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Abstract

Let H be a finite-dimensional Hopf algebra with antipodeS of dimensionpq over
an algebraically closed field of characteristic 0, wherep � q are odd primes. IfH is
not semisimple, then the order ofS4 is p, and Tr(S2p) is an integer divisible byp2. In
particular, if dimH = p2, we prove thatH is isomorphic to a Taft algebra. This completes
the classification for the Hopf algebras of dimensionp2.
 2002 Elsevier Science (USA). All rights reserved.

0. Introduction

Letp be a prime number andk an algebraically closed field of characteristic 0.
If H is a semisimple Hopf algebra of dimensionp2, thenH is isomorphic to a
group algebra [9], namelyk[Zp2] or k[Zp × Zp]. For the non-semisimple case,
the only known non-semisimple Hopf algebras of dimensionp2 are the Taft
algebras [19] (cf. [11, 5]). The question whether the Taft algebras are the only
non-semisimple Hopf algebras of dimensionp2 has remained open. In fact, the
question was asked by Susan Montgomery in several international conferences. It
was proved in [1, Theorem A] that if bothH andH ∗ have non-trivial group-like
elements or the order of the antipode is 2p, thenH is isomorphic to a Taft algebra
provided dimH = p2. Here we prove that any non-semisimple Hopf algebra over
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k of dimensionp2 is isomorphic to a Taft algebra. Hence, the Hopf algebras over
k of dimensionp2 can be completely classified (Theorem 5.5).

If p � q and are odd primes, whether there is a non-semisimple Hopf algebra
of dimensionpq other than the Taft algebras is still in question. Nevertheless, we
prove that for any non-semisimple Hopf algebraH of dimensionpq , the order of
S4 is p, whereS is the antipode ofH . Moreover, Tr(S2p) is an integer divisible
by p2 (Theorem 5.4). The uniqueness of Taft algebras is a consequence of this
result.

The article is organized as follows: In Section 1, we recall some notation,
general theorems and some useful statements. In Section 2, we introduce the
notion of the index of a Hopf algebra and we compute the index of the Taft
algebras. In Section 3, we consider the common eigenspaces ofS2 and r(g)

whereS andr(g) are the antipode and the right multiplication by the distinguished
group-like elementg of the Hopf algebraH . We derive some arithmetic properties
of the dimensions of these eigenspaces for the Hopf algebras of odd index. We
further exploit the arithmetic properties of these numbers for Hopf algebras of
odd prime index in Section 4. Using these arithmetic properties, we finally prove
our main theorems in Section 5.

1. Notation and preliminaries

Throughout this paperk is an algebraically closed field of characteristic
0 and H is a finite-dimensional Hopf algebra overk with antipodeS. Its
comultiplication and counit are, respectively, denoted by∆ andε. We will use
Sweedler’s notation [18]:

∆(x) =
∑

x(1) ⊗ x(2).

A non-zero elementa ∈ H is called group-like if∆(a) = a ⊗ a. For the details
of elementary aspects for finite-dimensional Hopf algebras, readers are referred
to Refs. [10,18].

The set of all group-like elementsG(H) of H is a linearly independent set,
and it forms a group under the multiplication ofH . The divisibility of dimH

by |G(H)| is an immediate consequence of the following generalization of
Lagrange’s theorem, due to Nichols and Zoeller:

Theorem 1.1 [12]. LetH be a finite-dimensional Hopf algebra over a field andB

a Hopf subalgebra ofH . ThenH is a freeB-module. In particular,dimB divides
dimH .

The order of the antipode is of fundamental importance to the semisimplicity
of H . We recall some important results on the antipodeS of finite-dimensional
Hopf algebrasH .
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Theorem 1.2 [6,7]. Let H be a finite-dimensional Hopf algebra with antipodeS

over a field of characteristic0. Then the following statements are equivalent:

(i) H is semisimple.
(ii) H ∗ is semisimple.
(iii) Tr (S2) 	= 0.
(iv) S2 = idH .

