p+1}]$ and $A^p + XA[X]$ are non-integrally closed AGCD-domains. The purpose of this section is to prove that the domain $A + X^2B[X]$ is an AGCD-domain if and only if $A + XB[X]$ is an AGCD-domain and char$(A) \neq 0$. Using this result and [19, Theorem 3.1], we can construct simple examples of non-integrally closed AGCD-domains.

Let $A \subseteq B$ be an extension of integral domains. Following [17], we say that B is t-linked over A if $I^{-1} = A$ for a nonzero finitely generated ideal I of A implies $(IB)^{-1} = B$; equivalently, if P is a maximal t-ideal of B, then $(P \cap A)^t \subseteq A$. Recall that A is of finite t-character if each nonzero nonunit element of A belongs to only finitely many maximal t-ideals of A. Examples of integral domains of finite t-character include Krull domains, Mori domains, Noetherian domains, and one-dimensional semi-quasilocal domains.

Let $A \subseteq B$ be an extension of integral domains, X an indeterminate over A, $R = A + XB[X]$, and $D = A + X^2B[X]$. In [12, Lemma 4.1], the authors proved that the map $Spec(R) \rightarrow Spec(D)$, given by $Q \mapsto Q \cap D$, is an order-preserving bijection. In particular, if $A = B$, then the bijection preserves t-ideals, i.e., Q is a prime t-ideal of R if and only if $Q \cap D$ is a prime t-ideal of D [11, Theorem 2.5] (or see Corollary 2.8). We next show that this holds for maximal t-ideals when B is an overring of A.

Lemma 3.1. Let B be an overring of an integral domain A, X an indeterminate over A, $R = A + XB[X]$, $D = A + X^2B[X]$, and Q a nonzero prime ideal of R. Then Q is a maximal t-ideal of R if and only if $Q \cap D$ is a maximal t-ideal of D. In particular, R is t-linked over D, and R is of finite t-character if and only if D is of finite t-character.

Proof. Recall that the map $Spec(R) \rightarrow Spec(D)$, given by $Q \mapsto Q \cap D$, is an order-preserving bijection [12, Lemma 4.1]. So we need only show that if Q is a maximal t-ideal of R, then $Q \cap D$ is a t-ideal of D and that if $Q \cap D$ is a maximal t-ideal of D, then Q is a t-ideal of R. (This means that Q is a maximal t-ideal of R if and only if $Q \cap D$ is a maximal t-ideal of D.)

Let K be the quotient field of A, Q a nonzero prime ideal of R, $P = Q \cap D$, and $S = \{X^n | n = 0, 2, 3, \ldots\}$. Note that $Q \cap A = P \cap A; Q \cap S = 0 \Leftrightarrow P \cap S = 0; R_S = B[X, X^{-1}] = B[X]_S = D_S; \text{ and } PB[X]_S = QB[X]_S$.

Case 1: $Q \cap A = (0) \iff P \cap A = (0)$. Note that $R_{A\setminus\{0\}} = K[X]$, $D_{A\setminus\{0\}} = K[X^2, X^3]$, and $\dim(K[X]) = \dim(K[X^2, X^3]) = 1$; so $ht Q = ht P = 1$. Thus Q and P are prime t-ideals of R and D, respectively.

Case 2: $Q \cap A \neq (0)$ and $Q \cap S = \emptyset \iff P \cap A \neq (0)$ and $P \cap S = \emptyset$.

