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a b s t r a c t

In this study, we derive a new exact solution for pricing European options in a two-state
regime-switching economy. Two coupled Black–Scholes partial differential equations
(PDEs) under the regime switching are solved using the Fourier Transform method. A key
feature of the newly-derived solution is its simplicity in the form of a single integral with
a real integrand, which leads to great computational efficiency in comparison with other
closed-form solutions previously presented in the literature. Numerical examples are pro-
vided to demonstrate some interesting results obtained from our pricing formula.
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1. Introduction

It is well known that the classical Black–Scholes model with constant volatility does not fully reflect the stochastic
nature of financial markets. Consequently, there is a need for more realistic models that better reflect random market
movements. One such formulation is amodel with regime switching, in which the key parameters of an asset depend on the
marketmode (or ‘‘regime’’) that switches among a finite number of states. From an economic perspective, regime-switching
behavior captures the changing preferences and beliefs of investors concerning asset prices as the state of a financial market
changes. Since being introduced by Hamilton [1], there has been a growing body of empirical evidence suggesting that the
distributions of asset returns in some cases are better described by a regime-switching process (see [2–7]).

Pricing financial derivatives with regime-switching models has been discussed in literature. Bollen [8] presented a
lattice-based method for pricing both European-style and American-style derivatives. Like other lattice-based numerical
approaches adopted to price financial derivatives without the assumption of regime switching, Bollen’s approach is
financially intuitive and easy to implement. However, for European-style derivatives under the assumption of only two
economic states, most researchers have focused their attention on developing closed-form exact solutions. Naik [9] was the
first to discuss pricing and hedging European-style options when the volatility of the risky asset is assumed to randomly
jump between two states. He found an exact closed-form pricing formula in the form of a double integral for an arbitrary
security with a given payoff function. Di Masi et al. [10] discussed mean–variance hedging for European options where
the drift rate and volatility are driven by a regime-switching process. Herzel [11] argued that a closed-form solution for
a European contingent claim can be found in terms of a ‘‘basis’’ option. But, he only wrote down the partial differential
equation (PDE) that the option prices under a two-state regime-switching model must satisfy once the value of the ‘‘basis’’
option has been found,without actually solving the derived PDE. Guo [12] presented a closed-form formula for the arbitrage-
free price of a European call option in a two-state economy. The result found by Guo [12] is more general than that found
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by Naik [9] as the drift rate, volatility and continuous dividend yield are all assumed to be dependent upon the economic
state. Buffington and Elliot [13,14] showed how the governing PDEs are formed for European-style options and presented a
closed-form solution for this problem through the derivation of the characteristic function of the occupation times in each
state. However, if one adopts their formula, a Fourier inversion must be performed numerically. Fuh et al. [15] claimed that
Guo [12] made an error, and they too presented a closed-form formula in a very similar form. Once the probability density
function of the occupation time in each state is found explicitly, as done in [15], it is not surprising that the European-style
option prices for a two-state regime-switching economy can simply be written in a closed form as a discounted expectation
of the terminal payoff under the risk-neutral measure. More recently, Sepp and Skachkov [16] adopted a similar approach
to the one used in this paper, finding a two-branch solution to the PDEs associated with two-state regime-switching for a
European call option in the Laplace space. However, they did not perform the Laplace inversion analytically and resorted to
the use of a robust numerical scheme for the calculation of option values.

Unfortunately, all existing formulae are written in the form of either a double integral, as a direct result of taking the
discounted expectation, or a closed-form solution in a transform space such as the Laplace space; no one has managed to
show that a closed-form solution can be written in the form of a single integral with real integrand. Reducing the final
form of the closed-form solution from a double integral to a single integral comprised of elementary functions not only
simplifies the appearance of the formula, but also enhances the computational efficiency if numerical values need to be
produced. The contribution of this paper is to provide a new closed-form formula to value European options in a two-
state regime-switching economy. This is achieved through an exact solution to the PDE system for a European put option
found via the Fourier transform method. A key feature of our new formula is that we have successfully performed Fourier
inverse transformanalytically and thus produced a final pricing formula containing a single integral of a real-valued function.
Therefore, in comparison with other approaches in the literature, our new formula displays advantages in computational
efficiency and accuracy.

The rest of the paper is organized as follows. In Section 2, the asset price dynamics in a regime-switching economy are
briefly described, followed by a detailed description of the newly found closed-form formula for the value of a European put
option. In Section 3, numerical examples are given for the purpose of illustration, followed by the conclusions in Section 4.
Anymathematical derivations that are not immediately needed in the main body of the paper, yet are important for readers
who may be interested in the details of derivation, are left to the Appendices.

