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Abstract

A new class of non-linea® (3) models is introduced. It is shown that these systems lead to integrable submodels if an
additional integrability condition (the generalized eikonal equation) is imposed. In the case of particular members of the family
of the models the exact solutions describing toroidal solitons with a nontrivial value of the Hopf index are obtained. Moreover,
the generalized eikonal equation is analyzed in detail. Topological solutions describing torus knots are presented. Multi-knot
configurations are found as well.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction The nonlinearO (3) models in two and three space
dimensions can serve as the best example. These mod-
It has been recently shown that the complex eikonal els, original based on an unit, three component vector

equation field, can be reformulated in terms of a complex field
u by means of the standard stereographic projection
duudtu=0 (1) 1
>_ - * . % 2 _
plays a prominent role in nonlinear field theories in "= 1+ |u|2(” tu, l(u “ ) lul 1)’ @

higher dimensions. Such models, widely applied in ag the static, finite energy configurations are nothing
many physical contexts, are, in general, not integrable. g|ge put maps from the compactifi@d or R3 on 52
As a consequence the spectrum of nontrivial (€.9., they can be classified by the pertinent topological in-
topological) solutions is scarcely known. Fortunately, \5riant: the winding number or the Hopf ind€; , re-

the eikonal equation allows us to define integrable sub- gpectively. As a result solutions describing topological
sectors for such models with not-empty set of the topo- \grtices or knots can be obtained. The first model pos-

logical solutiong1-6]. sessing the simplest knot soliton, i.e., the hopfion, is
referred as the Nicole modgl]. Moreover, it has been
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that hopfions can be quite easily found in integrable
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The fact that the complex eikonal equation has ap-

subsectors has enabled us to construct a family of the peared to be very helpful in deriving hopfions in the
generalized Nicole models where hopfions with higher Nicole-type models might indicate that in the case of

topological charges have been repor{8f Strictly

other nonintegrable (3) models a similar condition

speaking, all these hopfions are identical to the eikonal might be introduced.

knots[10,11] being solutions of the complex eikonal
equation in toroidal coordinates

a .

x = — sinhn cosg,
q
a . .

y = —sinhpsing,
q

a .
z = —SIn§,
q

3

whereg = coshté — cosg anda is a scale constant. In
fact it has been observed by Adda0] that the fol-
lowing function

u(n, &,¢) = fo(n)e sk,

where

(4)

fo(n) = Asinhtlkly

(Im| coshy + /K2 + m2sintf )i

x . ()
(k| coshy + \/k2 + m2 sint? 5 ) I

solves(1) and carries nonvanishing topological charge

(6)

Herem, k are integer numbers anis a complex con-
stant. Using the group of the target symmetf#one
can construct even more general solutions

Oy = +|mk|.

i=FQ), (7)

whereF is an arbitrary holomorphic functidd 0,11]

It should be emphasized that the eikonal knots are

not only solutions of the toy models but can also

The main aim of the present Letter is to define a
generalization of the eikonal equation which will en-
able us to derive new integrable submodels, for which
new analytical toroidal solitons might be found.

2. Generalized elkonal knots

The original eikonal equation appears in the context
of the nonlinearO (3) model by the following vector
quantity
KL =0,u. (8)

In order to guarantee the existence of an integrable
submodel this object must obey two conditig8k

Ko u=0 (9)
and
Im(K 9" u*) =0, (10)

wherei = 1,2, ... (see below). It is straightforward

to notice that Eq(9) gives the eikonal equation. Us-

ing Kﬁl) one can construct a dynamical (but non-
integrable) model, i.e., the Nicole modél

— 1 (
At

where the power 2 is chosen to omit the Derick scal-
ing argument for the nonexistence of the topological
solitons. Now, Eq(9) is an integrability condition for
the model (for details sg&,8]). '
This procedure, that is defining a quantit.\\;/,&’)
which fulfills (9), (10) and proposing a scale invari-

3/2

KPoaku*) (11)

find a physical application as approximate solutions of ant Lagrangian built of it, can be repeated in the

the Faddeev—Niemi effective modgl3] for the low
energy gluodynamicfl4]. They provide an analyti-
cal framework in which qualitative (shape and topol-

ogy) as well as quantitative (energy) features of the

Faddeev—Niemi hopfions can be captufet] 15]

1 The eikonal equation admits also other topological objects, e.g.,

vortices, braided strings or hedgehd@2].

