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Abstract

Let H be a finite-dimensional Hopf algebra with antipoSleof dimensionpg over
an algebraically closed field of characteristic 0, wherel ¢ are odd primes. IfH is
not semisimple, then the order 6f is p, and T(S2”) is an integer divisible by?2. In
particular, if dimH = p2, we prove that{ is isomorphic to a Taft algebra. This completes
the classification for the Hopf algebras of dimensjen
0 2002 Elsevier Science (USA). All rights reserved.

0. Introduction

Let p be a prime number aridan algebraically closed field of characteristic O.
If H is a semisimple Hopf algebra of dimensipA, then H is isomorphic to a
group algebra [9], namely[Z 2] or k[Z, x Zp]. For the non-semisimple case,
the only known non-semisimple Hopf algebras of dimensignare the Taft
algebras [19] (cf. [11, 5]). The question whether the Taft algebras are the only
non-semisimple Hopf algebras of dimensipf has remained open. In fact, the
guestion was asked by Susan Montgomery in several international conferences. It
was proved in [1, Theorem A] that if botd and H* have non-trivial group-like
elements or the order of the antipode js thenH is isomorphic to a Taft algebra
provided dimH = p2. Here we prove that any non-semisimple Hopf algebra over
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k of dimensionp? is isomorphic to a Taft algebra. Hence, the Hopf algebras over
k of dimensionp? can be completely classified (Theorem 5.5).

If p < ¢ and are odd primes, whether there is a non-semisimple Hopf algebra
of dimensionpg other than the Taft algebras is still in question. Nevertheless, we
prove that for any non-semisimple Hopf algelsfaof dimensionpg, the order of
S%is p, wheres is the antipode oH . Moreover, T(S27) is an integer divisible
by p? (Theorem 5.4). The uniqueness of Taft algebras is a consequence of this
result.

The article is organized as follows: In Section 1, we recall some notation,
general theorems and some useful statements. In Section 2, we introduce the
notion of theindex of a Hopf algebra and we compute the index of the Taft
algebras. In Section 3, we consider the common eigenspac&$ afd r(g)
whereS andr(g) are the antipode and the right multiplication by the distinguished
group-like elemeng of the Hopf algebrai . We derive some arithmetic properties
of the dimensions of these eigenspaces for the Hopf algebras of odd index. We
further exploit the arithmetic properties of these numbers for Hopf algebras of
odd prime index in Section 4. Using these arithmetic properties, we finally prove
our main theorems in Section 5.

1. Notation and preliminaries

Throughout this papek is an algebraically closed field of characteristic
0 and H is a finite-dimensional Hopf algebra ovér with antipode S. Its
comultiplication and counit are, respectively, denoted/bgnde. We will use
Sweedler’s notation [18]:

A(x) = Zx(l) ® x(2).

A non-zero elemend € H is called group-like ifA(a) = a ® a. For the details
of elementary aspects for finite-dimensional Hopf algebras, readers are referred
to Refs. [10,18].

The set of all group-like elements(H) of H is a linearly independent set,
and it forms a group under the multiplication &f. The divisibility of dimH
by |G(H)| is an immediate consequence of the following generalization of
Lagrange’s theorem, due to Nichols and Zoeller:

Theorem 1.1[12]. Let H be a finite-dimensional Hopf algebra over a field a®d
a Hopf subalgebra off. ThenH is a freeB-module. In particulardim B divides
dmH.

The order of the antipode is of fundamental importance to the semisimplicity
of H. We recall some important results on the antip&def finite-dimensional
Hopf algebrad.
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Theorem 1.2 [6,7]. Let H be a finite-dimensional Hopf algebra with antipoSie
over a field of characteristi®. Then the following statements are equivalent:

(i) H is semisimple.
(iiy H*is semisimple.
(i) Tr(s?) #0.

(iv) $?=idy.