Let λ ∈ H ∗ be a non-zero right integral ofH ∗ and letΛ ∈ H be a non-zero left
integral ofH . There existsα ∈ Alg(H, k) = G(H ∗), independent of the choice
of Λ, such thatΛa = α(a)Λ for a ∈ H . Likewise, there is a group-like element
g ∈ H , independent of the choice ofλ, such thatβλ = β(g)λ for β ∈ H ∗. We call
g the distinguished group-like element ofH andα the distinguished group-like
element ofH ∗. Then we have a formula forS4 in terms ofα andg [13]:

S4(a) = g
(
α ⇀ a ↼α−1)g−1 for a ∈ H, (1.1)

where ⇀ and ↼ denote the natural actions of the Hopf algebraH ∗ on H

described by

β ⇀ a =
∑

a(1)β(a(2)) and a ↼ β =
∑

β(a(1))a(2)

for β ∈ H ∗ anda ∈ H . If λ andΛ are normalized, there are formulae for the trace
of any linear endomorphism onH .

Theorem 1.3 [15, Theorem 1].Let H be a finite-dimensional Hopf algebra with
antipodeS over the fieldk. Suppose thatλ is a right integral ofH ∗, and thatΛ
is a left integral ofH such thatλ(Λ) = 1. Then for anyf ∈ Endk(H),

Tr(f ) =
∑

λ
(
S(Λ(2))f (Λ(1))

) =
∑

λ
(
(S ◦ f )(Λ(2))Λ(1)

)
=

∑
λ
(
(f ◦ S)(Λ(2))Λ(1)

)
.

We shall also need the following lemma of linear algebra:

Lemma 1.4 [1, Lemma 2.6].LetT be an operator on a finite-dimensional vector
spaceV over the fieldk. Letp be a prime number and letω ∈ k be a primitive
pth root of unity.

(i) If Tr(T ) = 0 and T p = idV , then dimVi is constant whereVi is the
eigenspaces ofT associated with the eigenvalueωi . In particular,p | dimV .

(ii) If Tr(T ) = 0 andT 2p = idV , then

Tr
(
T p

) = pd

for some integerd .
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2. Index of a Hopf algebra

The distinguished group-like elementg defines a coalgebra automorphism
r(g) onH as follows:

r(g)(a) = ag for a ∈ H.

SinceS2 is an algebra automorphism onH andS2(g) = g,

S2 ◦ r(g) = r(g) ◦ S2.

Moreover, bothS2 andr(g) are of finite order. Therefore,S2 andr(g) generate
a finite abelian subgroup of Autk(H). We will simply call the exponent of the
subgroup generated byS4 andr(g) theindexof H . It is easy to see that the index
of H is also the smallest positive integern such that

S4n = idH and gn = 1.

Obviously,o(g) | n and o(S4) | n, whereo(g) and o(S4) are the orders ofg
andS4, respectively. By Eq. (1.1),

n | lcm
(
o(g), o(α)

)
. (2.1)

Example 2.1.

(i) If both H andH ∗ are unimodular, thenS4 = idH by (1.1). Therefore, the
index ofH is 1. In particular, ifH is semisimple, the index ofH is 1.

(ii) Let ξ ∈ k be a primitiventh root of unity. The Taft algebra [19]T (ξ) overk
is generated byx anda, as ak-algebra, subject to the relations

an = 1, ax = ξxa, xn = 0.

The Hopf algebra structure is given by

∆(a) = a ⊗ a, S(a) = a−1, ε(a) = 1,

∆(x) = x ⊗ a + 1⊗ x, S(x) = −xa−1, ε(x) = 0.

It is known that{xiaj | 0 � i, j � n−1} forms a basis forT (ξ). In particular,
dimT (ξ) = n2. The linear functionalλ defined by

λ
(
xiaj

) = δi,n−1δj,0

is a right integral ofT (ξ)∗. One can easily see thata is the distinguished
group-like element ofT (ξ). Moreover,S4(x) = ξ2x andS4(a) = a. Since
the order ofa is n andS4n = idH , the index ofT (ξ) is n.

Remark 2.2.

(i) If the index of the Hopf algebraH is greater than 1, thenH is not semisimple
by Example 2.1(i).
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(ii) If dim H is odd, it follows from Theorem 1.1 that the order of the distin-
guished group-like elementg of H and the order of the distinguished group-
like elementα of H ∗ are both odd. Hence, by the formula (2.1), the order of
S4 is also odd. Therefore, the index ofH is odd.