Assume that $(PB[X]_S)_I = (QB[X]_S)_I = B[X]_S$. Then there is a finitely generated subideal I of Q such that $(IB[X]_S)_v = B[X]_S$. Note that for any $0 \neq a \in Q \cap A$, $(I, a) \subseteq Q$, $(I, a)B[X]_S)_v = B[X]_S$, and (I, a) is finitely generated. Replacing I with (I, a), we may assume that $I \cap A \neq (0)$. So $(R : I) \subseteq K[X]$. Since $R \subseteq B[X]_S$, it follows that $(R : I) \subseteq (B[X]_S : I) = B[X]_S$, and thus $(R : I) \subseteq B[X]_S \cap K[X] = B[X]$. Hence $XB[X] \subseteq (R : B[X]) \subseteq (R : (R : I)) = I_v$, and thus $X \subseteq I_v \subseteq Q_I$. Therefore, if Q is a t-ideal, then $(PB[X]_S)_I = (QB[X]_S)_I \subseteq B[X]_S$. Similarly, if P is a prime t-ideal, then $(QB[X]_S)_I = (PB[X]_S)_I \subseteq B[X]_S$.

Assume that Q or P is a maximal t-ideal. Then $(PB[X]_S)_I = (QB[X]_S)_I \subseteq B[X]_S$ by the above paragraph, and hence $PB[X]_S = (PB[X]_S)_I = (QB[X]_S)_I = Q[B[X]_S]$ (cf. Lemma 2.1(3)). Thus $Q = Q[B[X]_S] \cap R$ and $P = P[B[X]_S] \cap D$ are t-ideals by Lemma 2.1(3).

Case 3: $Q \cap A \neq (0)$ and $Q \cap S \neq \emptyset \iff P \cap A \neq (0)$ and $P \cap S \neq \emptyset$. It is clear that $Q = (Q \cap A) + XB[X]$ and $P = (Q \cap A) + X^2B[X]$. We first show that (1) if I is a nonzero (integral) ideal of R such that $I \cap A \neq (0)$ and $X^2 \in I_1$, then $I_v = (I_{-1}^{-1} \cap B)^{-1} \cap B + X^2B[X]$, where $I_0 = \{ f(0) | f \in I_1 \}$. Let $\omega \in I_1^{-1} \cap B$. Then $\omega \in B[X]$ because $I \cap A \neq (0)$ and $X^2 \in I$. Note that since $f \omega = f + 0$ for any $f \in I$, we have $f(0)\omega(0) = A$, and so $\omega(0) \in I_{-1}^{-1} \cap B$. Hence $I_{-1} = (I_{-1}^{-1} \cap B) + X^2B[X]$ since $X^2B[X] \subseteq I_{-1}^{-1}$. The same argument also shows that $I_v = (I_{-1}^{-1} \cap B)^{-1} \cap B + X^2B[X]$. Similarly, we can show that (2) if J is a nonzero (integral) ideal of D such that $J \cap A \neq (0)$ and $X^2 \in J$, then $J_v = (J_{-1}^{-1} \cap B)^{-1} \cap B + X^2B[X]$, where $J_0 = \{ g(0) | g \in J \}$.

Assume that Q is a t-ideal of R, and let J be a finitely generated subideal of P. Note that $X^2 \in P$ and $J \subseteq (J, a, X^2) \subseteq P$ for any $0 \neq a \in A \cap Q$. So replacing J with (J, a, X^2), we may assume that $J \cap A \neq (0)$ and $X^2 \in J$. By (1) and (2), $(J_R)_v = (J_{-1}^{-1} \cap B)^{-1} \cap B + X^2B[X]$. Since Q is a t-ideal and JR is a finitely generated subideal of Q, $(J_{-1}^{-1} \cap B)^{-1} \cap B \subseteq Q \cap A$, and thus $J_v \subseteq (Q \cap A) + X^2B[X] = P$, which implies that P is a t-ideal.

We next assume that P is a t-ideal, and let I be a finitely generated subideal of Q. As in the above paragraph, we may assume that $I \cap A \neq (0)$ and $X^2 \in I$. Let $I_0 = \{ f(0) | f \in I \}$. Then $I_0 \neq (0)$ and I_0 is a finitely generated subideal of $Q \cap A$ because I is finitely generated and $XB[X] \subseteq Q$. Note that $(I_0, X^2)D$ is a finitely generated subideal of P such that $(g(0) | g \in (I_0, X^2)D) = I_0$, $(I_0, X^2)D \cap A \neq (0)$, and $X^2 \in (I_0, X^2)D$. So by (1) and (2), $(I_0, X^2)D_v = (I_{-1}^{-1} \cap B)^{-1} \cap B + X^2B[X]$ and $I_v = (I_{-1}^{-1} \cap B)^{-1} \cap B + X^2B[X]$. Since P is a t-ideal, $(I_{-1}^{-1} \cap B)^{-1} \cap B \subseteq Q \cap A$, and thus $I_v \subseteq (Q \cap A) + XB[X] = Q$. This shows that Q is a t-ideal.