LetA € H* be anon-zerorightintegral ¢f * and letA € H be a non-zero left
integral of H. There existax € Alg(H, k) = G(H™), independent of the choice
of A, such thatda = a(a) A for a € H. Likewise, there is a group-like element
g € H, independent of the choice &f such thagi = 8(g)A for g € H*. We call
g the distinguished group-like element Bf and« the distinguished group-like
element ofH*. Then we have a formula fa8* in terms ofx andg [13]:

S*a) = g(ot —~a /—ofl)gfl fora e H, (1.1

where —~ and — denote the natural actions of the Hopf algel#fd on H
described by

B—a=> awBlap) and a—p=Y Blaw)ae)
for B € H* anda € H. If » and A are normalized, there are formulae for the trace
of any linear endomorphism ofi.

Theorem 1.3 [15, Theorem 1]Let H be a finite-dimensional Hopf algebra with
antipodeS over the fieldt. Suppose that is a right integral of H*, and thatA
is a left integral ofH such thati(A) = 1. Then for anyf € End.(H),

Ti(f) = Y A(S(A) f(Aw) = Y Mo ) Az)Aw)
=Y M((f o)A@ Aw).

We shall also need the following lemma of linear algebra:

Lemmal.4[1, Lemma 2.6]Let T be an operator on a finite-dimensional vector
spaceV over the fieldk. Let p be a prime number and let € k be a primitive
pth root of unity.

@) If Tr(T) =0 and T? = idy, thendimV; is constant whereV; is the
eigenspaces df associated with the eigenvalug. In particular, p | dimV.
(i) f Tr(T)=0andT?” =idy, then

Tr(T?) = pd

for some integed.
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2. Index of a Hopf algebra

The distinguished group-like elemeptdefines a coalgebra automorphism
r(g) on H as follows:

r(g)(a)=ag foraeH.
Sinces? is an algebra automorphism @¢handS?(g) = g,
S20r(g) =r(g) oS>

Moreover, bothS? andr(g) are of finite order. Therefores? andr(g) generate
a finite abelian subgroup of AutH). We will simply call the exponent of the
subgroup generated t§f# andr(g) theindexof H. Itis easy to see that the index
of H is also the smallest positive integesuch that

s =idy and g"=1

Obviously, o(g) | n and o(S%) | n, whereo(g) and o(S%) are the orders of
andS?, respectively. By Eq. (1.1),

n| |Cm(o(g), O(Ol)). (2.2)
Example 2.1.

(i) If both H and H* are unimodular, thes* = idy by (1.1). Therefore, the
index of H is 1. In particular, ifH is semisimple, the index af is 1.

(ii) Let & € k be a primitiventh root of unity. The Taft algebra [19] (§) overk
is generated by anda, as ak-algebra, subject to the relations

a'=1, ax =&xa, x"=0.

The Hopf algebra structure is given by
Ala)=a®a, S(a):a_l, gla)=1,
AX)=x®a+1®x, Sx)=-xa"t &) =0.

Itis known that{x’a/ | 0 < i, j < n — 1} forms a basis fof (¢). In particular,
dimT (¢) = n?. The linear functional defined by

)»(xiaj) =38in-16;,0

is a right integral ofT (¢§)*. One can easily see thatis the distinguished
group-like element off (¢). Moreover,S*(x) = £2x and $*(a) = a. Since
the order ofz is n andS*" =idy, the index ofl' (¢) is n.

Remark 2.2.

(i) If the index of the Hopf algebr# is greater than 1, theH is not semisimple
by Example 2.1(i).
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(i) If dim H is odd, it follows from Theorem 1.1 that the order of the distin-
guished group-like elemegtof H and the order of the distinguished group-
like elementx of H* are both odd. Hence, by the formula (2.1), the order of
$%is also odd. Therefore, the index Hf is odd.

3. Eigenspace decompositionsfor Hopf algebras of odd index

In this section, we will only consider those Hopf algebidsof odd index
n > 1. Sincer(g)" = S* =idy, ands? andr(g) are commuting operators di,
r(g) ands? are simultaneously diagonalizable. Let k be a primitiventh root
of unity. Then any eigenvalue of is of the form(—1)%»’ and the eigenvalues
of r(g) are of the fornw/’. Define

H;ji,j = {u eH | S2u) = (1) *'u, ug = a)ju}
forany(a,i, j) € Zp X Zp X Zy.