2. New solution

Wemodel a European put option in a regime-switching economywhere the drift rate and volatility are subject to random
shifts between two states. The asset-price dynamics in a regime-switching economy have been described previously in
[12–15]. However, for completeness, we start this section by briefly describing them as well.

The fluctuations of an asset are assumed to follow a stochastic process described by the stochastic differential equation

dSt = µXt Stdt + σXt StdWt (1)

where X is a continuous-time Markov chain with a finite state space. The drift rate, µXt , and the volatility rate, σXt , of the
asset are functions of Xt . W is the standard Wiener process and the processes X and W are assumed to be independent.
For each state, the drift rate and the volatility rate are assumed to be given constants. Furthermore, it is assumed that the
volatility rates are distinct (i.e. σXs ≠ σXt if Xs ≠ Xt ).

In this paper, we assume X is a two-state Markov chain which jumps between two states,

Xt =


1, when the economy is in a state of growth
2, when the economy is in a state of recession.

The transition between states occurs as a Poisson process, i.e.

P(t∗jk > t) = e−λjkt , j, k = 1, 2, j ≠ k

where λjk is the transition rate from state j to state k and t∗jk is the time spent in state j before entering state k.
The market price of risk associated with a change in state is not uniquely determined since the market is incomplete.

In this paper, we assume that the risk associated with a regime switch is diversifiable and therefore not priced. Naik [9]
demonstrates that this assumption does not result in a loss of generality, since one only needs to adjust the rate parameters
of the transition process to account for non-diversifiable risk. Under this assumption, a system of coupled Black–Scholes
equations for the value of a European put option can be derived (cf. [13,14]), with the movement of the underlying asset
being described by Eq. (1), as

∂V1

∂t
+

1
2
σ 2
1 S

2 ∂2V1

∂S2
+ rS

∂V1

∂S
− rV1 = λ12(V1 − V2)

V1(0, t) = Ee−r(T−t)

lim
S→∞

V1(S, t) = 0

V1(S, T ) = max{E − S, 0}

(2)
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∂V2

∂t
+

1
2
σ 2
2 S

2 ∂2V2

∂S2
+ rS

∂V2

∂S
− rV2 = λ21(V2 − V1)

V2(0, t) = Ee−r(T−t)

lim
S→∞

V2(S, t) = 0

V2(S, T ) = max{E − S, 0}

(3)

where S is the value of the underlying asset, t is the current time, Vj(S, t) (j = 1, 2) is the option value when in state j of
the economy, r is the risk-free interest rate (assumed to be constant), E is the strike price and T is the expiration time of the
option.

We begin by introducing the following dimensionless variables

qj(x, τj) =
exVj(S, t)

E
, x = ln


S
E


, τj =

σ 2
j

2
(T − t)

for j = 1, 2. Apart from the inclusion of the exponential factor in qj(x, τj), the above change of variables for option valuation
problems is a commonly adopted approach to normalize the PDE systems. The exponential factor is included to ensure that
the qj(x, τj) functions are integrable under the Fourier transform (cf. [17]). With the new dimensionless variables, Eqs. (2)
and (3) become

−
∂q1
∂τ1

+
∂2q1
∂x2

+ (γ1 − 3)
∂q1
∂x

− (2γ1 + β12 − 2)q1 = −β12q2
lim

x→−∞
q1(x, τ1) = 0

lim
x→∞

q1(x, τ1) = 0

q1(x, 0) = (ex − e2x)+

(4)


−

∂q2
∂τ2

+
∂2q2
∂x2

+ (γ2 − 3)
∂q2
∂x

− (2γ2 + β21 − 2)q2 = −β21q1
lim

x→−∞
q2(x, τ2) = 0

lim
x→∞

q2(x, τ2) = 0

q2(x, 0) = (ex − e2x)+

(5)

where γj ≡
2r
σ 2
j
and βjk ≡

2λjk
σ 2
j
, for j, k = 1, 2 j ≠ k, which can be viewed as the interest rate and the rate of leaving each

state, relative to the volatility from that state, respectively.
Upon performing the Fourier transform defined as

Fqj(x, τj) =


∞

−∞

e−iωxqj(x, τj)dx = q̂j(ω, τj),

where i =
√

−1, Eqs. (4) and (5) are transformed to two coupled ordinary differential equations (ODEs) in the Fourier space


d
dτ1

+ B12(ω)


q̂1(ω, τ1) = β12q̂2(ω, τ1)

q̂1(x, 0) = q̂0
dq̂1
dτ1


τ1=0

+ B12(ω)q̂0 = β12q̂0

(6)




