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SUMMARY

Shigella enters epithlial cells via internalization into a
vacuole. Subsequent vacuolar membrane rupture al-
lows bacterial escape into the cytosol for replication
and cell-to-cell spread. Bacterial effectors such as
IpgD, a PI(4,5)P2 phosphatase that generates PI(5)P
and alters host actin, facilitate this internalization.
Here, we identify host proteins involved in Shigella
uptake and vacuolar membrane rupture by high-con-
tent siRNA screening and subsequently focus on
Rab11, a constituent of the recycling compartment.
Rab11-positive vesicles are recruited to the invasion
site before vacuolar rupture, and Rab11 knockdown
dramatically decreases vacuolar membrane rupture.
Additionally, Rab11 recruitment is absent and vacu-
olar rupture is delayed in the ipgD mutant that does
not dephosphorylate PI(4,5)P2 into PI(5)P. Ultrastruc-
tural analyses of Rab11-positive vesicles further
reveal that ipgDmutant-containing vacuoles become
confined in actin structures that likely contribute
to delayed vacular rupture. These findings provide
insight into the underlying molecular mechanism of
vacuole progression and rupture during Shigella
invasion.

INTRODUCTION

Numerous bacterial pathogens have evolved strategies for host

cell entry during infection for survival and proliferation. Upon

internalization, they are all engulfed within a membrane-bound

vacuole derived from the host cell plasma membrane. Then the

invading pathogens modulate this compartment avoiding fusion

with lysosomes to create a replicative niche. Alternatively, they

damage and rupture the vacuole to access the nutrient-rich

host cytoplasm (Ray et al., 2009). Vacuolar modulation by the

internalized pathogens involves the host membrane trafficking

machinery. These pathways are tightly regulated by small

GTPases of the Rab family. Highly compartmentalized, Rab pro-

teins determine intracellular transport and organelle identity.

They function as molecular switches that alternate between the

active GTP-bound form and the inactive GDP-bound form coor-

dinated by specific GTPase-activating proteins (GAPs) and
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GTPase exchange factors (GEFs) (Stenmark, 2009). During

endocytosis, Rab5 is localized at early endosomes (EEs) and reg-

ulates clathrin-coated vesicle (CCV) transport from the plasma

membrane to the EEs as well as homotypic EEs fusion. EEA1 is

the Rab5 effector that mediates tethering/docking of EEs.

Then, cargos are either successively trafficked to Rab7-associ-

ated late endosomes and lysosomes for degradation, or trans-

ported back to the cell surface via different recycling routes.

Rab4 mediates fast endocytic recycling directly from EEs to

the plasma membrane, whereas Rab11 mediates slow recycling

through the perinuclear endocytic recycling compartment (ERC)

(Grant and Donaldson, 2009). Despite numerous downstream ef-

fectors known to interact with Rab11, like Rab11-family interact-

ing proteins (FIPs), actin, and microtubule motors, only three

Rab11-GAPs named, Evi5, TBC1D11, and TBC1D15, and no hu-

manRab11-GEFs have been identified to date (Welz et al., 2014).

Bacterial pathogens translocate virulence factors into host

cells where they interfere with host Rabs and perturb trafficking.

For instance, SopE and SopB from Salmonella typhimurium act,

respectively, as a Rab5-specific GEF mimic and an inositol

phosphatase. Both bacterial effectors have been implicated in

the recruitment of Rab5 to the Salmonella-containing vacuole

(SCV) promoting fusion with EEs, which is crucial for vacuolar

maturation (Mallo et al., 2008; Mukherjee et al., 2001). Interest-

ingly, Legionella pneumophila secretes both a GEF and a GAP,

named DrrA and LepB, that induce a feedback activation loop

of Rab1 to promote efficient fusion of endoplasmic reticulum-

derived vesicles with the Legionella-containing vacuole (LCV)

(Ingmundson et al., 2007). Although the interplay between mem-

brane trafficking and bacterial pathogens contained within vac-

uoles has been extensively studied, their implication in host

membrane rupture events remain largely unknown (Brumell

and Scidmore, 2007).