We will simply write C,, for the groupZ; x Z,, x Z,,, write H(‘Z,i’j) for H;“,l.,j and
a for (a, i, j). SinceS? andr(g) are simultaneously diagonalizable, we have the
decomposition

H=p H. (3.1)

aclkC,

Note thatH}” could be zero.

Since the distinguished group-like elemenbf H* is an algebra map and
g" =1, we havex(g)" = 1. Henceu(g) is anth root of unity, and sa(g) = »*
for some integerx. Using the eigenspace decomposition ®fin (3.1), the
diagonalization of the left integral of H admits an interesting form.

Lemma 3.1. Let H be a finite-dimensional Hopf algebra with antipoSi®f odd
indexn > 1 over the fieldk. Letg anda be the distinguished group-like elements
of H and H*, respectively. Suppose thatis a left integral ofH, a(g) = »*, and
x=(0,—x,x)e K,. Then

A(A) = Z (Zua ® U—a+x> (3.2)

ackC,

WhereZ Ug @ V_qg4x € H‘;U & Hiua+x.

Proof. Note that

HeH= (P Hy® Hy.
a,belC,
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In particular, we can write
A=Y (Yuaow)
a,bek,
where) u, ® vy € Hy ® Hy’'. By [16, Proposition 3(d)],

S2 (M) =a(gHa=w""A.
Sinces? is a coalgebra automorphism &h we have

A(A) = Z (Zua,i,j 02y Ub,s,t)

(a,i,j),(b,s,1)elCy

= Y oo (Y i o)

(a,i,),(b,s,1)elCy

_ Z (_1)a+wa+i+s<2ua’i’j X Ub,s,t)- (33)

(a,i,j),(b,s,t)ek,
Sinceg is group-like andAg = a(g) A = w* A, we have

A(A) = Z (Zua,i,j 02y Ub,s,t)

(a,i,j),(b,s,1)elCy

— Z 0w *r(g) ®V(g)(zua,i,j ®Ub,s,t)

(a,i,j).(b,s,1)elC,

= Y (N uwi ®u). (3.4)

(a,i,j),(b,s,1)€n
Thus, ifY uaij ®vss. # 0, by Egs. (3.3) and (3.4),
1= (_1)a+wa+i+s and 1= wfx+j+t’
or equivalently,
(b,s,t)=(a,—i,—j)+ (0, —x,x)=—(a,i, j)+x.
Thus,

A(A) = Z (Zua®v,a+x). O (3.5)

ackC,

In the sequel, we will call the expression in Eg. (3.2)tloemal formof A(A)
associated witlw. We will simply writeu, ® v_g4x for the sumy_ u, ® v_gyx
in the normal form ofA(A).

The eigenspace decompositiéh= P, i, H; is associated with a unique
family of projectionsEy (a € K,,) from H onto Hy such that
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(1) EZ o Ey =0fora # b, and
(@) Xpex, EQ =1dy.

In particular, dimHy = Tr(EY) for all a € ;. By Lemma 3.1,

AN =) (EY ® E®,, ) AA)
ackC,

and hence(Ey ® E®,, ,)A(A) is identical t0) uq ® v_q4x in the normal
form (3.2) of A(A). Using the trace formulae in Theorem 1.3, we obtained the

following lemma:

Lemma 3.2. Let H be a finite-dimensional Hopf algebra with antipoSi®f odd
indexn > 1 over the fieldk, and letw € k be a primitiventh root of unity. Suppose
that A is a left integral of H and thatx be a right integral of H* such that
A(A)=1.Then

dimHY = A(S(v—a+x)tta) (3.6)
foralla € K, Wherezae,cn g ® V_q+y IS the normal form ofA(A) associated
with w.

Proof. Using the normal form ofA(A) associated witlw and Theorem 1.3, for
anyb € I,

dimHy =Tr(EY) = > AM(S_prx) Ey (up))
bekC,

Z Sa,b)h(S(Uberx)ua) = )L(S(Ufaer)ua)' o
bekC,

The family of elementsS(v_q4x)uq appearing in (3.6) are iy ..
Moreover, if H is non-semisimple, they satisfy a system of equations.

