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In this paper we study cubic vector ficlds which are symmetric with respect to a
center. Our perspective is from the viewpoint of invariant algebraic curves of such
systems. We give here a new proof of the integrability of symmetric systems with
respect to a center by the method of Darboux. which uses invariant algebraic
curves, The first integrals of the systems are all elementary and we give here their
complete list. We next study the global geometry of such systems. We give the
bifurcation diagram of the phase portraits of the vector fields. We show that
although most bifurcations correspond to bifurcations of the algebraic invariant
curves, unlike what happens in the quadratic case, the changes in the invariant
algebraic curves do not completely determine the bifurcation diagram. We prove
that there appear other bifurcations of saddle connections, whose equations are
transcendental, « 1995 Academic Press. Inc.

|. INTRODUCTION

In this paper we study cubic vector fields which are symmetric with
respect to a weak focus, i.e., a singular point with pure imaginary eigen-
values. When we place the weak focus at the origin such a system can be
written in the form

N=—y+4+ Y apxyI=—y+pi(x,y)

it =3 (1.1)
F=x+ Y bxv =x+qi(x,p)

itj=3

In [M] Malkin found necessary and sufficient conditions for (1.1) to
have a center (ie., a singularity surrounded by closed integral curves) at
the origin. In [LS] Lunkevich and Sibirsky proved the integrability of
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systems satisfying these conditions. To prove the integrability of the
systems they made use of Sibirsky’s algebraic invariant theory [S2].

Recently the method of Darboux was used to give a proof of the
integrability of all quadratic systems with a center, [ Scl, Sc2]. Darboux’s
method has the advantage of being both very simple and at the same time
unifying since this method can be applied for all systems regardless of the
specific values in the parameter space. Furthermore the geometric content
of the method: the invanant algebraic curves, throws light on the
behaviour of the integral curves of the systems.

This paper has a double purpose. First we give a new proof of the
integrability of systems (1.1) with a center at the origin by using the
method of Darboux for all values of the parameters.

We next study the global geometry of cubic systems symmetric with
respect to a center. To do this we use the conditions for a center as they
appear in the paper of Sibirsky [ S1]. They consist of three different cases.
The first case is that of a Hamiltonian system. The second case is that of
a symmetric system with respect to an axis: we say that the system has a
center of type II. Because we only consider symmetric systems with respect
to the origin, such systems necessarily have two symmetry axes. Finally the
last case (center of type Ill) consists of systems having an invariant
algebraic curve of degree 4 and one of degree 6. In this paper we limit our-
selves to non-Hamiltonian vector fields.

Systems with centers of type Il are indexed by parameters in $°. In the
“generic case” they have two invariant conics, which suffice to construct a
first integral. In opposition to what happens with quadratic systems the
bifurcation diagram of the algebraic curves does not control completely the
bifurcation diagram for the phase portraits of (1.1) with a center of type II,
1.e., while bifurcations of singular points are given by bifurcations of the
invariant algebraic curves, there exist bifurcations of saddle connections,
which do not correspond to bifurcations of invariant algebraic curves. We
give here a complete bifurcation diagram for the singular points and we
show that there must exist surfaces of saddle connections. These surfaces
are given by a transcendental equation in the parameter space. Each bifur-
cation of saddle connection can be viewed as a bifurcation of simultaneous
tangency to the two coordinate axes for a trajectory of a linear system
(Fig. 15). The exact position and shape of the surfaces of saddle connec-
tions 1s only conjectural, but we can prove the existence of some curves
lying on them.

For centers of type III all trajectories are algebraic curves of degree <12,
among which we find one quartic and two sextic curves. Such systems are
indexed by parameters in S', but generically they all have the same phase
portrait up to topological equivalence. The quartic and one of the sextic
curves suffice to derive a first integral.
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2. Basic NoTtions aAND REsSULTS: THE METHOD OF DARBOUX

In this section we recall briefly the notion of invariant algebraic curves
and the way in which they are found. We show how they can be used to
derive first integrals for a polynomial system. Let us start with a polyno-
mial system

X=P(x,y)
¥=0(x, ).

(2.1)

DEerINITION 2.1, An invariant algebraic curve of a system (2.1) is a
curve in the complex plane given by an equation f(x, y) =0, with f(x, y)e
C[ x, y] such that there exists K(.x, y) e C[ x, y] satisfying

Df(x,y)=f(x, ) K(x, y), (2.2)
where

Df=f=f.P+f.0. (2.3)

and K(x,y)eC[x,v]. K(x,y) 1s called the cofactor of the invariant
algebraic curve f=0.

Remarks 2.2. (1) 1If (2.1) is a polynomial system of degree n and
J{x,y) is a polynomial of degree m, then Df, the derivative of f along the
integral curves of (2.1), is a polynomial in x and y of degree less than or
equal to (m+nr—1) and K(x, y) is a polynomial of degree less than or
equal to (n—1).

(2) We look for invariant algebraic curves

m

f(x’ y) = '7 + Z f;j'vi)yj: ’7 +f2(\‘» }') + - +f;n(x’ y)* (24)

i+j=1
with =0, 1 and

Kix,y)= 3 k;x'y’ {2.5)

We solve (2.2) by identifying corresponding monomials yields f(x, y) and
K(x,y). The f;’s and k;’s are solutions of nonlinear equations.
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THEOREM 2.3 [Dal]. (1) If the system (2.1) of degree n has more than
N(n)=n(n+1)/2 irreducible invariant algebraic curves fi(x,y)=0, .,
So\x.¥) =0, then it has a first integral of the form

14
Fx.p) =] /7, (2.6)

i=1
with a;e€ C. We call such an integral a Darboux first integral.
(2) If the system (2.1} has p invariant algebraic curves f\(x, y)=0, ...,

fA X, 3) =0, with respective cofactors Ki(x, y), ... K{x., ), and if there exist
x,€C,i=1, .., p, not all zero such that

r
Y 2,Ki(x, y) =0, (2.7)

i=1

then the system has the Darboux first integral (2.6).

(3) If the system (2.1) has p invariant algebraic curves fi(x, y)=0, ...,
fAx, ) =0, with respective cofactors K\(x, y), ..., K,(x, y), and if there exist
x,eC,i=1,..,p such that

oP 0 g
divip, 0= 192§ 4 Kyix . (238)
ox ady [
then
[I
Rx, =11/ (29)
i=1
is an integrating factor, Le.,
div(RP, RQ) =0. (2.10)

In particular if R(x,y) exists on a simply connected domain U, then the
vector field (RP, RQ) is Hamiltonian on U.

Proof- (1) The space of polynomials of degree less than or equal to
(n—1) has the dimension N(#)=n(n+1)/2. Hence, for p> N(n), the
cofactors K,(x, y) are linearly dependent; i.e., there exist x,eC, i=1, .., p,
not all zero, such that (2.7) is satisfied. Then

r

DF:F< y oc,-K,(x,y))zO. (2.11)

i=1
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(2) It 1s easily checked that the previous method can work with less
than N(#n) invariant algebraic curves, as long as there exist «;, i=1, ... p,
not all zero satisfying (2.7). 1

The method was further refined by Prelle and Singer [ PS]. They proved
that if a system has an elementary first integral, then it has invariant
algebraic curves (cf. [Sc2]). Special cases were also studied by Christopher
[C]. Since these will not be needed here we do not describe the results.

In this paper we study cubic systems symmetric with respect to a non-
degenerate center. We suppose that the center is at the origin and that the
system has the form (1.1). An algebraic characterization of centers for
system (1.1) was first given by Malkin [ M]. To simplify the conditions,
Sibirsky applied first a rotation to obtain «,, +b,,=0 1in (1.1) [S1]. He
wrote such a system in the form

N=—y—(0+0—a)x'— (5 —3u) Xy
— (3w —=30+2a— &) xy* —(u—v) »*

F=x4+(u+v) X'+ 30w+ 30+ 2a) 23y
+(n=3uw) 3 +(w—0—a)y'.

THEOREM 2.4 [M, Si]. System (1.1) has a center at the origin if and
only if one of the following conditions is satisfied.

(H) f=a=0 (2.13)
(Iy &¢=v=0=90 (2.14)
(1) E=v=w=p=Hu*+0")—a*=0 (2.15)

The condition (H) corresponds to Hamiltonian systems. We shall prove
the integrability of the systems (1) and (111) by the method of Darboux.
The necessity of the conditions comes from the calculations of the
Lyapunov constants (see [ Sh] for the definition and method), which must
all vanish at a center:

THEOREM 2.5 [Si]. System (2.12) has the following Lyapunov coef-
Jicients V. under the condition that V,=0 for j<i:

!

Vi=¢

Vy= —av

Vi=abw (2.16)
Vay=a’0y

Vs= —a’0[ 4> + 0°) —a’].
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3. CENTERS OF TypE 11

We consider systems (2.12) of type Il (ie., satisfying (2.14)). Such
systems are symmetric with respect to two orthogonal lines. We can make
a rotation so as to assume that the symmetry-axes are the coordinates axes.
Hence we consider a system

N=—y+axy+by’
(3.1
F=x+ext +dxy?,

with a, b, ¢, d not all zero.