Shigella flexneri (Shigella) is a Gram-negative bacterium

responsible for bacillary dysentery in humans. Upon epithelial

cell contact, Shigella promotes massive actin and plasma mem-

brane rearrangements leading to its internalization within a vac-

uole. Then, Shigella rapidly escapes from this vacuole, replicates

within the cytosol, andmoves intra- and intercellularly (Ray et al.,

2009). Importantly, Shigella injects a set of bacterial effectors

through the mxi-spa type 3 secretion system (T3SS) that subvert

host cell function during bacterial internalization. For instance,

IpaC initiates actin polymerization at the invasion site in a

Cdc42-dependent manner. In addition, it recruits and activates

the tyrosine kinase c-src, further promoting actin polymerization

(Mounier et al., 2009). Besides, Shigella also targets membrane
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phospholipids via the effector IpgD, a PI(4,5)P2 phosphatase that

generates PI(5)P at the bacterial entry site. In epithelial cells, the

depletion of PI(4,5)P2 contributes to the actin dynamics notably

by disrupting the connections between cortical actin and the

plasma membrane, whereas the production of PI(5)P induces

activation of the PI3-kinase/Akt pathway, thereby promoting

host cell survival (Niebuhr et al., 2002; Pendaries et al., 2006; Ra-

mel et al., 2011). Recent studies indicate that IpgD prevents

T cell migration at the site of infection and blocks ATP release

to attenuate inflammation, suggesting that it plays a role in

evading the immune response (Konradt et al., 2011; Puhar

et al., 2013).

Whereas the entry process into epithelial cells is rather well es-

tablished, the molecular mechanism of vacuolar rupture used by

Shigella remains to be defined. The T3SS effector/translocator

proteins IpaB and IpaC have been shown to disrupt lipid vesicles

in vitro and are required for contact-mediated hemolysis by

Shigella, indicating their potential role in membrane disruption

(Blocker et al., 1999; van der Goot et al., 2004). Furthermore, in

macrophages, IpaB has been implicated in phagosomal escape

and successive induction of cell death (High et al., 1992). Recent

evidences suggest that IpaB can assemble into multiprotein

complex structures within membranes to allow ion fluxes, lead-

ing to macrophages pyroptosis (Dickenson et al., 2013; Sener-

ovic et al., 2012). Nevertheless, due to the absolute requirement

of IpaB/IpaC to deliver bacterial effectors into the host cells, it

is challenging to assess their direct contribution in vacuolar

rupture. In this study, we used a combination of high-content

and live-imaging approaches to identify components of the recy-

cling compartment as targets of the Shigella effector IpgD

required for efficient rupture of the Shigella-containing vacuole.

RESULTS

Identification of Host Factors Controlling the
Successive Entry Steps of Shigella into Epithelial
Host Cells
In order to identify host factors involved in the early steps of

Shigella invasion of epithelial cells, we carried out a high-content

siRNA library screen targeting genes with established roles in

membrane trafficking. Shigella internalization was followed by

the actin rearrangements at the entry site, and the successive

step of vacuolar rupture was imaged using a sensitive FRET-

reporter assay that takes advantage of the cleavable cephalo-

sporin-derived substrate CCF4 localized in the host cytoplasm

and bacteria expressing b-lactamase at their surface. Only

upon vacuolar rupture, the FRET-reporter is hydrolyzed by b-lac-

tamase, leading to a robust switch of fluorescence emission from

green to blue (Ray et al., 2010). We combined the fluorescence

readouts for bacterial entry and for vacuolar rupture in our screen

establishing automated image analysis algorithm for simulta-

neous robust quantification of both steps. In brief, HeLa cells

were transfected with the different siRNAs for 72 hr, loaded

with the FRET-reporter, and then infected with wild-type Shigella

prepared as described before using a moi of 10 for 1 hr (Ray

et al., 2010). Nuclei and actin filaments were stained, and images

of about 8,000 cells per well were automatically acquired and

analyzed (Figures 1A and 1B; see also Supplemental Experi-

mental Procedures, available online, for details).
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After data normalization based on the strictly standardized