A

d
dτ1

+ B21(ω)


q̂2(ω, τ1) = β21q̂1(ω, τ1)

q̂2(x, 0) = q̂0

A
dq̂2
dτ1


τ1=0

+ B21(ω)q̂0 = β21q̂0

(7)

where

q̂0 = F (ex − e2x)+ =


∞

−∞

e−iωx(ex − e2x)+dx =
1

(1 − iω)(2 − iω)
(8)

and

A =
σ 2
1

σ 2
2
, Bjk(ω) = ω2

− iω(γj − 3) + (2γj + βjk − 2), j, k = 1, 2, j ≠ k.
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Solving the coupled first-order linear ODEs is a relatively straightforward exercise. The result is

q̂1(ω, τ1) =
q̂0{[β12 − m2 − B12(ω)]em1τ1 − [β12 − m1 − B12(ω)]em2τ1}

m1 − m2

=
[β12 − m2 − B12(ω)]em1τ1 − [β12 − m1 − B12(ω)]em2τ1

(1 − iω)(2 − iω)(m1 − m2)

q̂2(ω, τ2) =
q̂0{[β21 − Am2 − B21(ω)]eAm1τ2 − [β21 − Am1 − B21(ω)]eAm2τ2}

A(m1 − m2)

=
[β21 − Am2 − B21(ω)]eAm1τ2 − [β21 − Am1 − B21(ω)]eAm2τ2

A(1 − iω)(2 − iω)(m1 − m2)

where

m1,2 = −
B12(ω)

2
−

B21(ω)

2A
±


[AB12(ω) − B21(ω)]2 + 4Aβ21β12

2A
.

Of course, to obtain the option price, one needs to perform the Fourier inversion

qj(x, τj) =
1
2π


∞

−∞

eiωxq̂j(ω, τj)dω, for j = 1, 2. (9)

Quite often, one may leave the final solution in the form of Eq. (9) (e.g., [18]), as, in most cases, finding Fourier inversion
analytically is a non-trivial task and the success is usually very much case dependent, apart from some tedious algebraic
manipulations. Somemay even argue that the above expression is already of closed form as there is only one explicit integral
left to be calculated, similar to the calculation of the normal cumulative distribution function required in the evaluation of the
Black–Scholes formula. However, itmust be pointed out that a significant difference between the two is that the integrand in
the latter is a well-defined elementary real-valued functionwhereas the integrand in Eq. (9) is not. To appropriately derive a
pricing formula, one should endeavor to analytically perform the Fourier inverse transform, whenever possible, so that any
integral left in the final form of the formula only has real-valued integrand, which can thus be easily evaluated numerically.

Wehave successfully performed an analytical inversion of the Fourier transformas shown inAppendixA. After the Fourier
inversion is performed, our solution can be written as, in terms the original variables and parameters,

Vj(S, t) = Ee−r(T−t)
+

1

4π
√
2

√
SEe

−
1
2


r+λ21+λ12+

σ2
1 +σ2

2
8


(T−t)  ∞

0

(−1)j−12f1(ρ)(λ21 + λ12)

M(ρ)

ρ4 +

1
16


(σ 2

1 − σ 2
2 )

×


eXj(ρ)


2ρ2

−
1
2


sin(f2(ρ) + θ(ρ) − Yj(ρ)) −


2ρ2

+
1
2


cos(f2(ρ) + θ(ρ) − Yj(ρ))


− e−Xj(ρ)


2ρ2

−
1
2


sin(f2(ρ) + θ(ρ) + Yj(ρ)) −


2ρ2

+
1
2


cos(f2(ρ) + θ(ρ) + Yj(ρ))


+

2f1(ρ)

M(ρ)


eXj(ρ)


sin(f2(ρ) + θ(ρ) − Yj(ρ)) + cos(f2(ρ) + θ(ρ) − Yj(ρ))


− e−Xj(ρ)


sin(f2(ρ) + θ(ρ) + Yj(ρ)) + cos(f2(ρ) + θ(ρ) + Yj(ρ))


+

f1(ρ)

ρ4 +
1
16


eXj(ρ)


2ρ2

−
1
2


sin[f2(ρ) − Yj(ρ)] −


2ρ2

+
1
2


cos[f2(ρ) − Yj(ρ)]


+ e−Xj(ρ)


2ρ2

−
1
2


sin[f2(ρ) + Yj(ρ)] −


2ρ2

+
1
2


cos[f2(ρ) + Yj(ρ)]


dρ (10)

for j = 1, 2, where

τ− =
σ 2
1 − σ 2

2

4
(T − t), α− =

2(λ12 − λ21)