Our study of these systems consists of several steps. First we use a reduc-
tion to a linear system to show integrability. This achieves the proof of the
sufficiency of the Malkin’s conditions. We then describe the invanant
algebraic curves of the systems, which are significant in the derivation of
the bifurcation diagram of the family of systems (3.1). Finally we derive the
bifurcation diagram.

3.1. Reduction to a Linear System

This reduction was suggested to us by R. Koolij.

ProposiTION 3.1.  The change of variables
(u, v) =(x%, ), (3.2)

together with the time-rescaling T = 2xpt brings the system (3.1) to the linear
system
u=—1+4+au+bv

(3.3)
t=1+4cu+db.

It is a diffeomorphism in the first open quadrant. Since the coordinate
axes of (3.1) are symmetry axes the whole phase portrait can be recovered
from the phase portrait of (3.3) in the first quadrant.

First integrals for system (3.3) will yield first integrals of system (3.1) via
(3.2). Also the phase portrait of {3.1) can be recovered from integral curves
of (3.3) in the first quadrant.

3.2. First Integrals of a Lincar System

We consider here linear systems (2.1) with max(deg P, deg Q)= 1. Such
systems will be called non-constant. We derive the first integral of any such
non-constant linear system from its invariant algebraic curves. For this we
reduce the linear system to a convenient normal form.
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TABLE 1
Normal form First integral Invariant curves
xXx=1 Fy=y—x%2 y=x22+C, CeR
y=x Hamiltonian system
x=0 F,=x x=C, CeR
y=x Hamiltonian system xv=0 (line of sing. pts)
X=x x=0

Y=a+hv+cey Fi=x"[de=1)yp+bex+aic—1)] bex+cle—=1)y+alc—1)=0
c#0,1

X=X

}; —a+ h,\' F4 = xueh\ —¥ x= 0

a#0

¥=x Fs=y—bx x =0 (line of sing. pts)
y=bx yr=bx+C, CeR

X=x

y=bx+y Fo=x"tern x=0

b#0

X=x F7 = _VJ/X C] X+ CZ y= 0, C] . CZ eR
y=y

THEOREM 3.2. The first integral of any non-constant linear system on C*
is given in Table L.

Proof. Suppose first that the matrix of the linear system is nilpotent.
Then we can bring it to its Jordan normal form. A translation in x trans-
forms the system into one of the first two forms of Table I. The system is
Hamiltonian, from which the integral follows.

If the matrix is not nilpotent, then a linear transformation brings it to a
lower triangular matrix, with a nonzero coefficient in the upper left corner.
Scaling, together with a translation in x, brings the system to the form

X=X 34
(3.4)
y=a+bx+cy,

which always has the invariant line x =0. Due to this we have a Darboux
first integral or an integrating factor. In case ¢ #0, 1, then the system has
a second invariant line and a Darboux first integral given in Table I. In
cases ¢=0, a0 and ¢=1, b#0 integrating factors can be found as
described in Section 2 and integration yields elementary first integrals. §
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Remark 3.3. (1) We point out that all cases of Table I except the first
can be derived from the generic Darboux integral F;. Indeed

. —Yena
F4=<1im _\{H ‘ (bx+(c—1)_v)} ) (3.5)
=0 ale—1})
F;=log(lim F,), (3.6)
a—0
_1 . 11—\ —h
Fi,=lim <.\[1+C (}+a} > , (3.7
1 b(' X

and F, is obtained from Fg by changing vy —a,

F, :log(hlim Fe). (3.8)
ho-s ()

To derive the second case we consider the system

XN=dx
. (39)
¥=a+bx+cy,
with the Darboux first integral
Fli=x"[bex+clc—d)y+alc—d)]" (3.10)
Then
Fy=(lim F%) ' (3.11)

d—0

(2) Essentially two important phenomena occur with the invariant
lines: one of them can disappear at infinity or they can coalesce. In both
cases the first integral (F,; or F,) can be obtained as a limit process. Such
phenomena have already been noted by Christopher [C].

3.3. First Integrals of System (3.1)

The existence of first integrals for system (3.1) is a consequence of the
reduction of such systems to linear ones and of Theorem 3.2. Invariant
lines of the linear system (3.3) correspond to invariant conics of the cubic
system due to the change (3.2).

THEOREM 34. For all values of the parameters the system (3.1} has the
Jfollowing first integrals F(x, y)
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(1) ifla~b+c—dWad—>bc)#0, and (d—a)* +4bc >0 then

X(fg()-\': +‘/'()2},2+1)l a-d+la Ak )~ (312)
with
N 21(1(1—/7(')—(a-{—(')(a+d)_—l;(a+c)\/(a—d)3+4bc
S Qa—h+c—d) ’
S (3.13)
2((1(/»1)(')»(h+d)(a+d)i(h+a’)\/(aﬁa’)'+4bc.
Joz=- Ha—b+c—d) ’
(2) ifta—b+c—dad—bey#0, and A= (d—a)> +4be <0 then
ad — be 4 22 P
F—lim((.\ +((Il—(1)v\ ) ‘17}
x 5, Vo
+ud~h¢' . +;1(i'f[)<' ! ) * I}
, N arct <ﬁ((a+c')x3+(h+d)y:) 114
xexp[—-(a—kc)drcan ax>+ P +2a—b+e—d) >]’ (3.14)
with
a=2ad—b¢)—(a+c)a+d)
(3.15)
B=2ad—bc)—(b+d)a+d);
(3) ifa—b+c—d=0and (b+c)a—bWa+c¢)#0, then
(2 2 hae o d)2a ) —"(“T_[ﬂ 5 Dla=b) 11
Flx,y)=(x"+y") {——IH_C X bt e y+11/;
(3.16)

4y if (d—a)y +adbc=0 and (« —b+ ¢ —d)ad—bc)#0, then

—cla+d) , @ —d* ’+l:‘

Flv.p= [a +2—d" Aa+2c—d) r

N dcta+d)[(a+c) x>+ (b +d) 1] .
p (a+2c—d)[ =2ecla+d) N>+ (@ ~dH) VvV +2a+2c—d)] |
(3.17)



(5)

(6)

(8)

(9)

(10)

(1)
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ifa—b+c—d=b+c=0and cla+c)#0, then

5

1+ (a+c) yz]

Fx,p)=(x"+)") exp [ Cexr 7))

ifad—bc=0and (a—b+c—~d)a+cla+d)#0 then

F( N, y)= et diex? —ayhia+ ey | (Cl + C}(CI +_(_I) »\,2
; a—b+c—d

(b+diu+d)
S o bt ol NS I I
a—b+c—~d yot i‘ ’

if ad—be=0and (a—b+c—d)a+d)Wb+d)#0 then

a—b+c—d v
(b+dya+d) )2+1J;

F(x, ) = ol@ t i =biith+ ) [ (atcla+d) ,
Ca—b+c—d !
ifa—b=c—d=0and b+ c+#0, then
F(x, y) =™~ (x2 4 v,
if a+d=0, the system is Hamiltonian with
Flx, )y =332+ yY) + Lex® —2ax?y? — bydy,
ifa—d=b=c=0, then

—1 +ax?
Fx, y)= SRR

Jinally, if a—b+c—d=0und a+c=b+d=0, then

Fix,y)=x7+ 2

397

(3.18)

(3.19)

(3.20)

(3.23)

(3.24)

Proof.  Long but straightforward calculations show that the functions
are indeed first integrals. We explain in the remark below how these
integrals were obtained.

First let us check that the list of conditions covers all possible parameter
values (a, b, ¢, d)e S*.

When (a—b+ ¢ —d)ad —be)(d—a) +4bc) #0 we are in case (1) or
(2) depending of the sign of 4. In case (2} (3.12) 1s a first integral but it
takes complex values. If we raise (3.12) to the power / (i?= —1) then we
get the first integral (3.14) which takes real values.
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If (¢u—d)y +4bc=0 and (ad —bcla—b+c—d)#0 we are in case (4).

If ad—bc=0 and [(¢—d) +4bcJla—b+c—d)#0 we have a+d#0
{otherwise (¢ —d)>*+4bc=0) and at least one of a+c¢#0 or b+d#0,
vielding case (6) or (7).

If «—b+c¢c—d=0 and [(«a—d)* +4bc](ad —be) #0, then necessarily
h+c¢#0 (otherwise we have (¢—d)>+4bc=0) and («—b)a+c¢)#0
(otherwise we have ad — be =0), yielding case (3).

If (a—d)?+4bc=ad—bc=0 then «+d=0 and the system is
Hamiltonian, yielding case (9).

If (¢a—d)+4bc=a—b+c—d=0, then necessarily b+ ¢=0. Integrals
are given by (5), (10) or (11) depending whether ¢ + ¢ and ¢ vanish or not.

Finally if ad—bc=a—b+c¢—d=0 then necessarily (¢ —b)a+c¢)=0
and integrals are given in (8) or (11). |

How to Obtuin the Integrals of (3.1). What we learn from Table 1 of
Theorem 3.2 is the following: a non-Hamiltonian linear system always has
an invariant lne. Generically it has a second invariant line, yielding a
Darboux integral. If one of the invariant line disappears at infinity then we
know we must look for a first integral of the form fexp(g), with fand g
polynomials of degree 1 in x and y. If the two invariant lines coallesce then
we must look for a first integral of the form fexp(g/f), f=0 being the equa-
tion of the invariant line and g being a polynomial of degree | in x and y.