more complicated cases. Namely, Aratyn, Ferreira and
Zimerman[3] have introduced

K2 = 0?0, + ar(3,u9 ") 3. (12)

Now, two cases are possible.dfz£ —1 then the inte-
grability condition(9) leads to trivial solutions. Oth-
erwise, fora = —1 the condition is always, identi-
cally satisfied. Thus, any model based KﬁZ) with
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a = —1 is integrable. It is in contradiction to the
Nicole-type models where E(P) determines the inte-

grable (essentially restricted) submodel. The pertinent [f/Z _

Lagrangian reads

1 3/4
L=——"-——= .
1+ |M|2)3(

K20 u*) (13)

It has been checked that this model possesses infinitely

many toroidal solitons with arbitrary Hopf charfg
(for some generalization s§t6]).

In our work we would like to focus on the next pos-
sible form ofK,,. We assume it as follows,

KD = (00" u”) 0+ p @) (8,u0"u*) 3"

+ v @u)?(d,u*) 0y, (14)

whereq, 8, y are real constants. The second condition
(10) is immediately fulfilled whereas the first ori@)
leads to an interesting formula. Indeed, insertihg)
into (9) we get

@102y @12 (91*)° + (@ + B) (3,ud"u*)’] = 0.
(15)

It is not an identity unlese = —8 andy = 0. How-
ever, in this situatiorK,(f) is proportional toKL(LZ) and
our problem can be reduced to the previously dis-
cussed model. Thus, from now we assume that

—pB andy # 0 (for simplicity we assume that = 1).
Then condition(15) can be rewritten in two parts

(0u)’=0 (16)
or
(B102(3u*)° + (@ + B) (3,ud"u*)* =0. 17)

The first possibility is just the eikonal equation and

203
Then formula(17) gives
2 2
2 n 2
+ -
(m sinh277>f }

I’l2 ; 2
Sinhzn)f] =0.(19

where the prime denotes differentiation with respect to

+(a+ﬂ)|:f/2+<m2+

the  variable andf is a real shape function yet to be
determined. The last equation can be rewritten as

f’4—2(a+ﬂ_l)f’2f2<m2+ _”2 )
sintf

(a+p+1
22 \2
+f4<m2+ , ) =0 (20)
sintf
and possesses the following roots
2
r2=aap)(mt+ o) 12 @y
sinky
where
2 _Q—a=p)  [A-—a=p2

GO =T ) T Arar p? (22)

Eq. (21) admits a real solution only &2 > 0. Hence,
we have a restriction for the parametersaand g in
K,
—l<a+p<0. (23)
Finally we are able to solv@1). One can find that

f& = Asinktalkly

(Jm| coshy + y/k2 + m2 sink? 5 )=alml
X .
(|k| coshy + \/ k2 4+ m2 sint? 5 )alkl

(24)

does not lead to new integrable submodels. However, In other words, we have obtained a solution of the gen-

the second equatiofiL7) (we called it generalized
eikonal equation) provides a new integrability condi-
tion for models based oK,(f).

Let us now solve the generalized eikonal equation.
Due to the fact that we are mainly interested in obtain-
ing of knotted configurations with a nontrivial value of
the Hopf index we introduce the toroidal coordinates
(3) and assume the following ansatz:

u(n, & ¢) = f(n)e o), (18)

eralized eikonal equation

u(n, &, ¢) = Asinhit@*l y

(Im| coshn + /K2 + m2 sintf )=l
(Kl costyy + /&2 + m2sint? el

x ! (mETnd), (25)

As the shape function smoothly interpolates from 0
to oo (or from oo to 0) this configuration carries

X
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the Hopf topological chargeQy = *|mk|. It is that some members of the family possess generalized
clearly visible that the difference between the stan- eikonal knots as solutions of the dynamical equations
dard eikonal knots and the generalized soluti(2%) of motion.

emerges from the modified form of the shape function.  The pertinent model reads
The original shape functiofy in Eq.(4) is replaced by
¢ giving, depending on the value of the model para- S :/d“x G(|”|)(K,(L3)3“”*)1/27 (30)
metersy andg, squeezed or stretched configurations.
The generalized eikonal equation has similar sym- where G is an arbitrary function ofu| (sometimes
metries as its standard counterpart. As a consequencecalled ‘dielectric function’).
other solutions may be obtained by a simple algebraic ~ Then the field equation is
transformation

3,[G K@ gy V2 pn
i = Foo. (26) [ G(lul) (KD 9" u) ]