Lemma 3.3. Let H be a finite-dimensional Hopf algebra with antiposl®f odd
indexn > 1 over the fieldk, and letw € k be a primitiventh root of unity. Then
> (D% 'dimHY, ;=0 forjeZ,.

a,i,j
(a,i)€ZoxZy,

Proof. Let A be a left integral ofH and leti be a right integral off* such that
A(A) = 1. SinceH is not semisimple, by [16, Theorem 4],

> $%(A2)A1=0.
Hence for any integet,

> 8342 Arg° =0,
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whereyg is the distinguished group-like element8f Let
B, =S3(_gix)ua forallack,
wherezae,cn ug ® v_g1x 1S the normal form ofA(A) associated witlv. Then
0=) SPUAre = D hyet=) o7 Y h
(a,i,j)eky J€EZy, (a,i)eloXZy

for e=0,...,n — 1. Since lw,...,o" 1 are distinct elements ik, the
Vandermonde matrix

1 w “ o a)n_l
P R 1

is invertible. Therefore,

> k. ;=0 3.7)

(a,i)eZpxTn
for j € Z,. Notice that
$3(Wa,—i—x—jx) = (D07 T S (Wa,—ix.—j1x)-
Therefore,h), ; . = (=)0 " S (v_g,—i—x,— j+x)Ua,i,j TOr ANy (a,i, j) € K.
Then Eq. (3.7) becomes
Z (D)™ S(v_g,—i—x,— j+x)HUa,i,j =0
(a,i)€loxLn
for j € Z,. Applying A to the equation, we have
Y D AM(SWoa i~ jrx)ta,ij) =0
(a,i)€loxLn

forall j € Z,. Then, the result follows from Lemma 3.20

Lemma 3.4. Let H be a finite-dimensional unimodular Hopf algebra of odd index
n > 1 over the fieldk, and letw € k be a primitiventh root of unity. Then

Y D dimH?,, 5, =0
(a,i)eZopxZn
forl e Z,.

Proof. Let « and g be the distinguished group-like elements Bf and H,
respectively. Sinced is unimodular,e = ¢ and hencex(g) = 1 = °. Let A
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be a left integral ofF and letA be a right integral of7* such that.(A) = 1. It
follows from Lemma 3.1 that the normal form af(A) associated witlv is

Z Ug @ V_gq. (3.8)
ackC,

SinceH is not semisimple,

0=s(A)1=) A15(A2).
Thus, we have

0=>" uaSv_a). (3.9)

aclkC,
Note that, by Eq. (1.1) and the unimodularity &f
ga=S*(@)g
for any integer anda € H. Leth, = u,S(v—,) fora € IC,. Then,

§haij = 8uaijSWa—i—j) =@ Dug; :S(a—i—;)
= @y ;. (3.10)
By multiplying g¢ on the left of Eq. (3.9), we have
0= Z o@D hy = Z o Z haiji—2i- (3.11)
(a,i, ek, 1€Zy (a,i))eZoxZLy
By the same argument used in the proof of Lemma 3.3,
Y. hai-2i=0 (3.12)
(a,i)€ZpXxZp

for ! € Z,. Notice that, by [16, Theorem 3(a)],

Mha,ij) = Mua,i jSWa,—i—j)) Z)»(Ss(va,—i,—j)ua,i,j)
= (=10 AM(SWa,—i,—ta,i,j)- (3.13)
By Lemma 3.2 and Eq. (3.8),
AMhaij) = (D@ dimH?

a,i,j*
Hence, we have
0= > Mhair2)= Y (D% 'dimHY;,; 5
(a,i)€ZoXZp (a,i)€Zox Ly

forieZ,. O
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4. Arithmetic properties of Hopf algebraswith odd primeindex

In this section, we will study the arithmetic properties for the Hopf algebras of
odd prime indexp. Let w € k be a primitivepth root of unity. The Taft algebra
T (w) [19] is then a Hopf algebra of this type by Example 2.1(ii). The quantum
double of T (w) is a unimodular Hopf algebra of index(cf. [5]).