When we transform (3.1) into the linear system (3.3) via (3.2) we see that
invariant lines of system (3.3) are in (1.1) correspondence with invariant
symmetric conics fy, x> + fy» 17 + C=0. These conics can be reducible or
irreducible.

Hence, in practice we calculate directly the invariant algebraic curves of
system (3.1). These are determined below. The condition ad—bc=0
corresponds to one of the conics passing at infinity (cases (5}, (6), (7)).
In this case we look for an integral of the form fexp(g), with f=0
an invariant conic and g=Ax’+ By?+ C. Similarly the condition
(d— a)? 4+ 4be =0 corresponds to the coalescence of the two invariant con-
ics (cases (3), (4)) and the form of the integral is f exp(g/f), with /=0 an
invariant conic and g = Ax"+ By’ + C.

Remark 3.5. From Theorem 3.2 it is clear that condition a—5+
¢—d=0 has no special meaning as far as invariant lines of the linear
system are concerned. In the cubic system it corresponds to the particular
case of a reducible conic passing through the origin.

3.4. Invariant Algebraic Curves of the Family of Systems (3.1)

In this paragraph we study the low order invariant algebraic curves of
the systems (3.1). These curves are helpful in the study of the family of
systems (3.1). They also yield directly the integrals listed in Theorem 3.4.
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Remark 3.6. The system (3.1) is symmetric under

(v, t,a, b, e, dy— (v, x, —t, —d, —¢, —b, —u) (3.25)

PROPOSITION 3.7. Invariant lines for svstem (3.1) occur precisely in the
Sollowing cases

(1) b=0, a#0, in which case we have the two invariant lines which
are components of ax® —1=0.

(2) ¢=0, d#0, in which case we have the nvo invariant lines, com-
ponents of dy?+1=0.

(3) a=b+c—d=0 in which case we have the two invariant lines,
components of x>+ y>=0.

(4) a+2b+c=b+2c+d=0,b, c#0, inwhich case we have the four
invariant lines

+/—cx+/by+1=0 (3.26)

Some of these cases may occur simultaneously.

Proof. We first look for lines not passing through the origin. We take
flx.y)=Ax+ By+ 1 and K(x, y) as in (2.5), with n = 3. Identifying linear
and quadratic terms of the equation Df=/fK gives us ky=0, k=B,
koy=—A. kay= —AB= —ky. k, =A>— B> Identification of the third
order terms gives us the equations

B(A?+¢)=0
A(—A>+2B° +4a)=0
(3.27)
B(—-24°+ B +d)=0
A(B*—b)=0,
which have the solutions
A=B=0
B=b=A"—a=0
(3.28)

A=c=B"+d=0
a+2b+c=b+2c+d=A"+c=B"-b=0.

The case of lines passing through the origin is done similarly. ||

We now look for invariant irreducible conics. We limit ourselves to
conics symmetric with respect to the coordinate axes. since this will be
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sufficient to find the first integrals (non-symmetric conics could occur by
pairs or 4-tuples). An irreducible symmetric invariant conic has an equa-
tion

Ax py=14foox + [ 07 =0, (3.29)

with f3 /o2 #0 and [, f42€C.

We want to see under what conditions on the coefficients of the system
we have such invariant conics and how many of them exist. For this we
consider the equation Df'=/fK, with fand K as in (3.29) and (2.5). The
calculations yield koy=k, =k =0=kyy=kp>=0 and &k, =2(/p> — f20):
giving

K(x,p)=2(fp2— fa0) xV. (3.30)

Identifying the coefficients of x'y and xv* we obtain the equations:

Srot+fo16= frol for = [a0)s (3.31)
Faoh + ford = for for — fo)- (3.32)

The equations (3.31) and (3.32) in the variables f,, and /,, define two
conics whose projective completions have generically four intersection
points, possibly counted with multiplicities (by Bezout’s theorem). One of
these points is (0, 0) in the affine plane ( f5,. fi»), yielding no irreducible
conic (3.29). The equations (3.31) and (3.32) have exactly one point of
intersection at infinity, the point (1. 1,0), corresponding to the line
Sy =/ So there are at most two other intersection points of (3.31) and
(3.32) in the affine plane ( f5,. /i)

From the form of their quadratic part, the two conics can have a com-
mon component only when (3.31) and (3.32) are both reducible. These
cases are studied in Proposition 3.8. The remaining cases are studied in
Proposition 3.9 and Theorem 3.10.

PROPOSITION 3.8. The equations (3.31) and (3.32) are both reducible if
and only if cla+c)=0=b{b+d), in which case system (3.1} has an
irreducible conic if and only if we are in one of the following situation

(1) b=c=a—d=03a, in which case the conic is anyone of the
Samily

l+a.\‘2+(a+a)y2=0, alo+a)#0, xeR (3.33)

The integral in this case is rational.
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(2) c=b+d=0and a, d, d—a+#0, in which case we have a unique
irreducible invariunt conic

1+ (d—a)x"+dv?=0. (3.34)

(3) a=c=b+d=0#b, in which case we have an infinite family of
conics
(x?+y)y+1=0, a#0. (3.35)

In this case we have two symunetric lines of singular points by* —1=0.
(4) b=a+c=0and a, d, d—a#0, in which case we have a unigue
irreducible invariant conic

l —ax’ +(d—a)y*=0. (3.36)

(5) b=d=a+c=0%a, in which case we have an infinite fumily of
conics (3.35). In this case we have two symmetric lines of singular points
ax*—1=0.

(6) a+c=b+d=0 and a, b#£0, in which case we have an infinite
Sfamilv of conics (3.35) and we have a conic of singular points | = ax® + by,

Proof. The equations (3.31) and (3.32) define a 4-parameter family of
complex curves in the plane (/5. f,,), the parameters being («, b, ¢, d).
Applying the criterion for reducibility of a conic in homogeneous coor-
dinates in terms of its associate 3 x 3-determinant we have that the equa-
tion (3.31) (resp. (3.32)) is a reducible conic if and only if ¢{a + ¢) =0 (resp.
b(b+d)=0) Let us assume that the conics are reducible. Then the
parameters must satisfy one of the equations

(1) b=c=0
(i) ¢=0=bh+d
(3.37)
(m) b=0=a+c
(iv) a+c=b+d=0.
Let us consider these cases one-by-one

(1) b=c¢=0. In homogeneous coordinates (X, Y, Z), the two con-
ics (3.31) and (3.32) are

XaZ—-Y+X)=0
YdZ - Y+ X)=0.

(3.38)

Only the solution X — Y= —uZ= —dZ can produce irreducible conics
(3.29). We have two possibilities: Z=0= X — Y i1s a point at infinity of the
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affine plane ( f5, fy2). The second possibility is u=d and X — Y +aZ=0,
leading to family (3.33).

(1) ¢e=0=h+d In projective coordinates the two conics are

XaZ—-Y+X)=0
(Y= X)NdZ— ¥)=0.

(3.39)

Intersection points with X' =0 yield no irreducible conic for (3.1). In case
Y—X=0=X—Y+aZ, then a=0 or Z=0. In the latter we get the point
at infinity, while in the former we have an infinite number of invariant con-
ics fo(x7 4+ 3%) +1=0 and the integral is rational, yielding case (3).

Finally, when dZ— Y=aZ — Y+ X =0, then Y=dZ and X=(d—ua) Z.
We have a unique irreducible conic | +(d—a)x’+dy?’=0, for a,
d(d —a) #0, yielding case (2).

(m) b=0=a+c. This case reduces to the previous one using sym-
metry (3.25) and vyields cases (4) and (5).

(v} a+c¢=b+d=0. The conclusion follows from the form of (3.1)
in this case. |

PROPOSITION 3.9. Assume that c(a+c¢)#0 or b(b+d)+#0. Then

(1) the system (3.1) has at most two irreducible symmetric invariant
conics (3.29);

(2)  under the additional condition a — b+ ¢ —d =0, the system has two
invariant lines (x> + y> = 0) and one irreducible conic

cla—b) , bla—5b) ,
— X~ o = 4
P + Py +1=0, (3.40)

precisely when be(a —b)(b+c¢)#0.

Proof. (1) It follows from the explanations before Proposition 3.8.

(2) Let us suppose for instance that c¢(a+c¢)#0 (the other case
follows using symmetry (3.25) and ¢ —b+ ¢c—d=0. It is clear that f,,=c¢
1s not a solution of (3.32) since a¢+c¢=0. We solve (3.31) for f, and
replace 1n (3.32). Since f54 /5, # 0 we get that f5, 1s solution of:

(b+cWa+ce) foo+cla—b)a+c)=0, (3.41)

which has a non-zero solution precisely when (¢ —b)b+c)#0. |
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THEOREM 3.10. We consider system (3.1) under condition a—b+
c—d#0.