σ 2
1 − σ 2

2
, µ2

=
4λ12λ21

(σ 2
1 − σ 2

2 )2

M(ρ) =




1
4

+ α−

2

− ρ4
+ µ2

2

+ 4ρ4

1
4

+ α−

2


1
4

θ(ρ) =
1
2
tan−1


2ρ2

 1
4 + α−

 1
4 + α−

2
− ρ4 + µ2


Xj(ρ) = (−1)j−1M(ρ)τ− cos θ(ρ), Yj(ρ) = (−1)j−1M(ρ)τ− sin θ(ρ)
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Fig. 1. Option values ($) vs. stock price ($) using Eq. (10) and using the IFFT.

and

f1(ρ) = e
−

ρ
√
2

ln S
E


+r(T−t)


, f2(ρ) =

ρ2

4
(σ 2

1 + σ 2
2 )(T − t) −

ρ
√
2

ln S
E


+ r(T − t)

 .
One can observe that the newly found solution, Eq. (10), is in the form of a single integral with a real integrand comprised

of elementary functions, whereas the existing formulae are all in the form of a double integral.

3. Numerical examples and discussion

In this section we provide some numerical examples to demonstrate that numerical values can be easily produced from
our analytical solution.We also briefly discuss some implications of the regime switchingmodel by using the new analytical
solution.

Before a meaningful discussion is carried out, we first compare the results obtained using the newly-derived formula
(10) with those obtained by numerically performing the inverse fast Fourier transform (IFFT) (cf. [19]). To a large extent,
this helps verify that the tedious algebraic manipulations that we had carried out for the analytical inversion are correct.

For the purpose of illustration we take the following parameters for pricing a European put option in a two-state regime-
switching economy: E = $70, r = 10%, T − t = 1 year, σ1 = 20%, σ2 = 30%, λ21 = 1 and λ12 = 2. In Fig. 1, numerical and
analytical option values are plotted against the underlying stock price. The dashed line represents V1, the option value in
State 1 with volatility value at σ1, while the dot–dashed line corresponds to V2, the option value in State 2 with σ2. One can
clearly observe that the results from our exact solution match up perfectly with the numerical results for both V1 and V2.

It should be noted that the newly found solution, Eq. (10), is in the formof a single integralwith a real integrand comprised
of elementary functions. All existing solutions are in the form of a double integral, or are in a transform space and thus reliant
on a numerical inversion. Of course, when the numerical values need to be computed from the newly found formula (10), a
numerical quadrature scheme2 is needed, as is the case when evaluating existing ones. A fundamental difference is that the
calculation of a single integral is, in general, computationallymore efficient than that of a double integral. Furthermore, since
the integrand of the newly found formula is simpler than that of the existing formulae, the evaluation of this integrandwithin
the numerical integration scheme has added further strength in terms of computational efficiency. As far as the existing
solutions in the Laplace space are concerned, performing numerical Laplace inversions can be notoriously cumbersome
(cf. [20]) and thus solutions in the form of a single integral with a real integrand are always preferred. For these reasons one
can expect an improvement in computational efficiency from the newly found closed-form solution in comparison to the
existing ones.

In Table 1, we compared our results with those published in [15] for a European call option in a two-state regime-
switching economy, with S = $100, E = $90, r = 10%, σ1 = 20%, σ2 = 30%, λ21 = 1 and λ12 = 1. The put-call parity is
used to calculate the call option prices from our put formula. In order to demonstrate the fast convergence of the numerical
computation of the single integral in Eq. (10), we displayed our results for different values of L, with L being the truncated
upper limit that replaces the ∞ in the single integral in Eq. (10). As the values in the tables show, the computation of the

2 The one adopted to produce the results presented in this paper is the adaptive Lobatto quadrature scheme provided in Matlab 7.0.
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Table 1
Comparison of V1 and V2 in [15] and those obtained by using Eq. (10).

T − t (years) V1 ($) in [15] Our results V1 ($) V2 ($) in [15] Our results V2 ($)
L = 10 L = 100 L = 1000 L = 10 L = 100 L = 1000

0.1 11.360 11.7962 11.3608 11.3608 10.993 11.5679 10.9932 10.9932
0.2 12.889 13.0262 12.8895 12.8895 12.164 12.5833 12.1647 12.1647
0.5 16.718 16.5813 16.7184 16.7184 15.614 15.6611 15.6144 15.6144
1.0 21.812 21.7785 21.8120 21.8120 20.721 20.6522 20.7216 20.7216
2.0 30.085 30.0892 30.0850 30.0850 29.287 29.2884 29.2877 29.2877
3.0 37.061 37.0618 37.0619 37.0619 36.476 36.4774 36.4766 36.4766

Table 2
Convergence test results with payoff (S − E)+ = $(100 − 90) = $10.