Let $A \subseteq B$ be an extension of integral domains. Then B is said to be a root extension of A if for each $x \in B$, $x^n \in A$ for some integer $n \geq 1$.
Lemma 3.2. Let $A \subseteq B$ be an extension of integral domains, X an indeterminate over B, $R = A + XB[X]$, and $D = A + X^2B[X]$. Then R is a root extension of D if and only if $\text{char} (A) \neq 0$.

Proof. Assume that R is a root extension of D. Then $(1 + X)^n \in D$ for some integer $n \geq 1$. Hence $nX = 0$, and thus $\text{char} (A) \neq 0$. Conversely, if $\text{char} (A) = p \neq 0$, then for any $f \in R$, $f^p \in D$. Thus R is a root extension of D.

We next give the main result of this section. This result combined with [19, Theorem 3.1(a)] gives many examples of non-integrally closed AGCD-domains (see Corollary 3.5).

Theorem 3.3. Let B be an overring of an integral domain A, X an indeterminate over A, $R = A + XB[X]$, and $D = A + X^2B[X]$. Then R is an AGCD-domain and $\text{char} (A) \neq 0$ if and only if D is an AGCD-domain.

Proof. (\Rightarrow) Assume that R is an AGCD-domain and $\text{char} (A) = p \neq 0$. We first note that (#) if $f \in D$ with $f(0) \neq 0$, then $fR \cap D = fD$. For if $g = a_0 + a_1X + \cdots + a_nX^n \in R$ such that $fg \in D$, then $f(0)a_1 = 0$ since $fg = f(0)a_0 + f(0)a_1X + X^2g_1$ for some $g_1 \in B[X]$; so $a_1 = 0$. Hence $g \in D$, and thus $fR \cap D = fD$.

Let $0 \neq f, g \in D$.

Case 1: $f(0) \neq 0$ and $g(0) \neq 0$. Since R is an AGCD-domain, there is an integer $n = n(f,g) \geq 1$ such that $f^nR \cap g^nR = hR$ for some $h \in R$. Note that $f^n(0) \neq 0$, $g^n(0) \neq 0$, and $\text{char} (A) = p$; hence $h(0) \neq 0$ and $h \in D$. Thus $f^{np}D \cap g^{np}D = (f^{np}R \cap D) \cap (g^{np}R \cap D) = (f^{np}R \cap g^{np}R) \cap D = h^pR \cap D = h^pD$ by (#) and [27, Lemma 3.6].

Case 2: $f(0) \neq 0$ and $g = X^mg_1$, where $m \geq 2$ and $g_1 \in B[X]$ with $g_1(0) \neq 0$. Let $0 \neq s \in A$ such that $sg_1 \in R$ (note that B is an overring of A). Replacing f, g, g_1, and m with $(sf)^p$, $(sg)^p = X^{mp}(sg_1)^p$, and mp, respectively, we may assume that $g_1 \in D$. Thus by the proof of Case 1, $f^nR \cap g^n_1R = hR$ and $f^nD \cap g^n_1D = hD$ for some integer $n \geq 1$ and $h \in D$ with $h(0) \neq 0$.