(1) A necessary and sufficient condition for the system to have exactly
two  symmetric invariant irreducible conics (3.29) is that bce(ad — be)
(la—dV +4bc)#0. The cocfficients fy and fy, are given by

_ Aad—bc)—(a+c)a+d)t(a+tc) (a—d)* +4be

20 Ha—b+c—d) (3.42)
_2(ad—bc)—(b+d)(a+d)i(b+d)./(a—d)2+4hc 143
0 2a—b+c—d) ' (343)

A first conic, F* =0, corresponds to the two plus signs and a second one,
F~ =0, to the two minus signs.
(2) If b=0 and cd{a —d)#0 the system has one invariant irreducible
conic
cd , dla—d)

— x7 =4+ 1=0. 344
a-l—c—-d\/ +a-+~c—dJ + ( )

(3) If c=0 and ab(a—d) #0 the system has one invariunt irreducible
conic
ald—a) ab 5
X7 — y*
a—b—d a—b—d-

+1=0. (3.45)

4y If ad—bc=0 and (a+c)b+d)a+d)#0 the system has one
invariant irreducible conic

(a+cla+d) , (b+d)la+d) ,
T a—bte—d T a—btc—d’ =0 (3.46)

(5) If (a—d)*+4bc=0 and bcla+d)#0 the system has one
invariant irreducible conic

cda+d) , (a—d)la+d) ,

1 .
at2c—d” T ara—a)’

=0. (3.47)

Proof. We consider the equation Df =fK, with fand K given in (3.29)
and (3.30), and we end with Eqs. (3.31) and (3.32). The first (second) equa-
tion is linear in f, (f5). In case fo, # ¢ and f,, # —b we can solve (3.31)

505:123,2-5
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(resp. (3.32)) for f,, (resp. f5,) and replace in (3.32) (resp. (3.31)). Since
S0/ #0 we get that fo; and f;,, are solutions of:

(a—b+c—d) f3+(atcla+d)

—2(ad — be)) frg+ clad —be) =0, (3.48)
(a—b+ec—d) fL,+(b+d)a+d)
—2(ad —bc)) fo, — blad —be)=0. (3.49)

(3.48) and (3.49) have distinct solutions precisely when (d —u«)* + 4bc #0.
We now consider the cases f,, =c and f,, = —b. If /5, =c¢ #0, then (3.31)
gives us a + ¢ =0. Equation (3.32) becomes

foa—Jole+d)—chb =0, (3.50)
yielding solutions
o c+dEJSle+d) +abe
Joz= 3 : (3.51)

These coincide with (3.43). In this case the two conics are tangent. The case
foa = —b 15 done similarly. The two conics are irreducible precisely when
(3.48) and (3.49) have no zero solutions, i.e., be(ad — be) #0. The points
(2)-(5) follow from straightforward verification. J

3.5. Phase Portraits of the Systems (3.1) and Their Bifurcation Diagrams
We begin by studying the nature of the singular points.

ProposiTiON 3.11.  System (3.1) has the following singular points

(1) the origin which is a center;

(2) *=(0, + \/%) for b>0, with eigenvalues A, ,=
+./2(b+ d)/b. The points are saddles (resp. centers) for b+d>0 (resp.
b+d<0). They are nilpotent for b+d=0, of focus type if (a—d)*+
4be <0, elliptic type if resp. (a —d)* +4bc >0, ad —bc >0 and saddle type
if fa—d)*+4bc >0, ad—be <0 (see [ D] for nilpotent points);

3) Q. =( i\/— 1/¢,0) for ¢<0, with -eigenvalues A, ,=
+./2(a + ¢/ . They are saddles for a + ¢ <0 and centers for a + ¢ > 0. They
are nilpotent for a+ ¢ =0, of focus type if (a —d)* +4bc <0, elliptic type if
resp. (a—d) +4bc >0, ad—be >0 and saddle type if (a—d)* + 4bc >0,
ud — be < 0;

(4) the four points P, . =(+./(b+d)/{ad—bc), + \/7(41 + ) (ad—bc))
Jor (b+d)ad—be)>0 and (a + ¢)ad —be) <0, whose eigenvalues are real
and distinct for (a —d)* +4bc > 0, in which case they are saddles if and only
if ad—bc <0 and nodes (alternately stable and unstable) if and only if
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ad—be>0. If (a—d) +4bc<0 they are foci (alternately stable and
unstable) or centers when a+d=0;

(5) two pairs of singular points at infinity for bc >0, four pairs of
singular points at infinity for be <0, b(d—a) >0 and (d —a)* +4bc >0, no
singular point at infinity if (d—a)* +4bc <0 or ((d—a)* +4bc >0, be <0,
and b(d —a) <0). The points undergo bifurcations at b=0 (birth of two
singular points from the y-direction in a nilpotent bifurcation involving a
finite point), ¢ =0 (similar in the x-direction), saddle-node bifurcation along
the equator when (d—a)?>+4bc =0, and transcritical bifurcation between
infinite points and finite points when ad —be = ().

Proof. (2) The Jacobian matrix at the points (0, +./1 /b) is given by

0o 2
J:<1+d/‘b 0)' (3.52)

To study the type of the singular point when b+d=0, we localize the
system at for instance (0, ./1/b), by letting y=Y + \/l/b. System (3.1)
becomes

Y +bY 43 /b ¥

ﬁ {3.53)

Y=-2./bxY+cexP+(—bxY?.

xX=2Y+

We next make the following weighted blow-up (as in [BM]}):

s (3.54)
Y=¢27
After dividing by &, the local system (3.53) becomes
. ua
£=~f—b8+282+()(8)
(3.55)

. 2
Z=c—-—=(a+b)Z—4Z+ O(¢).

Jb

It is easily checked that the condition for Z =0 to have roots is precisely
(¢ —d)*> +4bc =0, yielding that the center case occurs when (d—a)?+
4bc < 0. To decide between elliptic and saddle cases it is enough to check
if the point splits into two nodes and a saddle or two saddles and a
center.
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(3) It is the same as (2) using the symmetry (3.25).
(4) The Jacobian matrix at these points is

axy 2by?
/= (2(‘.*(2 2dxy>' (3.56)

The characteristic equation is A —(TrJ) A+det J=0 with discriminant
disc J= —4(a+ )b+ d)[(a—d) +4bc)]/(ad — be)?. Under the hypothesis
of the existence of P, ,, disc J =0 if and only if (d —a)” +4bc = 0.

(5) Let us first suppose bc #0. To find the singular points at infinity
we use the coordinates (u, z) = (y/x, 1/x). After multiplication by z? the
system becomes

i=c+(d—a)u’ —bu’+ 2 + u’z?

(3.57)
S= —(au+bu') - +uz’,
Singular points at infinity are given by - =0 and the equation
—but +(d—aYu? + ¢ =0, (3.58)

yielding two singular points at infinity when bc>0 (case [) and four
singular points if bc <0, b(d—a)>0 and 4>0 (case II). The Jacobian
matrix at the singular points is given by

J:<_4bu-+2(d—a>u 0 >=<’~l 0>, (3.59)

0 —bu —au 0 i,

Let us call u, (resp. u, = u,) the positive roots of (3.58) in case I (resp. case
II). Using the symmetry (3.25) we can suppose b>0. Then necessarily
Aluyy <0 and A,(u,) > 0. We also have:

—did—a) —thid\/z

% {3.60)

el
Uipy= —du; —c¢=

In case II, when a + d#0, A,(1;) and A,(u,) necessarily have the same sign
near 4 =0 and their sign is the sign of —d(d —a)—2bc. One of the A,(u,)
changes sign when ad — bc changes sign. This occurs when the singular
points ( +u;, 0) coincide with the points P, . In case I then A,(u,) has the
sign of —d(d —a)—2bc—d \/2 The case =0 and/or ¢ =0 can be studied
easily: there are singular points at infinity on one or the two axes and their
type is determined by blow-up. |}

ProrosiTION 3.12.  The conics have real coefficients foo and fy, precisely
when A=(a—d)’+4bc=0. In case A<Q the real part of the conics is



CUBIC VECTOR FIELDS 407

reduced to four real points, the points P, . of Proposition 3.11, when these
exist. Otherwise the conics have no real points. When 420 the following
cases occur:

(1) The conic F, =0 (resp. F_ =0) is a hyperbola and passes through
the singular points at infinity given by cot’? 8= (a—d+ \/Z )/2¢ (resp.
cot’O=(a—d— \/2 )/2c) precisely when these points exist.

(2) The two conics F. =0 and F_ =0 intersect at the singular points
P, when these exist.

(3} If be >0 then the two conics are either an ellipse and a hyperbola,
or a hyperbola and the empty conic (i.e., f»y, for >0 in (3.29)).

F1GURE 1
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(4) If be <0 the two conics can be
— two ellipses,
an ellipse and an empty conic,
two empty conics,
— two hyperbolas with same direction,

two hyperbolas with opposite directions.

ProposiTioN 3.13.  The system (3.1) has no limit cycle.