3. Eigenspace decompositions for Hopf algebras of odd index

In this section, we will only consider those Hopf algebrasH of odd index
n > 1. Sincer(g)n = S4n = idH , andS2 andr(g) are commuting operators onH ,
r(g) andS2 are simultaneously diagonalizable. Letω ∈ k be a primitiventh root
of unity. Then any eigenvalue ofS2 is of the form(−1)aωi and the eigenvalues
of r(g) are of the formωj . Define

Hω
a,i,j = {

u ∈ H
∣∣S2(u) = (−1)aωiu, ug = ωju

}
for any(a, i, j) ∈ Z2 × Zn × Zn.

We will simply writeKn for the groupZ2 ×Zn ×Zn, writeHω
(a,i,j) for Hω

a,i,j and

a for (a, i, j). SinceS2 andr(g) are simultaneously diagonalizable, we have the
decomposition

H =
⊕
a∈Kn

Hω
a . (3.1)

Note thatHω
a could be zero.

Since the distinguished group-like elementα of H ∗ is an algebra map and
gn = 1, we haveα(g)n = 1. Hence,α(g) is anth root of unity, and soα(g) = ωx

for some integerx. Using the eigenspace decomposition ofH in (3.1), the
diagonalization of the left integralΛ of H admits an interesting form.

Lemma 3.1. LetH be a finite-dimensional Hopf algebra with antipodeS of odd
indexn > 1 over the fieldk. Letg andα be the distinguished group-like elements
ofH andH ∗, respectively. Suppose thatΛ is a left integral ofH , α(g) = ωx , and
x = (0,−x, x) ∈Kn. Then

∆(Λ) =
∑
a∈Kn

(∑
ua ⊗ v−a+x

)
(3.2)

where
∑

ua ⊗ v−a+x ∈ Hω
a ⊗ Hω−a+x .

Proof. Note that

H ⊗ H =
⊕

a,b∈Kn

Hω
a ⊗Hω

b .
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In particular, we can write

∆(Λ) =
∑

a,b∈Kn

(∑
ua ⊗ vb

)

where
∑

ua ⊗ vb ∈ Hω
a ⊗ Hω

b . By [16, Proposition 3(d)],

S2(Λ) = α
(
g−1)Λ = ω−xΛ.

SinceS2 is a coalgebra automorphism onH , we have

∆(Λ) =
∑

(a,i,j),(b,s,t)∈Kn

(∑
ua,i,j ⊗ vb,s,t

)

=
∑

(a,i,j),(b,s,t)∈Kn

ωxS2 ⊗ S2
(∑

ua,i,j ⊗ vb,s,t

)

=
∑

(a,i,j),(b,s,t)∈Kn

(−1)a+bωx+i+s
(∑

ua,i,j ⊗ vb,s,t

)
. (3.3)

Sinceg is group-like andΛg = α(g)Λ = ωxΛ, we have

∆(Λ) =
∑

(a,i,j),(b,s,t)∈Kn

(∑
ua,i,j ⊗ vb,s,t

)

=
∑

(a,i,j),(b,s,t)∈Kn

ω−xr(g) ⊗ r(g)
(∑

ua,i,j ⊗ vb,s,t

)

=
∑

(a,i,j),(b,s,t)∈Kn

ω−x+j+t
(∑

ua,i,j ⊗ vb,s,t

)
. (3.4)

Thus, if
∑

ua,i,j ⊗ vb,s,t 	= 0, by Eqs. (3.3) and (3.4),

1= (−1)a+bωx+i+s and 1= ω−x+j+t ,

or equivalently,

(b, s, t) = (a,−i,−j)+ (0,−x, x)= −(a, i, j)+ x.

Thus,

∆(Λ) =
∑
a∈Kn

(∑
ua ⊗ v−a+x

)
. ✷ (3.5)

In the sequel, we will call the expression in Eq. (3.2) thenormal formof ∆(Λ)

associated withω. We will simply writeua ⊗ v−a+x for the sum
∑

ua ⊗ v−a+x

in the normal form of∆(Λ).
The eigenspace decompositionH = ⊕

a∈Kn
Hω

a is associated with a unique
family of projectionsEω

a (a ∈ Kn) from H ontoHω
a such that
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(1) Eω
a ◦Eω

b = 0 for a 	= b, and
(2)

∑
a∈Kn

Eω
a = idH .