L 10 100 1000

Vi(100, T ) $10.56300639684868 $10.00000714537026 $9.99999999988907

Fig. 2. Option value ($) vs. time to expiry (years).

single integral involved in our exact solution appears to converge very quickly; the results obtained with L = 100 appear to
be accurate to 6 significant figures already. However, there are slight discrepancies between our solutions and those given
in [15] at some time values, which seem to be due to the choices of truncation.

In general, as an option approaches expiry, the numerical quadrature becomes less accurate if L is too small. Away from
expiration, the choice of L = 10 has resulted in relative errors in option values being less than 0.01%. Closer to expiration, a
larger L is required to produce results with the same level of accuracy. This is due to the exponential factor in f1(ρ), which
causes the integrand to vanish as T − t increases. As we know the exact option value at expiration, we can analyze the con-
vergence of our solution at T − t = 0 by comparing the payoff to the analytic formulae for V1 and V2 in Eq. (10) (it is worth
noting that the option prices obtained from Eq. (10) converge for T − t = 0). The results of the comparison are provided in
Table 2. The choice of a still relatively small value of L = 100 produces the option value at expiration with a relative error
of the order of 10−6. As T − t = 0 is generally the worst case for convergence, we can conclude that setting L = 100 should
produce convergent solutions for all T − t ≥ 0. If we go beyond L = 1000, numerical results start to display large errors
again, simply because the specified domain becomes too large for the effective part of the integrand to be properly resolved
as pointed out by Zhu [21].

We now discuss some interesting implications of taking a simple two-state regime-switchingmodel in pricing European
options by comparing the option prices obtained using the newly-derived formula to those obtained using the classical
Black–Scholes model. Depicted in Fig. 2 are four different option values as a function of time to expiration. V1 and V2 are the
put option values obtained from the regime-switching model, while the curves with legends BS1 and BS2 are the option val-
ues calculated from the classical Black–Scholes model, corresponding to volatilities σ1 and σ2, respectively. The calculation
was carried out with the parameter values: S0 = $90, E = $100, r = 10%, σ1 = 20%, σ2 = 30% and λ12 = λ21 = 1. As
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can be seen from Fig. 2, the introduction of regime switching produces option values that lie in between the two classical
Black–Scholes option values (i.e. BS1 < V1 < V2 < BS2) for non-zero rate parameters. This is not surprising at all, as option
values are monotonically increasing functions of volatility. The difference between V1 and BS1 (V2 and BS2) represents the
added (subtracted) value of having a certain non-zero probability that the underlying will spend time in a state of higher
(lower) volatility. As time to expiration decreases, the expected amount of time spent in the other state of the economy
decreases. This causes the added (subtracted) value due to regime switching to decrease. Of course, as time approaches ex-
piration, all option values converge to the payoff, which is simply the difference between the strike price and the underlying
in this case.

For volatility being higher than a certain value, clearly the put values are not monotonic functions of the time to expiry.
Since the option price calculated with the regime-switching model is bounded above by its Black–Scholes counterpart with
the volatility being set to σ2 and below by its Black–Scholes counterpart with the volatility being set to σ1, one can seek
mathematical and financial explanations from these upper and lower bounds.While one canmathematically prove (cf. [22]),
from the Black–Scholes formula, that this is true for a vanilla put option, it can be understood from a financial point of view
aswell.While the volatility contributes to the time value of a put option in a positively correlatedmanner, because the value
of the option itself is a monotonically increasing function of volatility, just as that for the case of a call option, the discount
effect, through the interest rate, acts against the time value of a put. In the extreme case, in the event that volatility is zero,
the underlying asset’s appreciationwith time implies that the longer a put option is away from the expiry, the less the holder
of the option would receive when exercising the option on the expiry date. Consequently, a relatively large interest rate, in
comparison with the volatility level, would result in the put option value being a decreasing function of the time to expiry
(this explains why the lower bound of BS1 with a small volatility behaves as a decreasing function of the time to expiry in
Fig. 2). On the other hand, when the volatility becomes larger, the time value of a put eventually becomes an increasing
function of the time to expiry. Somewhere in between, with a right combination of the ratio of S/E (usually near themoney)
and the relative interest rate, 2r/σ 2, (or 2r/σ 2

2 for the regime-switching case), θτ may change signs3 as displayed in the two
top curves in Fig. 2.