0<A<i, D<o

FIGURE 2
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1
%<A<7§, D <O

FIGURE 3

Proof. The divergence of the system is div=2(a+d)xy. When
a + d =0 the system is Hamiltonian and has no limit cycle. When ¢ +d #0
the only periodic solutions cut the coordinate axes. Since the coordinate
axes are symmetry axes the periodic solutions cannot be limit cycles. ||

We now begin to construct the bifurcation diagrams of the system (3.1).
To do this we first note that system (3.1} is symmetric under (3.25). The
system is Hamiltonian for a + d =0. The symmetry allows us to consider
only the case a +d >0. We change to parameters

A=a+d B=a—d C=b+c D=b—c. (3.61)
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System (3.1) becomes

A+B , C+D |
Xy -

2 2
C—-D , A-B

y=x+ X7+ Xy
) 3 5 )

X=—-y+
(3.62)

and we rescale parameters so that (4, B, C, D)e $°. Since a+d >0, then
A = 0. To draw the bifurcation diagram we express

D=+/1-4>-B*—C~. (3.63)

The parameter space consists of two half 3-balls 4>+ B+ C° <1, A=0,
(one for D> 0, one for D <0) linked on a half 2-sphere 4>+ B>+ C* =1,
A=0. To draw these we cut them by planes 4 = c¢st.

s <4<i D<o

FIGURE 4
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)

FIGURE 6
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In this parameter space we first consider the bifurcation surfaces of the
singular points.

PROPOSITION 3.14.  The following are bifurcation surfaces of the singular
points, which correspond to bifurcations of the invariant conics:

(1) b=0, corresponding to a bifurcation of the singular points
(0, £ /1/b) as they pass through infinitv, while one of the conics becomes
reducible,

FiGure 7
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(2) ¢=0, corresponding to a bifurcation of the singular points
(+/ —1/c, 0) as they pass through infinity, while one of the conics becomes
reducible;,

(3) ad—bec=0, corresponding to a bifurcation of the four singular
points P, as they disappear at infinity. Meanwhile one of the conics
becomes the double line at infinity;

(4) (a—d)>+4bc=0, corresponding to a bifurcation of the singular
points at infinity. Meanwhile the two conics coincide. In the region where the
Sour singular points P, , exist, the real parts of the conics pass from two
intersecting conics to four isolated points.

0<A<y/I=48 p>g

FiGUrE 8
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(5) a+c¢=0, corresponding to the codalescence of the four singular
points P, with the points ( i\/ — /¢, 0) in a nilpotent bifurcation of saddle,
elliptic or focus type. Meanwhile the two conics are tangent at the points
(£ =1/, 0);

(6) b+d=0, corresponding to_the coalescence of the four singular
points P, with the points (0. +./1/b) in a nilpotent bifurcation of saddle.
elliptic or focus type. Meanwhile the two conics are tangent at the points

(0, +./1/b);

FIGURE 9
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FiGure 10

(7) a+d=0, corresponding to A=0, in which case the foci P, ,
become centers as the svstem is Hamiltonian.

They appear in Figures 1-14.

Proof. The equations of the bifurcations surfaces in (4, B, C, D)-space
are given by

(1) =0, 1e.,
2C*+ B*=1-— 4%, (3.64)

with C<0(C20)if D=0 (D<0).
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<A</} D>0

FiGure 11

(2) ¢=0, 1e,
207+ B°=1-—4-, (3.65)
with Cz20 (C<O)if D=0 (D<0).
(3) ad—bc=0, ie.,
1—-2B>—-2C*=0. (3.66)

(4) (a—d)*+4bc=0, ie.,

2B +2C =1 - 4% (3.67)
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FIGure 12

(5) a+c¢=0,1e,
2B*+2C*+2BC+24B+24C=1-2A4", (3.68)

with A+B+C20 (A+B+C<0) if D=0 (D<0). This curve can be

written
B+C A\’ B—C\? 4
6< ! +§> +2<-—2——> ~1sa (3.69)

(6) b+d=0, 1e.,

2B*+2C*~2BC—24B+24C=1-24" {3.70)
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FIGURE 13

with A —B+C<0 (4A—B+Cz=0)if D=0 (D<0). This curve can be

written
B+ C\? B-C A4\ 4
2 —— ] =1-=A4" .
< 3 >+6< 3 3> 1 3A (3.71)

(7) a+d=0,.ie. A=0. |

Remark 3.15. The surface ¢ — b+ ¢ —d =0 is a bifurcation surface for
the conics only (as one of the conics coincides with the two lines
X* + y*=0), corresponding to no bifurcation of the singular points in the
phase portraits.

We consider now the existence of saddle connections surfaces on which
occurs a saddle connection between @, =(/—1/c, 0) and Q% =(0,
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A>¥ D>q
Fisure 14

\/ﬁ) This can be an “inner” or an “outer” saddle connection. Using the
symmetries each saddle connection in the first quadrant yields four
saddle connections between the points @, and Q*, forming either
a lozenge (inner case) containing the origin or a clover (outer case)
containing the origin together with the four singular points P,,. The
precise equations of the saddle connections are transcendental
functions:

ProposiTION 3.16. (1) The equation of the bifurcation surface corre-
sponding to saddle connections between the points Q, and Q= is given
by

2 /4 —a—d— 4

2C+l)—d—\/j Na+d)
a—2b—d+./4

a+c

= 72
b+d . (3.72)

<
b

305.123,2-6
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when (a—b+c—d)ad—be)#0 and A= {(d—a)> +4bc >0, and by

b )2 2 / 4
(atc) (di) arctan \/

Bl = =1, 73
c(l?—k(l)‘exp \/—A a—d (3.73)

when (a—b+c—dWad—bc)#0 and 4 < 0.
Furthermore (3.72) and (3.73) remain valid when b+¢=0 and we let

a+d—0.

(2)  Points a+c=5b=0 arc limit poiats of the saddle bifurcation sur-
Sace when ¢ <0, d>0.

(3) Points a+c=b+d=0 are limit points of the saddle connection
bifurcation surface when ¢ <0, bh> (.

(4) Incase (a—d) +4bc =0, and (a+d)a—b+c—d)#0 the equa-
tion is given by

(3.74)

2c¢{b+d) [a+d]—l

(a—d)a+¢) x a—d

There is at least one point where this equation is satisfied in Figs. 8-11. A
branch of the curve of saddle connection tends to (a—d)* +4bec=0 when
a+d—0.

(5) In case ud — be =0 the equation is given by
INd— e _
1=-(—Iex {(a—H Wd ()}z—dex [((H-d)(b a)} (3.75)

a c(b+d) a bla+c¢)
There is at least one point where the equation is satisfied in Figs. 811, A

branch of the curve of saddle connection tends to ad —bc =0 when a +d — 0.

(6) Points on the surfuce of saddle connection are given by a+2b+ ¢ =
b+ 2c+d=0, which are the points where the system has four invariant lines.
They correspond to A+ 3C= B+ D=0 in the figures. The point is located at
C=0und B=—1 /\/5 when A =0. When A increases it appears on all figures
with D20 until A= \/5,/2 where it coincides with the point B=C=
—1/2 \/3). At this point b=0, ie., two saddle points vanish at infinity.

Proof. (1) There is a saddle connection if Fl+ \/— I/e,
0) = F(0, +./1/b), where F is the first integral (3.12) or (3.14).
In case 4 =(a—d)*+4be > 0 the result follows from

_
2 K
RN

]
12('+a—d~\/21“+‘”\5

F+/—1/c O)ZE

X2 a—d+. /A @ 4V (3.76)

a+c¢




CUBIC VECTOR FIELDS 421

and

Ia_Zb_d_{_\//Zlqu(H\/.?

F0, +\/—— jb+d

xla—2b—d— /A « 4+, (3.77)

with E = [2((1_];_*_(-_(1)]2\,“7.
If we let b+ ¢ =0, then the right hand side of (3.72) becomes

R R T B, Py .,,(_l.,_‘d 27 42 | At
a+c a d— /! )7 < (378)
c—d a+2('—d+\/(a‘d)'~4("
which tends to L as a +d — 0.
Similarly, when 4 <0
O =
T e cla—b+c—d)
=4
xexp| —2a+d)arctan ————— |, (3.79)
a—2b—d
, {a+c)’ v
+/ -1l =| ————
Fit le. 0) (c(a~17+t'—d)>
i
X eXp 2(u+d)arctan -------- - (3.80)
+2c—d

yielding a connection when (3.73) is satisfied. As in the previous case, if we
let b+ ¢ =0, then (3.73) is satisfied at the limit when « +d — 0.

(2) When a4+ ¢=0=5h, we have the two invariant lines ¢x? + 1 =0,
which pass through the singular points ( i\LT /e, 0). The condition d >0
ensures that for small 4 the points (0, J_r\/l/‘”b) are saddles.

(3) When ¢+c=h+d=0 we have a conic of singular points ex?—
by?+ 1 =0 passing through the singular points ( i\/~ I/e, 0) and
(0, + /1/b).

(4) When (a4 —d)* +4bc =0 we use the first integral (3.17). We have

Fl+/=1/c,0)= (3.81)

2a +¢) ox a+d
a+2c—d p Ca+42c—d
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and

2Ab+d) 2e(a +d)
/ / - - T o T A x| 3
FO. +/17b) a—-Zb—dexp[(a—d)(fl"'z"_d)] —

yielding a connection precisely when

Ve
B 2eib+d) [aﬂ{}:l. (383)

(a—d)}a+c) a—d

If we let 5 — 0 in the region a — d <0, then a — d - 0 and the left hand side
of (3.83) goes to zero. Similarly, if we let « + ¢ — 0 (a — d is negative in the
interesting region) then the left hand side goes to +oc (resp. — o) if we
are in the region a+c¢ <0 (resp. a+c¢>0). By the intermediate value
theorem there appears a point of saddle connection in Figs. 7-11 corre-
sponding to 0 < 4 < \/2/ .