In particular, dimHω
a = Tr(Eω

a ) for all a ∈Kn. By Lemma 3.1,

∆(Λ) =
∑
a∈Kn

(
Eω

a ⊗ Eω−a+x

)
∆(Λ)

and hence(Eω
a ⊗ Eω−a+x)∆(Λ) is identical to

∑
ua ⊗ v−a+x in the normal

form (3.2) of∆(Λ). Using the trace formulae in Theorem 1.3, we obtained the
following lemma:

Lemma 3.2. LetH be a finite-dimensional Hopf algebra with antipodeS of odd
indexn > 1 over the fieldk, and letω ∈ k be a primitiventh root of unity. Suppose
that Λ is a left integral ofH and thatλ be a right integral ofH ∗ such that
λ(Λ) = 1. Then

dimHω
a = λ

(
S(v−a+x)ua

)
(3.6)

for all a ∈ Kn, where
∑

a∈Kn
ua ⊗ v−a+x is the normal form of∆(Λ) associated

with ω.

Proof. Using the normal form of∆(Λ) associated withω and Theorem 1.3, for
anyb ∈ Kn,

dimHω
a = Tr

(
Eω

a

) =
∑
b∈Kn

λ
(
S(v−b+x)E

ω
a (ub)

)

=
∑
b∈Kn

δa,bλ
(
S(v−b+x)ua

) = λ
(
S(v−a+x)ua

)
. ✷

The family of elementsS(v−a+x)ua appearing in (3.6) are inHω
0,−x,∗.

Moreover, ifH is non-semisimple, they satisfy a system of equations.

Lemma 3.3. LetH be a finite-dimensional Hopf algebra with antipodeS of odd
indexn > 1 over the fieldk, and letω ∈ k be a primitiventh root of unity. Then∑

(a,i)∈Z2×Zn

(−1)aω−i dimHω
a,i,j = 0 for j ∈ Zn.

Proof. Let Λ be a left integral ofH and letλ be a right integral ofH ∗ such that
λ(Λ) = 1. SinceH is not semisimple, by [16, Theorem 4],∑

S3(Λ2)Λ1 = 0.

Hence for any integere,∑
S3(Λ2)Λ1g

e = 0,
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whereg is the distinguished group-like element ofH . Let

h′
a = S3(v−a+x)ua for all a ∈ Kn

where
∑

a∈Kn
ua ⊗ v−a+x is the normal form of∆(Λ) associated withω. Then

0=
∑

S3(Λ2)Λ1g
e =

∑
(a,i,j)∈Kn

h′
a,i,j g

e =
∑
j∈Zn

ωej
∑

(a,i)∈Z2×Zn

h′
a,i,j

for e = 0, . . . , n − 1. Since 1,ω, . . . ,ωn−1 are distinct elements ink, the
Vandermonde matrix


1 1 · · · 1
1 ω · · · ωn−1

...
...

. . .
...

1 ωn−1 · · · ω(n−1)2




is invertible. Therefore,∑
(a,i)∈Z2×Zn

h′
a,i,j = 0 (3.7)

for j ∈ Zn. Notice that

S3(va,−i−x,−j+x) = (−1)aω−i−xS(va,−i−x,−j+x).

Therefore,h′
a,i,j = (−1)aω−i−xS(v−a,−i−x,−j+x )ua,i,j for any (a, i, j) ∈ Kn.

Then Eq. (3.7) becomes∑
(a,i)∈Z2×Zn

(−1)aω−iS(v−a,−i−x,−j+x)ua,i,j = 0

for j ∈ Zn. Applyingλ to the equation, we have∑
(a,i)∈Z2×Zn

(−1)aω−iλ
(
S(v−a,−i−x,−j+x)ua,i,j

) = 0

for all j ∈ Zn. Then, the result follows from Lemma 3.2.✷
Lemma 3.4. LetH be a finite-dimensional unimodular Hopf algebra of odd index
n > 1 over the fieldk, and letω ∈ k be a primitiventh root of unity. Then∑

(a,i)∈Z2×Zn

(−1)aω−i dimHω
a,i,l−2i = 0

for l ∈ Zn.