mean difference (SSMD) method, 32 siRNA targeted genes were

identified as robust hits. Intriguingly, we only found gene knock-

downs that decelerated vacuolar rupture. This may be attributed

to its rapid pace in the controls taking place within 10 min after

host cell entry. Identified genes included well-characterized host

factors that drive actin polymerization during Shigella invasion,

such as the Rho GTPase Cdc42, as well as six subunits of the

Arp2/3 complex (Figures 1C and S1). We selected a subset of

the identified genes for further validation and characterization

based on their strong phenotype assessed by statistical analysis

(jSSMDj > 3; see also Experimental Procedures and Figures S1A

and S1B for details) as well as their biological relevance and the

functional protein association network database STRING (http://

string-db.org) (Figure 1D). The depletion efficiencies of these

siRNA targets were verified by qRT-PCR (Figure S1C). A number

of our selected hits includedmarkers of early endocytic trafficking,

such as Rab5 (A, B, and C isoforms), EEA1, and synaptojanins

(SYNJ1 and SYNJ2). Surprisingly, our analysis also revealed a

network of proteins involved in sorting and/or recycling pathways,

such as Rab4A, sorting nexins (SNX1 and SNX2), Rab11A, and

VAMP2 (Figure 1D). Collectively, our screen results suggest a

key role of endocytic and recycling pathways in the early step of

Shigella invasion into epithelial cells leading to vacuolar rupture.

A Specific Subset of Rab-GTPase Family Members
Is Recruited to the Shigella Entry Site
Little is known about host membrane trafficking during the

early steps of Shigella invasion; hence we characterized the

Rab-associated hits in more detail. We used Rab4-, Rab5-,

and Rab11-EGFP chimeras together with mOrange-tagged actin

tomonitor their localization duringShigella invasion into epithelial

cells by live confocal microscopy. Strikingly, Rab11 massively

accumulated at the entry site of Shigella (Movie S1, left panel;

Figure 2A). Besides, Rab5 was transiently recruited with Rab5-

positive vesicles appearing and disappearing at the entry site

in a highly dynamic manner (Movie S1, middle panel; Figure 2B).

On the other hand, Rab4was not enriched (Movie S1, right panel;

Figure 2C). Furthermore, immunofluorescent staining of endoge-

nous Rab5 and Rab11 confirmed their accumulation at the inva-

sion site of Shigella within epithelial cells (Figure S2).

To characterize the dynamics of actin and Rabs quantitatively,

we performed image analysis of our time-lapse data of host fac-

tor recruitment to the bacterial entry site (see Experimental Pro-

cedures). In brief, the fluorescence intensities in the 561 and

488 nm channels corresponding to actin-mOrange and Rab4-,

Rab5-, or Rab11-EGFP signals were measured around invading

Shigella for at least 40 entry foci per experimental condition. After

data normalization and alignment with the time of actin focus

appearance, the host factor recruitment was plotted over the

measured time period. For example, actin foci formation shown

in Figure 2D could be decomposed in three phases, consistent

with the published literature (Ehsani et al., 2012). Upon bacterial

contact, a dramatic increase in actin signal appeared within

5 min, and it remained present for the subsequent 5 min. Then,

it slowly declined to its initial level within approximately 20 min.

Interestingly, the quantitative analysis in Figures 2E and S2C

showed a sharp increase in the Rab11-EGFP fluorescence inten-

sity level very shortly (90 s) after the onset of actin foci formation,
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Figure 1. siRNA Screen Reveals Host Factors Required for Successive Steps of Shigella Invasion into Epithelial Cells
(A) Experimental pipeline. Host cells are grown in 96-well plates and transfected by siRNAs targeting proteins involved inmembrane trafficking. Then they are loaded

with the CCF4-AM FRET substrate to assess vacuolar rupture before challenging them with Shigella. After staining the nuclei and actin filaments, images are

automatically acquired and analyzed. Cells are segmented, andShigella entry ismeasuredby actin foci formation and vacuolar rupture using the FRET ratio of CCF4.

(B) Screen layout. Representative 96-well plate showing the plate layout and images of the controls and a siRNA. Twenty images were acquired per well totaling

about 64,000 cells per control condition and 32,000 cells per siRNA target.

(C) Overview of the screen results. Normalized SSMD values are plotted for each siRNA of the library identifying 32 siRNA targets as robust hit.

(D) Selected hit list of the screen. Among the hit list, nine host factors including members of the Arp2/3 complex and the Rab-GTPase family were selected for

further validation and characterization.
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Figure 2. Recruitment of Rab-GTPase Family Members to the Shigella Entry Site

(A–C) Live confocal microscopy to monitor Rab localization during Shigella invasion into epithelial cells. HeLa cells expressing Rab4-, Rab5-, or Rab11-EGFP

chimeras and actin-mOrange were infected with the Shigella WT and imaged. Rab11 massively accumulates, whereas Rab5 is transiently recruited at the entry

foci of Shigella (A and B, respectively). In contrast, Rab4 is not specifically enriched at the Shigella invasion site (C). Scale bar, 5 mm.