Finally if we let a4+ d — 0 then (3.83) is satisfied at the limit.

(5) When ad —he =0, we use the first integral (3.20). We have

— b+d a+d
, iby= — — , 3.84
O i\/l’/ ) a—b° { b+d} ( )
and
— a+c dla+d)
Fi+/—1/c,0)= - , :
(_\/ 1je.0) c—d { c(b-f—d)} (3.85)
yielding a connection precisely when
d (a+d)d—c)
_ e | = ], .
a X [ cdb+d) } (3.86)

If 50 (resp. ¢ > 0) then ¢« — 0 and the left hand side of (3.86) tends to
+ oo (resp. 0), since b, d>0 and «, ¢ <0 in the interesting region.

As in the previous case if we let a +d — 0 then (3.86) is satisfied at the
limit. §

Remark 3.17. Although we know the precise equation of the saddle
connection surfaces, because these are given by transcendental functions, it
is not easy to draw their sections with the planes 4 = Cst. In our drawings
of the bifurcation diagrams (Figs. 8-13) the saddle connection curves are
drawn as boldface curves and their position and shape is only conjectural.

We now gather all the informations obtained in the following theorem:
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THEOREM 3.18. The bifurcation diagram of singular points of (3.1)
appears in Figs. 1-14. In the figures A= (a—d)? +4bc. The arrow near the
name of a bifurcation curve f=0 in the figures corresponds to the direction
in which the quantity f increases.

The bifurcation diagram of phase portraits of (3.1) is complete except in
the regions where both pairs of singular points Q, = (\/ —1/¢, 0) and
0+ =(0, \/l‘/b) exist and are saddle points, ie., b>0, ¢<0, b+d>0,
a+ ¢ <Q. In these regions the phase portaits in the first quadrant are known
up to the relative position of the separatrices of Q. and Q. The two sym-
metry axes yield the phase portraits in the two other quadrants. More
precisely

(1) The phase portraits are known for A=a+d =0 (the Hamiltonian
case). For each point on the plane 4 =0 and not on a bifurcation line we can
by continuity deduce the phase portraits for points in « small neighborhood.

(i1)  The phase portraits are known on the interesection of the bifurca-

tion surfaces a+c=0, b+d=0, b =0 and ¢ =0 with the plunes A = Cst.
(1)  The phase portraits are known everywhere on A =0, except for
the position of the inner separatrices.

(1v) The phase portraits are kinown everywhere on ad —bc =0, except
for the position of the inner separatrices.

(v) Ona+2b+c=b+2c+d=0 the system has inner saddle connec-
tions given by the four invariant lines studied in Proposition 3.1. A limit point
of this set is the point a+c=b=0o0n A= ﬁ/’?..

{vi) There exist points of inner saddle connections on A =0 and on
ad—bc=0.

Proof. To derive the bifurcation diagram we start with the bifurcation
diagram of the Hamiltonian system 4 =0 (Figs. | and 7). In this case the
phase portraits are easy to draw since we know the types of the singular
points. Also, in the bifurcation diagram for D = 0 there appears a bifurca-
tion curve of additional saddle connections (b +¢=0= C). on this curve
for b+ d>0 we have simultaneous inner and outer saddle connections
when 4 >0 and only inner connections for 4 <(0. Possible termination
points (i.e., points of the adherence) for outer saddle connections are given
by 4=0.

The bifurcation diagram in the case 4 >0, D<0 (Figs. 2-6) is then
easily derived from Propositions 3.11, 3.12, 3.13, since the phase portrait
depends uniquely of the type of the singular points.

In the case D >0, Proposition 3.11, 3.13 and the bifurcation diagram for
A =0 force the bifurcation diagram for small 4 > 0 far from the saddle con-
nection and the curve (¢ —d)> +4bc=0.

The different bifurcation values of 4 are the following
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tangent to (@ — d)> +4bc =0 when D > 0. Meanwhile the curve of exterior
saddle connection vanishes at the tangency point.

(2) A=1/2: this corresponds to b+ d =0 (resp. a + ¢ =0) becoming
tangent to ad —bc =0 for D =0 (resp. D <0).

(3) A=./1/2: this corresponds to the disappearance of the curve
ad — bce =0 through D=0.

(4) A:\/?’}: this corresponds to the tangency of ¢+ ¢=0 with
D=0. For 4> \/2/3 the curve ¢ + ¢ =0 lies completely in D > 0.

(5) A= /(7+ \/35),“’17: this corresponds to the tangency of
a+c=0 with {a —d)* +4bc=0 for D>0.

(6) A=./3/2: this corresponds to the curve « + ¢ =0 shrinking to a
point. This point is a termination point of ¢ + 2b + ¢ = b + 2¢ + d =0 where
the system has four invariant lines yielding an inner saddle connection.

On 4=0 in the region >0, ¢ <0 the system has an invariant hyperbola
passing through the singular points P, , . Hence there are trajectories con-
necting these points to saddle points at infinity. From this it follows that
there can be no outer saddle connections. The phase portrait then is known
up to the relative position of the inner separatrices. The phase portraits on
a+c=0 (resp. b+d=0) depend only on the type of the nilpotent points

0. (resp. 0*). 1

It seems natural that the curves of inner and outer saddle connections
which coincide for 4 =0 would split from each other for 4 > 0. The outer
saddle connection coincides for 4 =0 with the curve b + ¢ =0 in the region
(a —d)* +4bc <0 together with the portion of the circle (¢ — d)? +4bc =0
mn region B, C <0 (in this case the connection occurs at infinity). The sad-
dle connection curves are drawn in Figs. 8-13 in the simplest possible way
so as to glue together the different phase portraits which are forced by the
case 4 =0. Note that they correspond to no bifurcation of the invariant
algebraic curves. Hence the following conjecture is natural:

CONJECTURE 3.19. The Figures 1--14 represent the complete bifurcation
diagram of (3.1).

Remark 3.20. The change of variables (3.2) brings (3.1) to the linear
system (3.3) which we study in the first quadrant. Tangent points of trajec-
tories with the coordinate axes correspond to singular points of (3.1).
Hence we have a saddle connection between the singular points Q, , and
Q*, precisely when the linear system (3.3) has a trajectory in the first
quadrant tangent to both the coordinate axes. The correspondence between
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~

Trajectories of the linear system (3-81) and corresponding trajectories of (3.1)
FiGure 15

trajectories of the linear system (3.3) and trajectories of (3.1) is illustrated
m Fig. 15.

3.6. 4 Sufficient Condition for a Center

The following theorem gives a sufficient condition for a system to have
a center at the origin and is a partial converse to the existence of invariant
algebraic curves for the stratum in the center space.

THEOREM 3.21. If the system (1.1) has two distinct invariant conics (not
necessartly irreducible) which are symmetric with respect to the two coor-
dinate axes, then the origin is a center. Either the system is synunetric with
respect to the coordinate axes or F(x.y)=Xx>+y" is a first integral for the
systent.

Proof. By hypothesis we may assume that the equation of the conics is
of the form

JoX +foay’+8=0, 5=0,1. (3.87)

Let us start with conics not passing through the origin and assume each
invariant conic has an equation (3.87) with d =1. Then equation Df=fK
as in (2.2) yields k., =0=k,, =k, =0. Identification of the quadratic
terms gives ka1, = ko> =0 and k,, = 2( fu» — fa)- Identification of the x*- and
vi-terms yields s, = by, = 0. Identification of the x>y*~terms gives

aps fro+ by fo2=0. (3.88)
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If this equation has two linearly independent solutions {f5,. fy.) and
(/50 [02) then a5 =5, =0 and we have a system symmetric with respect
to the axes, and hence a center at the origin.

If the two solutions are linearly dependent, then the identification of the
x*y- and xy’-terms yields

20 for—Ffw) =an frg+ by fia

202 for = Sa0) = aoafan + 012 foa- (3:89)
Since the left hand sides are quadratic and the right hand sides are linear
in f5, and f;,, then the only possibility to have two linearly dependent solu-
tions is that both sides are zero, i.e., fa=/f4> and dasy + by =ay +5,,=0.
Together with the previous conditions az, =by; =a,,+ b, =0, this is the
condition for F(x, y)=x"+y* to be a first integral.
We can check that an invariant conic g,,x? + g4. 1> = 0 passing through
the origin necessarily satisfies g., = g,,. It exists under the conditions

Uz —dy3—boy + by =dgs —day + 015Dy =0. (3.90)

Let us suppose we have another invariant conic. Necessarily it does not
pass through the origin and has the form (3.87). By the calculation above
we have a;,=by;=0. By (3.90) we have ¢, + b,, =0. By (3.88) this yields
either a,, =b,, =0, in which case the system is symmetric with respect to
the two axes or f,y=/fp. From (3.89) the latter gives a, + by=
do3 + b =0. Together with the previous condition ay=bg;=u > + b, =0,
this is the condition for F(x, y)= x>+ to be a first integral.