Proof. Let α and g be the distinguished group-like elements ofH ∗ and H ,
respectively. SinceH is unimodular,α = ε and henceα(g) = 1 = ω0. Let Λ
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be a left integral ofH and letλ be a right integral ofH ∗ such thatλ(Λ) = 1. It
follows from Lemma 3.1 that the normal form of∆(Λ) associated withω is∑

a∈Kn

ua ⊗ v−a . (3.8)

SinceH is not semisimple,

0 = ε(Λ)1 =
∑

Λ1S(Λ2).

Thus, we have

0 =
∑
a∈Kn

uaS(v−a). (3.9)

Note that, by Eq. (1.1) and the unimodularity ofH ,

gea = S4e(a)ge

for any integere anda ∈ H . Letha = uaS(v−a) for a ∈ Kn. Then,

geha,i,j = geua,i,j S(va,−i,−j ) = ωe(2i+j)ua,i,j S(va,−i,−j )

= ωe(2i+j)ha,i,j . (3.10)

By multiplying ge on the left of Eq. (3.9), we have

0 =
∑

(a,i,j)∈Kn

ωe(2i+j)ha,i,j =
∑
l∈Zn

ωel
∑

(a,i)∈Z2×Zn

ha,i,l−2i . (3.11)

By the same argument used in the proof of Lemma 3.3,∑
(a,i)∈Z2×Zn

ha,i,l−2i = 0 (3.12)

for l ∈ Zn. Notice that, by [16, Theorem 3(a)],

λ
(
ha,i,j

) = λ
(
ua,i,j S(va,−i,−j )

) = λ
(
S3(va,−i,−j )ua,i,j

)
= (−1)aω−iλ

(
S(va,−i,−j )ua,i,j

)
. (3.13)

By Lemma 3.2 and Eq. (3.8),

λ
(
ha,i,j

) = (−1)aω−i dimHω
a,i,j .

Hence, we have

0 =
∑

(a,i)∈Z2×Zn

λ
(
ha,i,l−2i

) =
∑

(a,i)∈Z2×Zn

(−1)aω−i dimHω
a,i,l−2i

for l ∈ Zn. ✷
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4. Arithmetic properties of Hopf algebras with odd prime index

In this section, we will study the arithmetic properties for the Hopf algebras of
odd prime indexp. Let ω ∈ k be a primitivepth root of unity. The Taft algebra
T (ω) [19] is then a Hopf algebra of this type by Example 2.1(ii). The quantum
double ofT (ω) is a unimodular Hopf algebra of indexp (cf. [5]).

Lemma 4.1. Let H be a finite-dimensional Hopf algebra of indexp over the
field k, wherep is an odd prime. Letω ∈ k be a primitivepth root of unity. Then
for eachj ∈ Zp there exists an integerdj such that

dimHω
0,i,j − dimHω

1,i,j = dj

for all i ∈ Zp .

Proof. By Lemma 3.3 we have∑
i∈Zp

ω−i
(
dimHω

0,i,j − dimHω
1,i,j

) = 0

for all j ∈ Zp . In particular,ω−1 is a root of the integral polynomial

fj (x) =
p−1∑
i=0

(
dimHω

0,i,j − dimHω
1,i,j

)
xi.

Hence,fj (x) = djΦp(x) for somedj ∈ Q, whereΦp(x) = 1+ x + · · · + xp−1 is
the irreducible polynomial ofω−1 overQ. Therefore,

dimHω
0,i,j − dimHω

1,i,j = dj .

Since dimHω
0,i,j − dimHω

1,i,j is an integer, and so isdj . ✷
Lemma 4.2. Let H be a finite-dimensional Hopf algebra of indexp over the
field k, wherep is an odd prime. IfH ∗ is not unimodular, thenp | dimH and

∑
(a,i)∈Z2×Zp

dimHω
a,i,j = dimH

p
for all j ∈ Zp.