Note that R is an AGCD-domain and that for any integer $k \geq 1$, if $f^kR \cap g^R$ is principal, then $f^{nk}R \cap g^{nk}R$ is also principal [27, Lemma 3.6]. So we may assume that $f^nR \cap g^nR = bR$ for some $b \in R$. Since $X^{am}h \in f^nR \cap g^nR$, we have $X^{am}h = bc$ for some $c \in R$. Also, since $b \in f^nR \cap g^n_1R = hR$, we have $b = hd$ for some $d \in D$. Hence $X^{am}h = hdc$, and so $X^{am} = dc$. Finally, since $b \in g^nR$, we have $b = g^n = X^{am}g^n_1r$ for some $r \in R$, and so $h = g^n_1rc$. Hence $c \in U(A)$ as $h(0) \neq 0$, and thus $f^nR \cap g^nR = X^{am}hR$.

Let $g^n_1h_1 \in f^nD \cap g^nD$, where $h_1 \in D$. Then $g^n_1h_1 = X^{am}h_2x$ for some $x \in R$ by the above paragraph; so $(g^n_1)\alpha = h_2x$. Thus by (#), $x \in D$ because $g_1, h_1 \in D$ and $h(0) \neq 0$, and hence $f^nD \cap g^nD \subseteq X^{am}hD$. The reverse containment follows directly from the fact that $f^nD \cap g^nD = hD$ and $g = X^{m}g_1$. Therefore, $f^nD \cap g^nD = X^{am}hD$.

Case 3: $f = X^k f_1$ and $g = X^m g_1$, where $m \geq k \geq 2$, $f_1 \in B[X]$ with $f_1(0) \neq 0$, and $g_1 \in B[X] \cap 0 \neq 0$. As in the proof of Case 2, we may assume that $f_1, g_1 \in D$. If $k = m$, then there exists an integer $n \geq 1$ such that $f^n_1D \cap g^n_1D$ is principal by Case 1. Thus $f^n_1D \cap g^nD = (X^k f_1)^nD \cap (X^k g_1)^nD = X^{nk}(f^n_1D \cap g^n_1D)$ is principal. If $m > k$, then replacing f and g with f^2 and g^2, we may assume that $m - k \geq 2$; so $X^{m-k}g_1 \in D$.

Thus by Case 2, \(f_1^n D \cap (X^{m-k}g_1)^n D = h D \) for some integer \(n \geq 1 \) and \(h \in D \). Hence
\[
f^n D \cap \cap g^m D = (X^f f_j)^n D \cap (X^m g_1)^n D = X^{nk}(f_1^n D \cap (X^{m-k}g_1)^n D) = X^{nk}h D.
\]

(\(\Leftarrow \)) Assume that \(D \) is an AGCD-domain. Note that if \(\text{char}(A) \neq 0 \), then \(R \) is a \(t \)-linked root extension of \(D \) by Lemmas 3.1 and 3.2, and thus \(R \) is an AGCD-domain [19, Remark 4.1(b)]. So it suffices to show that \(\text{char}(A) \neq 0 \).

Let \(f = X^2(1 + X) \) and \(I = (f, 1 - X^2)_v \subseteq D \). We first prove that \(I \) is \(t \)-locally principal, and thus \(t \)-invertible by Lemma 2.1(4). Let \(Q \) be a maximal \(t \)-ideal of \(D \) and \(S = \{X^n | n = 0, 2, 3, \ldots \} \). If \(Q \cap S \neq \emptyset \), then \(I \not\subseteq Q \), and so \(ID_Q = D_Q \). Next assume that \(Q \cap S = \emptyset \). Note that \(f D_S \subseteq (f, 1 - X^2)_S \cap (f, 1 - X^2)_D = (f, 1 - X^2)_D = (f)_D \subseteq (f)_D \) by Lemma 2.1(1); so \(ID_Q = (ID_S)_Q = ((f)_D)_Q = f D_Q \).