4. CeNTERS OF TypE III

We study here a system

N=—y—(0—a) x4+ 3ux’y — (2a—-30) xy? —uy? il
1 o) ( " )
P=x4puxt+ (304 2a) x'y = 3uxy? — (0 +a) v,
with

MO*+p*)y=d> (4.2)

The parameter space is a 2-cone in R* and the bifurcation diagram has a
conic structure. Hence, intersecting the cone with a sphere, we see that we
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must study (4.1) on two circles, for example a = + 1. The system has the
following symmetries
{(x,y,a)—~(—y. X, —a)

{4.3)
(x,v. 0, t)—(y, x, —0, —1).

Hence it is enough to study what happens in the case ¢« >0, # =0, i.e., with
parameters on P,

THEOREM 4.1. Al the systems (4.1) have one invariant quartic and two
invariant sextic curves. These curves all pass through two real singular points.
They all have branches tangent to each other and to the equator at a pair of
singular points at infinity. The curves appear in Fig. 16.

Proof. An invariant quartic curve is given by F, =0 with

3 h 20 2
Fix, y)=1=2ux"+2axy —-2uy" + (_a+4—) x*—2u(a +20) X7y
IR - 2() >
+ 602Xy = 2ula = 20) xy* + ta=20)° v (44)

4
and satisfies DF, = K, F, with K (x, y) = 2a(x* —?).

a>0, >0
—_——— R =
—_——— =
— F3=0
F1=F2=F3=

FiGure 16
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When looking for an invariant sextic curve Flx,y)=1+

0., 2 F,xy/=0, we obtain as possible solutions for f,,: f),=3aq,
/11 = 6a, yielding for g # 0 two sextic curves F, =0 and F, =0 for which we
have K,(x, y)=3a(x?—y?) and K;(x, y)=6a(x?—y7). The sextic curves
Fs(x, p) and Fi(x, y) are given by:

Fylx, yi=1 A% X7+ 3axy — %:;—j v+ 30{(1: 20) Xt — Jata+ 222)((‘ —0 X’y
+?§i e 3ala — 222}(c1 +0) N, 3al a4— 20) e ala lzj(})3 o
N 3a(a +20)° o 15ap(a +20) [OETRTEE
4 4
B lSa,u(Z —20) e 3ala ; 20)° N aa 1-65_())3 V- 45)
and
Filx, y) =14 6axy — §a(a4;4(1) Xt —bapx’y + lSzaz x%y?
— bauxy® — 3o a:— ud i+ flll(f{:;‘ 20) XO 4 3afia + 20) x°y
_3apl3a + 100) 3(12+ 106) xH? +da(a? = 50%) X'yt — 3oyt 3a — 101 3(12— 1) x?

aula—20
N (¢ )

—3allla —28) xy°
3ala ) X) >

°. (4.6)

The formula for F, is valid for p #0, while the formulas for F, and F, are
valid without restriction. Hence it is more natural to take as the first sextic
curve H,(x, y) = 1F>(x, y)=0. This formula makes sense for all values of 1.
In case u =0, we can scale (a, ) =(2, 1) (because of (2.2) and (2.3}). The
sextic curve passes through the origin and reduces to

Hop(x, y)= =337 =337 — [2x% — 810 =0. (4.7)

A first integral can be taken as

Fx,y)=F(x, ) Fy{x, )" (4.8)
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Among other choices we could choose F(x.v) H,(x, )" or
Hy(x, y) Fyx,y) "
For u, 1#0, Sibirsky introduced the following change of coordinates

u=cx—2uy

(4.9)
v=bhx—2uy,

with
b=u—20>0, c=a+20>0, (4.10)
which simplifies the expression for the invariant curves and helps visualizing

them geometrically. Letting b = 4u%/c, we obtain algebraic curves involving
only the two parameters ¢ and u: The curves become F, =0 with:

w u?t
Fl(u,l’)Zl—’z;;-f-ZE‘:’, (4.11)
N (4 20
Fyu, v)y=1 —_Li“_:;;/__j_)<4/ru'+(-—L"—2/1,u31'+ /3[(? >. (4.12)
(e + 47) , ) (e +4u°)
Fiuty=l+—————su—o)ldqu—cv)y+-—5——5
Mu, v) +2ﬂ((__;4#_)~(u e u —« L)+(c‘—4,u')*
T L 0 DR e U ok R B
x{ TC R TVER 256;0°
447 \
T, 3 g an W
[6u(c™ —4u-)-
16 2 3 L2 4 2 , W2 4 2
x{ /f u‘}—ﬁ‘;&—)u'lwk( +fl v"} (4.13)
c” ¢ -

To draw F, =0 we write it as

. 2 <2,u2 o M, 644° >
ST T (= N .. L S o A Y 4.14
ot + AT 3" +4p) ( )

The equation in ¢ has discriminant

412 ol R
A -——3—’(;{“— 12¢7u” +

6duct 1 d
e } el (4.15)

4u’ + 7 S

The discriminant of the cubic polynomial D in U =u" being positive, and
the sum of the roots of D(U) being zero, D has one (resp. two) positive
root(s) for x <0 (resp. 1> 0), yielding for F,=0 a curve with two (resp.
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three) connected components. We note that F,{u, 0) =0 has no (resp. two)
solution(s) for g <0 (resp. £ >0). To look for the intersection points of
F,=0 and F,=0 we first scale ¢ =1. Solving F, =0 in v and replacing in
F,=0 yields

0=u®(14+4u7) = 24(1 +4u>) u® +256pu> —48(1 + 407y = P(u?).  (4.16)
The discriminant of P(U) is
Disc(P) = —452984832(4s” — 1)* (du® + 1)4, (4.17)

which is zero only for § = 0. Hence the only bifurcations of roots of P occur
for # =0. Checking for the two different values («, ¢, 0) = (10, +4, 3) we see
that in all cases we get for P a negative root, a positive root and a pair of
complex roots, yielding two intersection points of F, =0 and £, =0, which
are symmetric with respect to the origin. In the particular case # =0, P has
a triple positive (negative) root for ¢ =2u (a = —2u).

F,=0 and F,=0 both have the same unique point at infinity u=0.
F, =0 has four points at infinity, among which the point ¥ =0. These four
points coincide with the four singular points of (4.1) at infinity, the equa-
tion of which is given by

(ex —2uv)(2px® + e’y — 6uxy” — c'}"‘) =0. (4.18)

F,=0 passes through the two finite intersection points of F, =0 and
F,=0. To further investigate the form of F, =0 let us notice that F, is a
quartic polynomial Q(r) in v. Looking to the sign changes in the coef-
ficients we can note that Q(v) has between one and three positive (resp.
negative) roots and exactly one negative root for u> 0 (resp. u <0) when
(>0. When u <0 the sign of roots is reversed. Moreover the discriminant
of Q is given by
27 (1 +4u2) 2

A: —_ . : 2 |
* 268435456 p' (1 —4u*)*° Plu) (4.19)

where P(u?) is given in (4.16). Hence Q =0 has two double points which
are the intersection points of the three invariant curves F,=0. This gives a
total of six branches for F; =0 as shown in Fig. 16.

We must now study what happens for ¢ =0 and for ¢ =0.

For 6 =0 the system is symmetric and we can use the results of Section 4.
We must distinguish the two cases ¢ = +2u with ¢>0. Using a rescaling
it is enough to consider the two systems («, 4} = (2, +1). In order to work
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/D
o@*‘

6=0 u<0 u=0 p>0 =0
a>0, 620
FIGURE 17

with the notation of Section4 it is better to change to coordinates

(X, Y)={(x+). —x+y), Le, to consider the system
. Sa+6
Yo _y et ,quY+a+2;t y?
4 4
R . (4.20)
. a—2u ., Sa—o6u .
Y=X+ X' — XY~
4 4
In the particular case (a, u) =(2, 1) this gives the system
X=—-Y-4X’Y+ 7Y’
(4.21)

Y=X-XY2,

which has the two invariant lines Y= +1, tangent to the invariant hyper-
bola 3X>— Y?+1=0 (see Fig. 17). The invariant curves F,=0 reduce to

Flxvi=(=x+yv+ 1) (x—y+ 1)+ =0, i=1.2, (4.22)
and
Fux.y)=(x =y =12 (x—y+ 12 (1 +2x> 4+ 8xy+2y%)=0.  (4.23)
The case (a. x)=(2. —1) corresponds to the system
X=-Y-XY

_ . . (4.24)
Y=X+X —axy>,
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with the invariant curves F, =0 reduce to

Fix, ) =[l+{x+y2) "' =0, i=12 (425)
and
Fix. ) =[1+(x+1)7]17 (1 —2x7 + 8xy — 237)

0. (4.26)

For 4 =0 we scale (a, ) =(2, 1) and study directly the system

X=—yp+xi—xy?
5 (427)
F=x4 737 =37,
for which we have the invariant curves:
Fix, y)=1+4xy+4x*=0, (4.28)

and
Filx, vy =1+ 12xp 4+ 3x* +30x7y7 — 9p* + 24x°y —8x%y = 0. (4.29)

These curves have the same form as in the general case u, 0 # 0 and inter-
sect in two points P, and P,. The equation

Ha(x,y)= —3x7 =3y — 123"y —8x" =0 (4.30)

corresponds to the particular case of a curve H,(x, y), when one branch
reduces to a point. The two other branches pass through P, and P, respec-
tively. i =0 corresponds to a bifurcation for the curve H,(x, y)=0, but to
no bifurcation of the phase portrait of (4.1). §

PROPOSITION 4.2.  The system (4.1) has four singular points at infinity,
one repelling node and three saddles for 0> 0. For 0 =0 there are two saddles
and a non-clementary singular point.