. @ gu,,x\1/2 _
whereF, exactly as for the eikonal equation, is a holo- Ou G(lb")(KM 8u") " =0, (31)
morphic function. Due to that, assuming thatis a where

polynomial, we are able to construct multi-knot con- ) )
figurations. Namely, Ly =1+ B)@u)*[2(dudu*)d,u™ + (8u™) 8,u]
u(n, &, ¢) + 3 (udu*),u. (32)
N
=) Ajsinhtihily
j=1

One can notice that

LM u* =3K D" u* (33)

(|m,-|coshr7+,/kf+mfsinlﬁ?n)i“|”‘f‘ and

X
(Ikj| coshy + /K% 4+ m? sint? p )ikl L,0"u = (0w)2[(2(1+ B) + 3a) (dudu*)?
‘ 2
s el MiEO) 4 o 27) + L+ B)@u)*(du*)7]. (34)
whereA ; andcg are complex constants and the integer In order to obtain an integrable submodel(86) we
parameters must obey the relation impose the additional (integrability) conditi§8]
"
k—’ = const. (28) L£,0"u=0, (35)

J
Analogously as in the standard case, such a multi-knot Which leads to the generalized eikonal equation. Then,
solution possesses the following topological charge the remaining equation of motion takes the following
(for configurations with ‘—’ sign]11] form

On=—maximk;, j=1,...,N}. 29) 9, [GY3(ul) (K P9 u*) Y2 L1] =0, (36)
Because of the fact that topological properties of the | can be rewritten in the more compact form
generalized and standard eikonal knots do not differ

drastically, the detailed geometrical analysis of these 9,,K* =0, (37)

solutions can be found if11]. where

K = GY3(jul) (K @ oru*) ™2 e, 38
3. Integrable subsystems (lul) (K 0" u”) (38)

These both equations: dynamical equati@®) and the
Let us now introduce a new class of models based condition (35) define the integrable submodel. Here
on the previously defined quantify,(f) for which in- integrability is understood as the existence of an in-
tegrable subsystems can be determined by the gen-finite family of the conserved current. In fact, using
eralized eikonal equation. Moreover, we will show the results of3] one can show that such currents are
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given by the expression
oH oH
J,=K,— —-K , 39
" ou Hou* (39)

whereH is an arbitrary function oft andu*.
Now, we will prove that the existence of these cur-

rents can result in the appearance of soliton solutions

with a nontrivial value of the Hopf index. At the be-
ginning we specify a particular form of the ‘dielectric
function’ in the Lagrangian which allows us to obtain
toroidal solitons in the exact form. We take

3
Gma(lul) = (1+ Iuli) .

Taking into account ansaf28) we get

1—am
|u| am

(40)

1-am

f am

(41)

Then the equation of motiof36) reads

k2
3, [GY3Iocs £ — GY3Igc_ <m2+ )
n[ 0 +f] oc—f sinhzn

+ G, S0 (42)

7 sinhp
where the following abbreviations have been made

lo=[(1+ Bw? + aw_zi_)a)_‘_]_l/z, (43)
ci =42(1+ Blo_wi + (14 fo? +3aw?  (44)
and
2 2 k2 2
wyr=f :|:<m —|—_—)f. (45)
sintf

Of course, one should keep in mind that solutions of
(42) must obey the generalized eikonal equation as
well. Hence

wi:f’2<1:|: i2> E)\if/z, (46)
a
where
2
az:—?w_ﬁ—li/(w> 1w
a+B+1) a+B+1)
Then

cx = [£2(1+ B)A_ry + L+ P22 +3wr2 ] '
= O'if,4 (48)

205
and
Io=constx f'~3. (49)
Inserting(44)—(49)into (42) one obtains
_ k?
3, In(GY/3 2 —0—i<m2+ >
n ( f ) o4 f/ sinf? n

+ 9, Insinhny =0, (50)
or equivalently
3,In(GY3f'%) — 2=, In f + 3, Insinhy = 0.

aco4
(51)

Moreover, one can calculate that
=2 (52)
O+

Thus finally, Eq(51) can be integrated and we obtain

const
" sinhp’
It can be checked that this equation is solved by the
following function

1 am
f= <sinhn> ’
Since it also satisfies the generalized eikonal equa-
tion and corresponds v{@8)to the configuration with
the nontrivial topological charg@ y = —m?, we have
proved that the spectrum of soliton solutions of the in-
tegrable submodel is not empty.