Recall that an AGCD-domain has a torsion class group [1, Theorem 3.4]. So \((P^n)_v = ((f, 1 - X^2)_v)^n = (f, 1 - X^2)_v = h D \) for some \(h \in D \) and integer \(n \geq 1 \). Thus \(h B[X, X^{-1}] = h D_S = (f, 1 - X^2)_v D_S = ((f, 1 - X^2)_v)_v = ((1 + X)_v D_S = (1 + X^m B[X, X^{-1}] \) (the third equality follows from Lemma 2.1(1) because \((f, 1 - X^2)_v \) is \(t \)-invertible), and so \(h = u X^n (1 + X)^m \) for some \(u \in U(B) \) and integer \(m \). But since \((1 - X^2)_v \in h D \), we have \(h(0) \neq 0 \), and so \(m = 0 \). Hence \(h = u(1 + X)^m = u + unX + \ldots + uX^n \), and thus \(n = 0 \) because \(h \in D \) and \(u \in U(B) \). This means that \(\text{char}(A) \neq 0 \). \(\Box \)

Let \(A \) be an integrally closed AGCD-domain with \(\text{char}(A) \neq 0 \). Then \(A[X] \) is an AGCD-domain. So by Theorem 3.3 and [8, Corollary 7], \(A[X^2, X^3] \) is a non-integrally closed AGCD-domain with \(Cl(A[X^2, X^3]) = Cl(A) \otimes K \), where \(K \), the quotient field of \(A \), is considered as an additive abelian group. It is interesting to note here that \(Cl(A[X^2, X^3]) \) is torsion.

Corollary 3.4. Let \(A \) be an integral domain, \(S \) a saturated multiplicative subset of \(A \), \(X \) an indeterminate over \(A \), \(R = A + XAS[X] \), and \(D = A + X^2AS[X] \). Then the following statements are equivalent:

1. \(D \) is an AGCD-domain.
2. \(R \) is an AGCD-domain and \(\text{char}(A) \neq 0 \).
3. \(A \) and \(A_S[X] \) are AGCD-domains, \(\text{char}(A) \neq 0 \), and \(S \) is an almost splitting of \(A \).
4. \(A \) is an AGCD-domain, \(A_S[X] \subseteq A'_S[X] \) is a root extension, and \(\text{char}(A) \neq 0 \), where \(A' \) is the integral closure of \(A \).

Proof. (1) \(\leftrightarrow \) (2): This is Theorem 3.3. (2) \(\leftrightarrow \) (3) \(\leftrightarrow \) (4): See [6, Theorem 3.10]. \(\Box \)

Corollary 3.5. Let \(B \) be an overring of an integral domain \(A \), \(X \) an indeterminate over \(A \), \(R = A + XB[X] \), and \(D = A + X^2B[X] \). Then the following statements are equivalent:

1. \(D \) is an AGCD-domain with integral closure \(R \).
2. \(R \) is an integrally closed AGCD-domain and \(\text{char}(A) \neq 0 \).
3. \(A \) is an integrally closed AGCD-domain, \(\text{char}(A) \neq 0 \), and \(B = A_S \), where \(S \) is an almost splitting set of \(A \).
Proof. (1) ⇔ (2): This follows directly from Theorem 3.3 because R is integral over D.
(2) ⇔ (3): See [19, Theorem 3.1(b)]. □

In [19], the authors studied integrally closed AGCD-domain of finite t-character of the form $A + XB[X]$ and constructed non-integrally closed AGCD-domains of finite t-character using local algebraic techniques. The following corollary gives many simple examples of non-integrally closed AGCD-domains of finite t-character.

Corollary 3.6. Let A be an AGCD-domain with $\text{char}(A) \neq 0$, X an indeterminate over A, S an almost splitting set of A, and $D = A + X^2A_S[X]$. Then D is an AGCD-domain of finite t-character if A is an integrally closed AGCD-domain of finite t-character and S does not contain any infinite sequence of mutually v-coprime nonunit elements.

Proof. By Dumitrescu et al. [19, Theorem 3.1], $R = A + XA_S[X]$ is an integrally closed AGCD-domain of finite t-character. So D is an AGCD-domain of finite t-character by Lemma 3.1 and Corollary 3.5. □

Acknowledgements

The author would like to thank the referee for his/her helpful comments.

References