Proof. To study singular points at infinity we change to coordinates
(X, ¥) = (cos ¢/r, sin ¢/r). After multiplying by r* system (4.1) becomes

F=[(0—a)cos® ¢ —4u cos® ¢ sin ¢ — 60 cos? ¢ sin® ¢ + 4y cos ¢ sin’ ¢
+(0+a)sin® gl r+o(r)=A(¢) r+o(r)

. ] (4.31)

¢ =[1ecos* § + (a+40) cos® ¢ sin ¢ — 6y cos® ¢ sin® ¢

+(a —40) cos ¢ sin® ¢+ sin® ¢ + o(r) = B(d) + o(r).

Singular points at infinity are solutions of B(¢)=0.
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We first treat the case u =0. Hence we can suppose (a, #)=(2, 1), and
we need only study the system

X=—p+xt-xyp?
) (4.32)
P=x+Txte -3y,

which has a repelling node on the y-axis and three saddles on the lines
y=0and 3y’ — )’ =0.
We next consider the case u #0. Let 7=cos ¢/sin ¢. The singular points
satisfy
[(a+20)t—2u][(a—20) T+ 6ut®> —3(a—20) 1 —2u] =0. (4.33)

The type of the singular points comes from the sign of the eigenvalues of

the matrix J:
Al¢) 0 >
J= . 4.34
( . B (434

At the singular point t,=2u/{a + 20) we have

12a%0)
Josinto| (4T o | (4.35)
(a+20)
yielding that the point is a repelling node. Let
D(t)=(a—20) 1" +6ut” —3(a— 20yt —2u. (4.36)

The discriminant of D is easily checked to be positive (equal to 432a%/
(a—20)7) so D always has three real roots. One can also see that B has
two positive and two negative roots and it is easily checked that D(z,)=0
precisely when 0 =0. When ) =0 the system is symmetric and the type of
the singular points is known. We limit ourselves here to the case  #0. We
let 7, <71, <7, be the three roots of D(7r) and v, =2u/(a+ 20). From the
sign of B'(t,) which is the same as the sign of 4 we can find the sign of the
B'(7,) using the fact that the four roots of B(t) are simple. We must study
the sign of A(7) under the condition D(7) =0 with

Alt)=(0—a)t* —dur* — 60 +dut + 0 +a. (4.37)
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We have:

(a—20) A(t) — (0 —a)a—20)tD(t) — 2u(a + 0) D(t)
=2ala—20)[ —=3(a+0) > +dut +a+ 01 =2a(a—20) E(r). (4.38)
We are interested to the behaviour of D(t) when E(t)=0.
Na+0) D(t)+3(a+0)a—20) tE(t)+ 2u(1la + 50) E(t)
=2a—-20) —tla—20)a—0)+ 2ula+0)] = F(7). (4.39)

Hence D(7)| g, -, has the sign of F(7). Let vy =2u(a + §)/{({a —20)(a—0))
the root of F(t). Then E(ty)= —18all(u+ 0)*/((a —20)a—0)*)<0. We
must study the two cases u positive or negative. We show the details for the
case > 0. The other case can be done in the same way. In this case 7, is
located to the right of the roots of E(t), since 7,>0 and E(7,) <0. Hence
Fit)gr=0>0 from which D(7)|g,,-o>0 follows. Moreover D(t,)=
—16afu/(a +20)2 < 0. Hence 7, <1, <0< 1,<7;. Since A(z,) has the sign
of E(t,) we get A(t,) <0, A(1,)>0, A(13)>0, A(74)>0. From B'(7,)>0
we can conclude that B'(r;)>0, B'(7,) <0, B'(1;)<0, yielding three
saddles in 7,, 75, 7, and a node in 7,. |

PROPOSITION 4.3.  System (4.1) has three finite singular points: the origin
and two attracting nodes for 0 #£0. When 0 =0 and u <0, the origin is the
unique singular point, while when 0=0 and p >0 the system has three
singular points, the origin and a pair of nilpotent elliptic points.

Proof. Let us first notice that the system has no singular points on the
x-axis since @ — > 0. Singular points satisfy xx + yy=0. Letting k = x/y,
this gives that & is solution of

Sflky=(a—0)k*+duk® + 60k> — duk — (a +0)=0. (4.40)

We first show that f(k)=0 has at most two real solutions for #0 by
showing that f"(k) =0 has at most one real solution. Indeed the discrimi-
nant of the monic polynmial corresponding to f'(k) is A= —27a%¢/
(a—0)" <0. Since f(0) <0 this gives that f(k) has exactly two real roots.
Hence we have a possibility of two pairs of symmetric singular points (i.e.,
with same Poincaré index), the sum of the indices of which must be equal
to 2 by the Poincaré index theorem. We show below that the system
localized at these singular points has an invertible linear part, yielding
points of index +1. The only possibility is then to have a unique pair of
singular points of index one: these points are the intersection points of the
invariant curves F, =0, from which they cannot be foci. Hence we are left
with two nodes. The divergence at the nodes is given by div = Sa{x? — y?).
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Since f(+1)=46>0, the singular points are such that (k[ <1, ie., the
divergence is negative there.

To show that the jacobian matrix at the singular points is jinvertible we
look at the system in polar coordinates (x, y)=(r cos ¢, r sin ¢)

F=sin¢ f(k)r}

. (4.41)
¢=1+sin*¢ g(k) r?,
with k =cot ¢, f given in {4.40) and
glk)=pk*+(a+40) kK —6uk* +{a—40) k + . (4.42)

Singular points are given by f{k)=0 and r*= 1/(sin* ¢g(k)). The Jacobian
matrix at these points is given by

3r3f(k) r3h(k)> (4.43)

o1 d
J=sin ¢<2rg(k) r’g' (k)

with sin® ¢ A(cot ¢) = (1/4) d/d$ sin® ¢ f(cot ¢). The Jacobian at a point
flk)=0 is nonzero if g(k) (k) #0. This is satisfied as soon as 0 # 0, since

resultant( f(k), g(k)) = —484°6?, (4.44)
and
resultant( f(k), h(k)) = —432a°0". (4.45)

In case =0, modulo the change of variables (X, Y)=(x+y, —x+y)
we must consider the two systems (4.21) and (4.24). In the first case we
have the pair of nilpotent elliptic points located at Y= +1, while in the
second the origin is the unique singular point. |

THEOREM 4.4. The bifurcation diagrams of the phase portraits of the
systems (4.1) appear in Fig. 17.

Proof. 1t follows from the previous propositions and Theorem 4.1. |

ACKNOWLEDGMENTS

We are grateful to R. Kooij and R. Moussu for stimulating discussions.

REFERENCES
[BM] M. BruneLLA AND M. Miari, Topological equivalence of a plane vector field with its

principal part defined through Newton polyhedra, J. Differential Equations 85 (1990),
338-366.

505:123,2-7



436
[C]
[Da]
(D]
[LS]
[M]
[PS]
[Sci]
[Sc2]
[Sh]
[S1]

[82]

ROUSSEAU AND SCHLOMIUK

C. CHRISTOPHER, Polynomial systems with invariant algebraic curves, preprint,
University College of Wales, 1991.

G. DARBOUX, Mémaire sur les equations différentielles algébriques du premier ordre
et du premier degré (Mélanges), Bull. Sc. Math. (1878), 60-96, 123--144, 151-200.

F. DUMORTIER, Singularities of vector fields in the plane, J. Differential Equations 23
(1977), 53-106.

V. A. LunkgivicH aND K. S. SiBirsky, Conditions of a centre in homogeneous non-
linearities of third degree, Differential Equations 1 (1965), 1164-1168.

K. E. MaLkIN, Criteria for center of a differential equation. Volg. Matem. Shornik 2
(1964), 87-91.

M. J. PRELLE AND M. S. SINGER, Elementary first integrals of differential equations,
Trans. AMS (1983), 215-229.

D. ScHLOMIUK, Algebraic integrals. integrability and the problem of the center, Trans.
AMS 338 (1993), 799-841.

D. ScHLomiuk, Elementary first integrals and algebraic invariant curves of differential
equations, Expositiones Math. 11 (1993), 433-454.

S. SHi, A method of constructing cycles without contact around a weak focus, J. Dif-
ferential Equations 41 (1981), 301-312.

K. S. SiBIrskY, On the number of limit cycles in the neighborhood of a singular point,
Differential Equations 1 (1965), 36-47.

K. S. SiBIrsKY, “Introduction to the Theory of Invariants of Differential Equations,”
Manchester Univ. Press, New York, 1988.