(legend continued on next page)
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and reaching an intensity plateau within approximately 10 min.

Rab11 levels remained at high levels until the end of the

measured time courses. Besides quantifying both Rab4 and

Rab5-EGFP fluorescence intensity levels, we found them only

slightly enriched (after about 6 min) remaining at fairly low levels

throughout the measurement periods. Thus, our data revealed

the massive recruitment of Rab11-positive vesicles and the tran-

sitory presence of Rab5-positive EEs at the vicinity of invading

Shigella within epithelial cells, whereas Rab4-positive vesicles

were not significantly enriched.

Rab11-Positive Vesicles Are Targeted by Shigella to
Achieve Efficient Vacuolar Rupture
To correlate precisely the dynamics of Rab11 recruitment with

the progression of Shigella invasion, we used the Galectin-3

marker to track vacuolar rupture (Paz et al., 2010). Time lapses

of living cells cotransfected with Rab11-EGFP and Galectin-3-

mOrange showed that Rab11 accumulation at the Shigella entry

site took place before vacuolar escape (Movie S2; Figure 3A). In

agreement with previously reported data, Galectin-3 was tran-

siently recruited to the damaged membrane of the Shigella-con-

taining vacuoles approximately 8 min after the beginning of the

actin foci formation (Paz et al., 2010; Ray et al., 2010). Rab11

recruitment nearly reached its maximum before the bacteria

ruptured their vacuoles (Figure 3B).

Then, we investigated in more detail the involvement of Rab11

during Shigella invasion. First, we performed gentamicin protec-

tion assays. As expected, the depletion of Cdc42 dramatically

reduced Shigella internalization. In contrast, Rab11 knockdown

did not alter the rate of bacterial entry (Figure 3C). Therefore,

we next analyzed the successive steps of bacterial internaliza-

tion and vacuolar lysis in living cells depleted for either Cdc42

or Rab11 by simultaneously tracking the onset of actin foci for-

mation and the subsequent recruitment of Galectin-3. Knock-

down efficiencies were measured by qRT-PCR at approximately

80% for Cdc42 and 95% for Rab11A (Figure S1). Confirming the

gentamicin protection assay results, Rab11 knockdown did not

affect the course of actin foci formation. Besides, Cdc42 knock-

down did not completely inhibit but instead significantly delayed

actin foci formation (Figure 3D). Nevertheless, once internalized

into Cdc42-depleted cells, the bacteria ruptured their vacuoles

similarly to the control condition (siRNA neg). In contrast, vacu-

olar rupture was strongly delayed in Rab11-depleted cells,

arguing that Shigella recruits Rab11-positive vesicles to achieve

efficient disruption of its vacuole (Figure 3E). This is further sup-

ported by the fact that a substantially lower number of bacteria

are moving intracellularly by forming an actin tail when Rab11

is knocked down (Figure S3).

The Bacterial Inositol Phosphatase IpgD Is Required
for the Recruitment of Rab11 Vesicles to the
Shigella-Containing Vacuoles
Given our findings, we hypothesized that Shigella subverts

Rab11 by the injection of T3SS effectors. Because phosphoino-
(D and E) Quantitative analysis of the live-imaging data. Themean normalized fluor

(Norm Ratio 488) corresponding to actin-mOrange and Rab4-, Rab5-, or Rab11-

each entry event, the Rab intensity signals were aligned using the time point of th

independent experiments (n R 40 per condition).
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sitides (PIs) are important in vesicular trafficking, we targeted the

IpgD effector, a bacterial phosphatidylinositol 4-phosphatase

(Niebuhr et al., 2002). First, the dynamic accumulation of

Rab11 at the bacterial entry site was followed by live confocal

microscopy in HeLa cells infected either with the Shigella ipgD

strain, the ipgD/IpgD complemented strain, or the ipgD/

IpgDC438S strain complemented with a phosphatase-inactive

mutant of IpgD (IpgDC438S). Unlike for Shigella WT, Rab11 was

not recruited at the entry site of both the ipgD and ipgD/

IpgDC438S strains (Movie S3, left panel and right panel; Figures

4A and 4C). Importantly, Rab11 recruitment was restored at

the invasion site upon complementation in trans (Movie S3; Fig-

ure 4B). Indeed, quantitative analysis as in Figure 2D demon-

strated that the differences between Shigella WT and the ipgD

strains lacking the inositol phosphatase activity were highly sig-

nificant (p < 0.0001). On the other hand, the recruitment of Rab11

by the ipgD/IpgD strain was similar to Shigella WT during the

entire time course of infection. Albeit, a slight decrease of signal

was observed toward the end of the measured time courses,

likely due to a complementation effect (Figures 4D and S4).