Proof. SinceH ∗ is not unimodular, the distinguished group-like elementg of
H is not equal 1H . Then, Tr(r(g)) = 0 (cf. [8, Proposition 2.4(d)]). Moreover,
r(g)p = idH . Hence, by Lemma 1.4,p | dimH and the eigenspace ofr(g)
associated with the eigenvalueωj is of dimensiondimH

p
for any j ∈ Zp . Note

that ⊕
(a,i)∈Z2×Zp

Hω
a,i,j



192 S.-H. Ng / Journal of Algebra 255 (2002) 182–197

is the eigenspace ofr(g) associated withωj . Therefore,

dimH

p
= dim

( ⊕
(a,i)∈Z2×Zp

Hω
a,i,j

)
=

∑
(a,i)∈Z2×Zp

dimHω
a,i,j . ✷

Lemma 4.3. Let H be a finite-dimensional Hopf algebra of indexp over the
field k, wherep is an odd prime. IfH ∗ is not unimodular andH is unimodular,
then:

(i) There is an integerd such that

dimHω
0,i,j − dimHω

1,i,j = d for anyi, j ∈ Zp.

(ii) Tr(S2p) = p2d .

Proof. (i) By Lemma 3.4, for anyl ∈ Zp ,∑
i∈Zp

(
dimHω

0,i,l−2i − dimHω
1,i,l−2i

)
ω−i = 0.

Sinceω−1 is also a primitivepth root of unity ink, there exists an integercl such
that

dimHω
0,i,l−2i − dimHω

1,i,l−2i = cl (4.1)

for i ∈ Zp . By Lemma 4.1, for anyi, l ∈ Zp ,

cl = dimHω
0,i,l−2i − dimHω

1,i,l−2i = dl−2i . (4.2)

Since 2 andp are relative prime,l, l − 2, . . . , l − 2(p − 1) is a complete set of
representatives ofZp . Therefore,

dj = cl = d for anyj, l ∈ Zp.

(ii) Sincep is odd,

Tr
(
S2p) =

∑
i,j∈Zp

dimHω
0,i,j − dimHω

1,i,j =
∑

i,j∈Zp

d = p2d. ✷

5. Hopf algebras of dimension pq

In this section, we will consider the Hopf algebrasH of dimensionpq

where bothp � q are odd primes. In particular, we prove that ifH is not
semisimple and dimH = p2, thenH is isomorphic to a Taft algebra. It was
proved in [9, Theorem 2] that semisimple Hopf algebras of dimensionp2 are
group algebras. Therefore, any Hopf algebra overk of dimensionp2 is either
a group algebra or a Taft algebra. We begin the section with the following lemma.
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Lemma 5.1. Let p,q be two distinct prime numbers. Then there is no finite-
dimensional Hopf algebraH of dimensionpq over the fieldk such that
|G(H)| = p and|G(H ∗)| = q .

Proof. Suppose there is a Hopf algebraH of dimensionpq such that|G(H)| = p

and |G(H ∗)| = q . Let g ∈ G(H) and α ∈ G(H ∗) such thato(g) = p and
o(α) = q . Note thatβ/(a) = β(a/) = (β(a))/ for all β ∈ G(H ∗), a ∈ G(H), and
/ ∈ Z. Therefore,

α(g)p = α
(
gp

) = α(1) = 1

and

1= ε(g) = αq(g) = α(g)q .

Hence,o(α(g)) = 1 and soα(g) = 1. Let π be the Hopf algebra map which
is the composite ofH ∼= H ∗∗ → k[G(H ∗)]∗, where the latter is the transpose
of the inclusionk[G(H ∗)] ⊆ H ∗. Then the image ofB = k[G(H)] underπ is
one-dimensional. ThusB+ ⊆ kerπ . It follows from [17, Theorem 2.4 (2a)] that
dimH/B+H = q . Thus,

dimB+H = pq − q = dimkerπ

and hence,

B+H = kerπ.

Therefore,H/B+H is isomorphic tok[G(H ∗)]∗ as Hopf algebras. In particular,
H/B+H is semisimple. LetΛ be a non-zero left integral ofH andΛ′ a non-
zero right integral ofk[G(H)]. Since chark = 0, ε(Λ′) 	= 0 and hence,Λ′Λ =
ε(Λ′)Λ 	= 0. Therefore,Λ /∈ B+H and soΛ + B+H is a non-zero left integral
of H/B+H . SinceH/B+H is semisimple,ε(Λ) = ε(Λ + B+H) 	= 0. Hence,
H is semisimple. By [3],H is trivial and so|G(H)| = pq or |G(H ∗)| = pq ,
a contradiction. ✷
Proposition 5.2. LetH be a non-semisimple Hopf algebra of dimensionpq with
antipodeS over the fieldk, wherep � q are odd primes. Then

(i) the order ofS4 is p, and
(ii) H is of indexp.