In order to complete the investigation of the gener-
alized eikonal hopfions we calculate their total energy.
It can be performed in the case of the hopfions for
which the pertinent Lagrangian has been established.
In other words, we do it for solutiong4), i.e., for
knots withm = k.

Then, the energy of the static configurations reads

E= / 3 G (ju)) (RD - Fu) Y2,

G1/3f/2f—l (53)

(54)

(55)

Taking into account that all solitons obey also the gen-
eralized eikonal equation we obtain that

E= (2n)2\/k+[(1+ BIAZ + any ]

3
) f/3,

1—am

o
x/dnsinhn( f ﬂmz
0 1+ fam

(56)
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or equivalently For example, let us focus on the next possibility and
take
E= (277)2\/)\+[(1+,9)xz + ahy Jam® 4 2(n, #\2 * 3
- K = a(u)*(0u*) " (0udu™)d,u + B(dudu™) 8 u
o
X/d cosh°’n< fam )3 7 + v (Qu)?(dudu*)8,u*
n— .
sintf 1+fﬁ +8(8u)4(8u*)zaﬂu*, (60)

whereq, 8, v, § are real constants.
The scale invariant action based on this quantity is
given as follows

Finally, after insertingd54) into this formula we find

E =212 /0. [+ B)1A2 +aniJam®. (58)

. : S=[d*G K® oty
As solutions(54) possess the Hopf inde®y = —m?, / * (lul)( w o )
the energy depends on the topological charge in a
rather nontrivial manner, i.e.,

8 (61)

whereG is any function oflx|. The corresponding in-
tegrable submodel can be found, in an analogous way
as for(30), by imposing two condition§9) and (10).

E= 2”2\/)‘+[(1+ B2 +an]a®lonl®? (59) Since (10) is always fulfilled let us turn to the first
formula. One can show that, depending on the para-
meters of the model, this equation leads to two cases.
If « = —6§ and B8 = —y then the condition is identi-
cally satisfied. It is identical to the Aratyn—Ferreira—
Zimerman model and no new solutions can be ob-
tained. Otherwise, we get an equation which is solved
by generalized eikonal knots. Thus, the integrable sub-
system of(61), though it exists, does not provide any
new hopfions.

This feature appears to be quite general and one can
observe it in the more complicated examples.

One can notice that it resembles the energy-charge
relation in the modified Nicole model8]. This is

not surprising since the Nicole-type models can be
achieved from the dynamical systems introduced here
in the limita = 1.

Such overlinear dependence found for many (gen-
eralized) eikonal hopfions is rather puzzling and unex-
pected if we compare it with the famous Vakulenko—
Kapitansky energy-charge inequality for the Faddeev—
Niemi model[17], whereE > ¢|Qy|%/*. Moreover, it
has been proved that this sublinear dependence is valid
also for the soliton solutions of the Aratyn—Ferreira—
Zimerman modej3].

Of course, it must to be emphasized that the over-
linear behavior is still only a conjecture. It is due to
the fact that each soliton (generalized eikonal hopfion) A
has been derived in a different model. Thus, it is un-
known whether for a fixed model (i.e., fixed values of
the parameters i(32) and (40)) the topological so-
lutions obey this relation. At this stage it would be
hazardous to claim that all introduced models must
lead to an overlinear dependence.

5. Conclusions

Let us briefly summarize the obtained results.
generalization of the standard complex eikonal
equation has been proposed. This equation possesses
various topologically nontrivial solutions. In particu-
lar, knotted configurations carrying arbitrary value of
the Hopf charge have been explicitly derived. They
appear to be deformed (squeezed or stretched) stan-
dard eikonal knots. Moreover, using the symmetry of
the generalized eikonal equation, it is possible to con-
struct multi-knot solutions (linked knots).
4. Further models It has also been shown that this equation enables
us to define a new class of integrable models, where
The construction introduced and analyzed in the integrability is understood as the existence of an in-
previous section can be easily adapted to the morefinite family of conserved currents. Then, the gener-
complicated (with a higher number of derivatives) alized eikonal equation is just the integrability condi-
Kl(j). tion. Additionally, we have proved that the integrabil-
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ity may lead to the appearance of soliton solutions. In
the case of particular members of the family of mod-

els analysed here, we have found that the spectrum of
solutions is not empty but consists of the generalized
eikonal knots. Such Hopf solitons, i.e., hopfions, have
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