Lemma 4.1. Let H be a finite-dimensional Hopf algebra of indgxover the
field k, wherep is an odd prime. Let € k be a primitivepth root of unity. Then
for eachj € Z, there exists an integet; such that

H 0] H 0] _
dimHg; ; —dimHy’; ; =d;

foralli e Z,.

Proof. By Lemma 3.3 we have
D o (dimHg) ; —dimHY; ;) =0
i€Zp
forall jeZ,. In particular~1 is a root of the integral polynomial
p—1

£i)=>_(dimHg, ; —dimHy, ;)x'.
i=0
Hence,f;(x) =d;®,(x) for somed; € Q, where®,(x) =1+x+--- +xP7Lis
the irreducible polynomial ab~1 overQ. Therefore,
dimHg; ; —dimHy; ; =d;.

. e e . "
Since dimHg; . —dimHYp, . is aninteger, and so i;. O

Lemma 4.2. Let H be a finite-dimensional Hopf algebra of indgxover the
fieldk, wherep is an odd prime. IfH* is not unimodular, themp | dim H and
dimH
3 dimH? ;= "o forall jeZ,.
p

a,i,j —
(a,i)€ZaxZ)

Proof. Since H* is not unimodular, the distinguished group-like elemgruf
H is not equal k. Then, T(r(g)) = 0 (cf. [8, Proposition 2.4(d)]). Moreover,
r(g)? =idy. Hence, by Lemma 1.4p | dimH and the eigenspace of(g)
associated with the eigenvalug is of dimensiond'%” for any j € Z,. Note

that
@D H

(a.i)€ZaxZ,
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is the eigenspace ofg) associated witly’/. Therefore,

dim—szim< b H;fi’]): > dimH? ;. O

P (a.i)€ZaxZ, (a,i)€Zyx Ly

Lemma 4.3. Let H be a finite-dimensional Hopf algebra of indgxover the
field k, wherep is an odd prime. IfH* is not unimodular andd is unimodular,
then
(i) Thereis an intege# such that
dimHg,; ; —dimHy;, ; =d foranyi, j €Z,.

(i) Tr(s%r) = p2d.
Proof. (i) By Lemma 3.4, for any € Z,,

D (dimHG,, 5 —dimHY,; ; 5)e™ =0.

i€Zy

Sincew 1 is also a primitivepth root of unity ink, there exists an integer such
that

dimHg; ;5 —dimHY;; 5 =c (4.1)
fori e Z,. By Lemma4.1, forany,l/ € Z,,
e =dimHg’;; 5 —dimH; ; o =di-2i. (4.2)

Since 2 andp are relative primel,l — 2,...,1 — 2(p — 1) is a complete set of
representatives d,,. Therefore,

di=c¢=d foranyj,leZ,.
(ii) Since p is odd,

2 - - 2
Tr(s%)= > dimHg, ; —dimH{, ;= Y d=p?d. O
i<,y i€y

5. Hopf algebrasof dimension pq

In this section, we will consider the Hopf algebras of dimension pg
where bothp < ¢ are odd primes. In particular, we prove thatAf is not
semisimple and dif = p2, then H is isomorphic to a Taft algebra. It was
proved in [9, Theorem 2] that semisimple Hopf algebras of dimengimre
group algebras. Therefore, any Hopf algebra overf dimensionp? is either
a group algebra or a Taft algebra. We begin the section with the following lemma.
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Lemma 5.1. Let p,g be two distinct prime numbers. Then there is no finite-
dimensional Hopf algebraH of dimensionpg over the fieldk such that
|G(H)|=pand|G(H")|=gq.

Proof. Suppose there is a Hopf algekifaof dimensionpg suchthatG(H)| = p
and |G(H*)| = ¢q. Let g € G(H) and ¢ € G(H*) such thato(g) = p and
o(a) = q. Note thatg’(a) = B(a’) = (B(a))! forall B € G(H*),a € G(H), and
£ € Z. Therefore,

a(g)f =a(g?)=a() =1
and

l1=¢e(g) =a(g) = ().
Hence,o(a(g)) = 1 and soa(g) = 1. Let 7 be the Hopf algebra map which
is the composite oH = H** — k[G(H™*)]*, where the latter is the transpose
of the inclusionk[G(H*)] € H*. Then the image oB = k[G(H)] underr is
one-dimensional. ThuB™ C kerx. It follows from [17, Theorem 2.4 (2a)] that
dimH/BTH =gq. Thus,

dimB™H = pg — ¢ = dimkerr
and hence,
BT H =kern.