Proof. (i) SinceH is not semisimple and dimH is odd, by [8, Theorem 2.1]
or [1, Lemma 2.5],S4 	= idH andH , H ∗ cannot be both unimodular. Letg be
the distinguished group-like element ofH , andα the distinguished group-like
element ofH ∗. Then,o(α) < pq ando(g) < pq , for otherwise,H would be a
group algebra, or the dual of a group algebra, both of which are semisimple. By
Lemma 5.1,

lcm
(
o(g), o(α)

) = p or q. (5.1)
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By Eqs. (1.1) and (5.1), the order ofS4 is eitherp or q . If p = q , the order ofS4

and the index ofH are obviously equal top. We now assumeq > p. Consider
the following cases:

Case (a). H ∗ is not unimodular. In this case,o(g) = p or q . Suppose that the
order ofS4 isq . By Eq. (1.1),q | lcm(o(g), o(α)). Therefore, lcm(o(g), o(α)) = q

and henceo(g) = q . Thus, the index ofH is alsoq . Let ω ∈ k be aq th primitive
root of unity. By Lemma 4.1, for eachj ∈ Zq there is an integerdj such that

dimHω
0,i,j − dimHω

1,i,j = dj for all i ∈ Zq . (5.2)

Let Xi,j = min(dimHω
0,i,j ,dimHω

1,i,j ). Then,

dimHω
0,i,j + dimHω

1,i,j = 2Xi,j + |dj |
and so ∑

(a,i)∈Z2×Zq

dimHω
a,i,j =

∑
i∈Zq

2Xi,j + q|dj | (5.3)

for eachj ∈ Zq . It follows from Lemma 4.2 that∑
i∈Zq

2Xi,j + q|dj | = p. (5.4)

Sincep odd, by (5.4),|dj | must be odd. However, the left hand side of (5.4) is
then strictly greater thanp, a contradiction! Therefore,o(S4) = p.

Case (b). H ∗ is unimodular. ThenH ∗∗ ∼= H is not unimodular. By Theorem 1.2,
H ∗ is not semisimple and dimH ∗ = pq . It follows from Case (a) that the order
of S∗4 is p. Sinceo(S4) = o(S∗4). Therefore,o(S4) = p.

(ii) Let n be the index ofH . Then, by (2.1),n | lcm(o(g), o(α)) ando(S4) | n.
Sinceo(S4) = p and lcm(o(g), o(α)) = p or q , we haven = p. ✷
Lemma 5.3. LetH be a Hopf algebra of dimensionpq with antipodeS over the
field k, wherep,q are odd primes. If|G(H)| = |G(H ∗)| = p, thenTr(S2p) =
p2d for some integerd .

Proof. Let g ∈ G(H) andα ∈ G(H ∗) such that both the orders ofg andα are
equal top. Let B be the group algebrak[g], and letI = k[α]⊥. Sincek[α] is
a Hopf subalgebra ofH ∗, I is then a Hopf ideal ofH , and

H/I ∼= k[α]∗ ∼= B (5.5)

as Hopf algebras. Letπ ′ :H → B be the composition

H
η−→ H/I

∼=−→ B
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whereη is the natural surjection. ThenH is a rightB-comodule algebra, and

R = H coB = {
h ∈ H | (idH ⊗ π ′)∆(h) = h ⊗ 1B

}
is a subalgebra ofH . By [17, Theorem 2.2],H is theB-cross product

H ∼= R #σ B. (5.6)