4. Conclusions

In this paper, a new exact closed-form solution for European options in a two-state regime-switching economy is derived.
The newly-obtained formula involves only the calculation of a single integral with a real integrand and can thus be very
easily calculated, if numerical values are needed. Such a result is achieved through the analytic inversion of the Fourier
transform.

An interesting extension of this paper would be to consider the case where the risk-free interest rate is state dependent.
Extending the model such that r1 ≠ r2 would yield similar PDEs under the restrictive assumption that the extra source of
risk can be diversified (see [9] or [12]). However, if this assumption were not to be made, the pricing problem would lead
to a non-trivial extension of the current model, which may further complicate the solution procedure. We are currently
exploring this case and the results will be published in a forthcoming paper.
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Appendix A. Analytical Fourier inversion

The details for the Fourier inversion of q̂1(ω, τ1) are provided here, the result for q̂2(ω, τ2) will follow due to symmetry.
Before trying to find its inverse Fourier transform, we rewrite q̂1(ω, τ1) in a more convenient form

q̂1(ω, τ1) = exp


−τ+


ω +

3i
2

2

+
1
4

− iωγ+ + 2γ+ + β+



×




α+

−

ω +

3i
2

2
−

1
4

+ 1


eg(ω)τ− − e−g(ω)τ−

2g(ω)
+

eg(ω)τ− + e−g(ω)τ−

2

−

ω +

3i
2

2
−

1
4


 (A.1)

3 θτ =
∂P
∂τ

with P being the value of a put option and τ being the time to expiry.
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where

τ± = τ1


A ± 1
2A


=

σ 2
1 ± σ 2

2

4
(T − t),

α± =
Aβ12 ± β21

A − 1
=

2(λ12 ± λ21)

σ 2
1 − σ 2

2
,

γ+ =
Aγ1 + γ2

A + 1
=

4r
σ 2
1 + σ 2

2
,

β+ =
Aβ21 + β12

A + 1
=

2(λ12 + λ21)

σ 2
1 + σ 2

2
,

µ2
=

4β21β12

(A − 1)2
=

4λ21λ12

(σ 2
1 − σ 2

2 )2

and

g(ω) =


ω +

3i
2

2

+
1
4

+ α−

2

+ µ2.

Note that

α2
+

− α2
−

= µ2.

On initial inspection, q̂1(ω, τ1) appears to be a multi-valued function due to the presence of a square root function in g(ω).
Despite its appearance, however, the function q̂1(ω, τ1) is analytic everywhere except at the rather obvious poles ω = −i
and ω = −2i (see Appendix B for its proof). The terms involving g(w) in q̂1(ω, τ1) are grouped in such a way that their
contributions do not create the need for any branch cut.

q̂1(ω, τ1) as written in Eq. (A.1) provides a better mathematical description of the problem. The factor

−
1

w +
3i
2

2
+

1
4

is the corresponding payoff function for a European put option in the Fourier space. Another factor that can be readily
identified is

exp


−τ+


ω +

3i
2

2

+
1
4

− iωγ+ + 2γ+


which,when combinedwith thepayoff function, is the value of a European-style option in the Fourier spacewith the variance
taken as the average of the variances from the two states (i.e. σ 2

+
= (σ 2

1 +σ 2
2 )/2). The remaining component represents the

effect of regime switching on an option with volatility σ+, in the Fourier space.
In order to evaluate the complex integral in Eq. (9), two closed contours are constructed as shown in Fig. 3. By applying

Cauchy’s residue theorem on the contours, we are able to express the Fourier inversion integral in terms of the residue at
ω = −i and a real-valued single integral.

In Fig. 3(a), GA is a straight line along the real axis; AB and FG are arc segments of a circle centered atω = −
3i
2 with radius

R eventually approaching infinity; and BD and DF are line segments connecting the end of the arcs to the center of the circle.
In Fig. 3(b), AB is a straight line along the real axis; BC and EA are arc segments of a circle centered at ω = −

3i
2 with radius R

eventually approaching infinity; and CD and DE are line segments connecting the end of the arcs to the center of the circle.
For x+γ+τ+ ≥ 0, the integrals on arcs AB and FG in Fig. 3(a) vanish as R → ∞. Similarly, for x+γ+τ+ < 0, the integrals

on arcs BC and EA in Fig. 3(b) vanish as R → ∞.
By Cauchy’s residue theorem, for x + γ+τ+ ≥ 0,

1
2π


GA

eiωxq̂1(ω, τ1)dω =
1
2π


FD

eiωxq̂1(ω, τ1)dω +
1
2π


DB

eiωxq̂1(ω, τ1)dω − i Resω=−i{eiωxq̂1(ω, τ1)} (A.2)

and for x + γ+τ+ < 0,

1
2π


BA

eiωxq̂1(ω, τ1)dω =
1
2π


CD

eiωxq̂1(ω, τ1)dω +
1
2π


DE

eiωxq̂1(ω, τ1)dω − i Resω=−i{eiωxq̂1(ω, τ1)}. (A.3)

As R → ∞ the left-hand side of the above expressions converge to the Fourier inversion integral.
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Fig. 3. Complex contours used for evaluating Eq. (9).