Therefore,H/B* H is isomorphic tok[G (H*)]* as Hopf algebras. In particular,
H/BTH is semisimple. LetA be a non-zero left integral off and A’ a non-
zero right integral ok[G (H)]. Since chak =0, ¢(A’) # 0 and henceA’A =
g(A)A # 0. Therefore, A ¢ BT H and soA 4+ BT H is a non-zero left integral
of H/BTH. Since H/BT H is semisimpleg(A) = (A + BTH) # 0. Hence,
H is semisimple. By [3].H is trivial and so|G(H)| = pq or |G(H*)| = pq,

a contradiction. O

Proposition 5.2. Let H be a non-semisimple Hopf algebra of dimensignwith
antipodesS over the fieldk, wherep < g are odd primes. Then

(i) the order ofs*is p, and
(i) H is of indexp.

Proof. (i) Since H is not semisimple and dif is odd, by [8, Theorem 2.1]

or [1, Lemma 2.5],5* # idy and H, H* cannot be both unimodular. Lgtbe

the distinguished group-like element &f, and« the distinguished group-like
element ofH*. Then,o(«) < pg ando(g) < pq, for otherwise,H would be a
group algebra, or the dual of a group algebra, both of which are semisimple. By
Lemma 5.1,

|Cm(0(g), o(a)) =porg. (5.2)
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By Egs. (1.1) and (5.1), the order 6t is eitherp or ¢. If p =g, the order ofs*
and the index off are obviously equal tp. We now assumeg > p. Consider
the following cases:

Case (@). H* is not unimodular. In this case (g) = p or g. Suppose that the
orderofS%isq. By Eq. (1.1) g | lcm(o(g), o(«)). Therefore, lcnv(g), o(a)) = g
and hence(g) = ¢. Thus, the index off is alsog. Letw € k be agth primitive
root of unity. By Lemma 4.1, for eache Z, there is an integef; such that

dimHg, ; —dimHy; ; =d; forallieZ,. (5.2)
LetX; ;= min(dimngl.’j, dimejl.’j). Then,
dimH(‘fl-’j +dimei,j = ZXZ',J' + |dj|
and so
Z dimH;ﬁi’j: szi,j +q|dj| (5.3)
(a,i)€ZyxZy i€Zq
for eachj € Z,. It follows from Lemma 4.2 that
> 2 +qldjl = p. (5.4)
i€y
Sincep odd, by (5.4),/d;| must be odd. However, the left hand side of (5.4) is
then strictly greater thap, a contradiction! Therefore(S*) = p.

Case (b). H* is unimodular. TherH** = H is not unimodular. By Theorem 1.2,
H* is not semisimple and diH* = pq. It follows from Case (a) that the order
of $**is p. Sinceo(5%) = o(S**). Thereforep(5%) = p.

(i) Let n be the index of. Then, by (2.1)n | lcm(o(g), o(a)) ando(S%) | n.
Sinceo(s% = p and lcmo(g), o(«)) = p or g, we haven = p. O

Lemma 5.3. Let H be a Hopf algebra of dimensigny with antipodeS over the
field k, wherep, g are odd primes. HG(H)| = |G(H*)| = p, thenTr(527) =
p2d for some integed.

Proof. Let g € G(H) anda € G(H*) such that both the orders gfanda are
equal top. Let B be the group algebrg[g], and let/ = k[«]*. Sincek[«] is
a Hopf subalgebra off*, I is then a Hopf ideal oH, and

H/I=kla]* =B (5.5)

as Hopf algebras. Let’ : H — B be the composition

H- H/I =B
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wheren is the natural surjection. Thei is a right B-comodule algebra, and
R=H®F ={heH|(dy ®7")A(h) =h ® 15}

is a subalgebra off. By [17, Theorem 2.2]H is the B-cross product
HZX=R#, B. (5.6)

In particular, dimR = ¢. Let y:B — H be the inclusion map. Thenr'y :

B — B is a non-trivial Hopf algebra map. Otherwiges R and henceB C R.