In particular, dimR = q . Let γ :B → H be the inclusion map. Thenπ ′γ :
B → B is a non-trivial Hopf algebra map. Otherwiseg ∈ R and henceB ⊆R.
It follows from (5.6) and Theorem 1.1 thatR is a freeB-module. Therefore,
p | q . Hencep = q andB = R. It follows from [2, Theorem 2.6(2)] thatH is
semisimple, a contradiction. Therefore,π ′γ is non-trivial. SinceB is a group
algebra of dimensionp, π ′γ is actually an isomorphism. Letπ = (π ′γ )−1π ′.
Then,π :H → B is a surjective Hopf algebra map andπγ = idB . Therefore,H
is isomorphic to the biproductR ×B as Hopf algebras (cf. [14]). It was shown in
[1, Section 4] thatR is invariant underS2. Moreover, in the identificationH ∼=
R ⊗ B given by multiplication, one has

S2 = T ⊗ idB (5.7)

for some linear endomorphismT on R. SinceH is not semisimple, Tr(S2) = 0.
By Eq. (5.7), Tr(S2) = Tr(T )p. Therefore, Tr(T ) = 0. Moreover,T 2p = idR as
S4p = idH by Eq. (1.1). Hence, by Lemma 1.4, Tr(T p) = pd for some integerd .
SinceS2p = T p ⊗ idB , we have

Tr
(
S2p) = Tr

(
T p

)
Tr(idB) = p2d. ✷

Theorem 5.4. Let H be a non-semisimple Hopf algebra of dimensionpq with
antipodeS over the fieldk, wherep � q are odd primes. ThenTr(S2p) = p2d for
some odd integerd .

Proof. By Proposition 5.2,S4p = idH . Let

H± = {
h ∈ H

∣∣S2p(h) = ±h
}
.

Then,

dimH+ − dimH− = Tr
(
S2p)

and dimH+ + dimH− = pq.

Sincepq is odd, Tr(S2p) is also an odd integer. Thus, if Tr(S2p) = p2d , thend
must be an odd integer. Therefore, it suffices to show that Tr(S2p) = p2d for some
integerd . SinceH is not semisimple, by Theorem 1.2,H ∗ is also not semisimple.
By Proposition 5.2, the indexes ofH andH ∗ are bothp. Since dimH is odd,
by [8, Theorem 2.2], not both ofH andH ∗ are unimodular. We then have the
following three cases:

(i) If H is unimodular andH ∗ is not unimodular, the result follows from Lem-
ma 4.3.
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(ii) If H is not unimodular andH ∗ is unimodular, by Lemma 4.3, Tr(S∗2p) =
p2d for some odd integerd . The result follows from Tr(S∗2p) = Tr(S2p).

(iii) If both H andH ∗ are not unimodular, by Lemma 5.1 and Proposition 5.2,
the orders of the distinguished group-like elements ofH andH ∗ are both
equal top. Thus, by Lemma 5.3, Tr(S2p) = p2d . ✷

As a consequence of the above theorem, we prove that any Hopf algebra of
dimensionp2 is either a group algebra or a Taft algebra (see Example 2.1(ii)).

Theorem 5.5. LetH be a Hopf algebra of dimensionp2 over the fieldk, wherep
is any prime number. ThenH is isomorphic to one of the following Hopf algebras:

(a) k[Zp2];
(b) k[Zp × Zp];
(c) T (ω),ω ∈ k a primitivepth of unity.

Proof. If H is semisimple, it follows from [9, Theorem 2] thatH isomorphic
to k[Zp2] or k[Zp × Zp]. It is also shown in [4] that ifH is a non-semisimple
Hopf algebra of dimension 4, thenH isomorphic to the Taft algebraT (−1). We
may now assumeH is not semisimple andp is odd. LetS be the antipode ofH .
By Proposition 5.2,S4p = idH and soS2p is diagonalizable and the possible
eigenvalues ofS2p are±1. SupposeS2p 	= idH . Then, Tr(S2p) is an integer such
that

−p2 � Tr
(
S2p)

<p2.

By Theorem 5.4,

Tr
(
S2p) = p2d

for some odd integerd . Therefore, Tr(S2p) = −p2 and henceS2p = −idH .
However, this is not possible sinceS2p(1H) = 1H . Therefore,S2p = idH . Then,
S2 has order 1 orp; thusS2 has orderp sinceH is assumed to be non-semisimple.
It follows from [1, Theorem A(ii)] thatH is isomorphic to a Taft algebra of
dimensionp2. Hence,H ∼= T (ω) for some primitivepth root of unity,ω ∈ k. ✷
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