For both cases, the residue at ω = −i can be readily evaluated as

Resω=−i

eiωxq̂1(ω, τ1)


e = −

ex−γ+τ+

i
. (A.4)

The task now remains to calculate the non-trivial integrals in Eqs. (A.2)–(A.3).
Consider the case x+γ+τ+ ≥ 0. On DB, let ω +

3i
2 = ρei

π
4 , dω = ei

π
4 dρ =

1
√
2
(1+ i)dρ. Similarly, on FD, ω +

3i
2 = ρe

3π i
4

and dω = e
3π i
4 dρ =

1
√
2
(−1+ i)dρ. Thus, combining the integrals on DB and FD results in the imaginary part of the integral

on DB canceling that of the integral on FD such that

1
2π


FD

eiωxq̂1(ω, τ1)dω +
1
2π


DB

eiωxq̂1(ω, τ1)dω

=
1

4π
√
2
exp


3x − γ+τ+

2
−

τ+

4
− β+τ+

 
∞

0

f1(ρ)α+

M(ρ)

ρ4 +

1
16


×


eX(ρ)


2ρ2

−
1
2


sin(f2(ρ) + θ(ρ) − Y (ρ)) −


2ρ2

+
1
2


cos(f2(ρ) + θ(ρ) − Y (ρ))


− e−X(ρ)


2ρ2

−
1
2


sin(f2(ρ) + θ(ρ) + Y (ρ)) −


2ρ2

+
1
2


cos(f2(ρ) + θ(ρ) + Y (ρ))


+

f1(ρ)

M(ρ)


eX(ρ) [sin(f2(ρ) + θ(ρ) − Y (ρ)) + cos(f2(ρ) + θ(ρ) − Y (ρ))]

− e−X(ρ) [sin(f2(ρ) + θ(ρ) + Y (ρ)) + cos(f2(ρ) + θ(ρ) + Y (ρ))]

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+
2f1(ρ)

ρ4 +
1
16


eX(ρ)


2ρ2

−
1
2


sin[f2(ρ) − Y (ρ)] −


2ρ2

+
1
2


cos[f2(ρ) − Y (ρ)]



+ e−X(ρ)


2ρ2

−
1
2


sin[f2(ρ) + Y (ρ)] −


2ρ2

+
1
2


cos[f2(ρ) + Y (ρ)]


dρ (A.5)

where

f1(ρ) = exp

−

ρ
√
2
(x + γ+τ+)


, f2(ρ) = ρ2τ+ −

ρ
√
2
(x + γ+τ+)

and

M(ρ) =




1
4

+ α−

2

− ρ4
+ µ2

2

+ 4ρ4

1
4

+ α−

2


1
4

θ(ρ) =
1
2
tan−1


2ρ2

 1
4 + α−

 1
4 + α−

2
− ρ4 + µ2


X(ρ) = M(ρ)τ− cos θ(ρ), Y (ρ) = M(ρ)τ− sin θ(ρ).

The right-hand side of Eq. (A.5) is a real valued integral. Combining Eqs. (A.2)–(A.5) and reintroducing the original
variables, we obtain the formula for the regime-switching option value

V1(S, t) = Ee−r(T−t)
+

1

4π
√
2

√
SEe

−
1
2


r+λ21+λ12+

σ2
1 +σ2

2
8


(T−t)  ∞

0

2f1(ρ)(λ21 + λ12)

M(ρ)

ρ4 +

1
16


(σ 2

1 − σ 2
2 )

×


eX(ρ)


2ρ2

−
1
2


sin(f2(ρ) + θ(ρ) − Y (ρ)) −


2ρ2

+
1
2


cos(f2(ρ) + θ(ρ) − Y (ρ))


− e−X(ρ)


2ρ2

−
1
2


sin(f2(ρ) + θ(ρ) + Y (ρ)) −


2ρ2

+
1
2


cos(f2(ρ) + θ(ρ) + Y (ρ))


+

2f1(ρ)