It follows from (5.6) and Theorem 1.1 tha is a free B-module. Therefore,
p | g. Hencep = g and B = R. It follows from [2, Theorem 2.6(2)] tha# is
semisimple, a contradiction. Therefore;y is non-trivial. SinceB is a group
algebra of dimensiom, 7’y is actually an isomorphism. Let = (x'y) 1n’.
Then,n : H — B is a surjective Hopf algebra map ang = idp. Therefore H

is isomorphic to the biprodudt x B as Hopf algebras (cf. [14]). It was shown in
[1, Section 4] thatR is invariant unders2. Moreover, in the identificatiod! =

R ® B given by multiplication, one has

S?=T idp (5.7)
for some linear endomorphistf on R. SinceH is not semisimple, T52) = 0.
By Eq. (5.7), T(S2) = Tr(T)p. Therefore, T¢T) = 0. Moreover,T%” = idy as
§4 =idy by Eq. (1.1). Hence, by Lemma 1.4,(T") = pd for some integed.
SinceS?” = T? @ idg, we have

Tr($27) = Tr(T7)Tr(idg) = p?d. O

Theorem 5.4. Let H be a non-semisimple Hopf algebra of dimensjanwith
antipodes over the field, wherep < ¢ are odd primes. Themr(527) = p2d for
some odd integef.

Proof. By Proposition 5.25% =idy. Let
Hy = {h e H|S?% (h) = £h}.
Then,
dimH; —dimH_=Tr(s*) and dimH, +dimH_ = pq.

Sincepq is odd, T(S??) is also an odd integer. Thus, if [8%7) = p2d, thend
must be an odd integer. Therefore, it suffices to show tha*Tiy = p?d for some
integerd. SinceH is not semisimple, by Theorem 1.4* is also not semisimple.
By Proposition 5.2, the indexes é&f and H* are bothp. Since dimH is odd,
by [8, Theorem 2.2], not both off and H* are unimodular. We then have the
following three cases:

(i) If H is unimodular and?* is not unimodular, the result follows from Lem-
ma 4.3.
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(i) If H is not unimodular and{?* is unimodular, by Lemma 4.3, T*27) =
p2d for some odd integef. The result follows from TgS*27) = Tr(S27).

(i) If both H and H* are not unimodular, by Lemma 5.1 and Proposition 5.2,
the orders of the distinguished group-like elementgfoand H* are both
equal top. Thus, by Lemma 5.3, T62°) = p2d. O

As a consequence of the above theorem, we prove that any Hopf algebra of
dimensionp? is either a group algebra or a Taft algebra (see Example 2.1(ii)).

Theorem 5.5. Let H be a Hopf algebra of dimensigw? over the fieldt, wherep
is any prime number. TheH is isomorphic to one of the following Hopf algebras

(@) k[Z2];
(b) K[Zp x Zp];
(¢) T(w), w € k a primitive pth of unity.

Proof. If H is semisimple, it follows from [9, Theorem 2] thaf isomorphic
to k[Z 2] o1 k[Zp x Zp]. It is also shown in [4] that ifH is a non-semisimple
Hopf algebra of dimension 4, thefl isomorphic to the Taft algebra(—1). We
may now assumé/ is not semisimple ang is odd. LetS be the antipode off.
By Proposition 5.2,5% = idy and soS?” is diagonalizable and the possible
eigenvalues 052 are+1. Suppose?2” + idy. Then, T(S27) is an integer such
that

—p?< Tr(SzI’) < p2
By Theorem 5.4,
Tr(5?7) = p°d

for some odd integet/. Therefore, T¢S%?) = —p? and hences?’ = —idy.
However, this is not possible siné&”(1y) = 1. Therefore $27 = idy. Then,
$2 has order 1 op; thusS? has ordep sinceH is assumed to be non-semisimple.
It follows from [1, Theorem A(ii)] thatH is isomorphic to a Taft algebra of
dimensionp?. Hence H = T (w) for some primitivepth root of unity,w e k. O
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