M(ρ)


eX(ρ) [sin(f2(ρ) + θ(ρ) − Y (ρ)) + cos(f2(ρ) + θ(ρ) − Y (ρ))]

− e−X(ρ) [sin(f2(ρ) + θ(ρ) + Y (ρ)) + cos(f2(ρ) + θ(ρ) + Y (ρ))]


+
f1(ρ)

ρ4 +
1
16


eX(ρ)


2ρ2

−
1
2


sin[f2(ρ) − Y (ρ)] −


2ρ2

+
1
2


cos[f2(ρ) − Y (ρ)]



+ e−X(ρ)


2ρ2

−
1
2


sin[f2(ρ) + Y (ρ)] −


2ρ2

+
1
2


cos[f2(ρ) + Y (ρ)]


dρ (A.6)

valid for ln
 S
E


+ r(T − t) ≥ 0.

For the case when ln
 S
E


+ r(T − t) < 0 (x + γ+τ+ < 0), the integral in Eq. (A.3) can be evaluated in the same way as

that of Eq. (A.2). We obtain the same result except that ρ is replaced with −ρ in the integrand.
Redefining the functions

f1(ρ) = e
−

ρ
√
2

ln S
E


+r(T−t)


,

f2(ρ) =
ρ2

4
(σ 2

1 + σ 2
2 )(T − t) −

ρ
√
2

ln S
E


+ r(T − t)


we can generalize the option value formula in Eq. (A.6) for all ln

 S
E


+ r(T − t).

Appendix B. Proof of q̂1(ω, τ1) being analytic

We show that q̂1(ω, τ1) is analytic, apart from the rather obvious simple poles at ω = −i and ω = −2i.
The multi-valued function g(ω) is the only component that would possibly create the need for a branch cut for q̂1(ω, τ1)

as stated in the form of (A.1). Consider the conformal mapping

Ω =


ω +

3i
2

2

+
1
4

+ α−

2

+ µ2
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with Ω being the argument of the square-root function in g(ω). In terms of Ω , the two terms that may create the need for
a branch cut are

e
√

Ωτ− − e−
√

Ωτ−

2
√

Ω
(B.1)

and

e
√

Ωτ− + e−
√

Ωτ−

2
. (B.2)

We are concerned that the presence of the multi-valued function,
√

Ω , may cause q̂1(ω, τ1) to be multi-valued. We
define the branch cut of

√
Ω along the negative real axis on theΩ-plane. As

√
Ω is analytic at all points on theΩ-plane, but

discontinuous across the negative real axis, we need to prove that the expressions in (B.1) and (B.2) are continuous across
this branch cut of the Ω-plane in order to prove that they are analytic.

First consider (B.1). Approaching the branch cut from above, i.e. let Ω = reiπ ,

e
√

Ωτ− − e−
√

Ωτ−

2
√

Ω
=

e
√
rei

π
2 τ− − e−

√
rei

π
2 τ−

2
√
rei

π
2

=
ei

√
rτ− − e−i

√
rτ−

2i
√
r

and approaching the branch cut from below, i.e. let Ω = re−iπ ,

e
√

Ωτ− − e−
√

Ωτ−

2
√

Ω
=

e
√
re−i π2 τ− − e−

√
re−i π2 τ−

2
√
re−i π2

=
ei

√
rτ− − e−i

√
rτ−

2i
√
r

yield the same result, proving that the expression in (B.1) is continuous across the branch cut of g(ω).
At the origin of the Ω-plane the denominator and numerator of (B.1) are zero. To observe the behavior of (B.1) at the

origin we parameterize Ω = reiθ and find the limit

lim
r→0

e
√
rei

θ
2 τ− − e−

√
rei

θ
2 τ−

2
√
rei

θ
2

= τ−.

Therefore, the singularity at the origin of the Ω-plane is a removable singularity.
Now consider the expression in (B.2). Approaching the branch cut from above, i.e. let Ω = reiπ ,

e
√

Ωτ− + e−
√

Ωτ− = e
√
rei

π
2 τ− + e−

√
rei

π
2 τ−

= ei
√
rτ− + e−i

√
rτ−

and approaching the branch cut from below, i.e. let Ω = re−iπ ,

e
√

Ωτ− + e−
√

Ωτ− = e
√
re−i π2 τ− + e−

√
re−i π2 τ−

= ei
√
rτ− + e−i

√
rτ−

yield the same result, proving that the expression in (B.2) is continuous across the branch cut.
Thus, we conclude that q̂1(ω, τ1) is analytic except at the simple poles ω = −i and ω = −2i.
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