Therefore, the recruitment of Rab11-positive vesicles at the inva-

sion site of Shigella requires the PI phosphatase activity of IpgD.

Next, we investigated the role of IpgD in the remodeling of PIs at

the invasion site of Shigella. For this purpose, we used the fluo-

rescent probes PI(4,5)P2 PH-PLCd and PI(3)P 2X-FYVE and an-

tibodies against PI(4,5)P2 and PI(4)P (Figure S5; also see Supple-

mental Experimental Procedures for details). We found that

PI(4,5)P2 was depleted from the host cell plasma membrane in

an IpgD-dependent fashion before the recruitment of Rab11-

positive vesicles (Figures S5A–S5D), whereas its precursor

PI(4)P was markedly enriched at the membrane ruffles indepen-

dently of IpgD (Figure S5E). Additionally, we found the PI(5)P 3X-

PHD(ING2) probe enriched at the invasion site of Shigella WT,

but not at the vacuolar membrane, as described previously (Pen-

daries et al., 2006; data not shown). In contrast, PI(3)P was not

detected at the membrane ruffles, nor around the nascent

Shigella-containing vacuole. Nevertheless, a number of PI(3)P-

positive large vesicles were dynamically located at the invasion

site of Shigella WT but not ipgD, resembling their presence at

macropinosomes (Figures S5F–S5H).

Correlative Large-Volume Microscopy Reveals
Rab11-Positive Vesicles in the Vicinity of Shigella
WT-Containing Vacuoles
To characterize structural details of the vesicles recruitment to

the Shigella invasion site, we used a correlative light and electron

microscopy (CLEM) approach. Because bacterial invasion takes

place in three dimensions, we applied state-of-the-art large vol-

umemicroscopy via focused ion beam/scanning electron micro-

scopy (FIB/SEM) correlated with fluorescence light microscopy

to obtain 3D-ultrastructural details of the invasion site of Shigella

WT and ipgD within epithelial cells (Weiner et al., 2011). The

same positions of interest were identified at both microscopes

using MatTek dishes with a finder grid (Figure S6). After
escence intensities in the 561 nm channel (NormRatio 561) and 488 nmchannel

EGFP signals confined to the invasion site of Shigella WT were assessed. For

e actin focus formation onset. Plotted are mean data ± SEM from at least three

t & Microbe 16, 517–530, October 8, 2014 ª2014 Elsevier Inc. 521



Figure 3. Rab11 Knockdown Impairs Efficient Rupture of Shigella-Containing Vacuoles

(A and B) Rab11 accumulation at the Shigella entry site takes place before vacuolar escape. (A) HeLa cells cotransfected with Rab11-EGFP and Galectin-3-

mOrangewere infected with the ShigellaWT and imaged. Scale bar, 5 mm. (B) Quantitative analysis of Rab11 recruitment to the Shigella entry site during invasion.

The red arrow indicates the mean time of Galectin-3 recruitment highlighting vacuolar rupture after the time point of bacterial entry measured by the onset of actin

foci formation (see Figure 2D).

(C) Rab11 knockdown does not alter Shigella internalization into epithelial cells. Gentamicin protection assays depict the invasion level of ShigellaWT into HeLa

cells after 72 hr of siRNA transfection. Results were obtained from three independent experiments (n = 4 per condition) and statistically analyzed using theMann-

Whitney test.

(D and E) Rab11 knockdown results in a strong delay in vacuolar rupture. HeLa cells were cotransfected with actin-mOrange and Galectin3-EGFP to simulta-

neously monitor the entry step of Shigella by determining the time of actin foci formation (D) and the vacuolar rupture step by measuring the time interval (DT)

between entry foci formation and Galectin-3 recruitment (E). Results were obtained from three independent experiments (nR 60 per condition) and statistically

analyzed using the t test for foci formation and the Mann-Whitney test for vacuolar rupture (ns, nonsignificant difference).
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transfection with Rab11-EGFP, cells were infected with Shigella

WT or ipgD strains for 30min and fixed. DNA (host cell nuclei and

bacteria) and actin filaments were stained, and infected cells

were imaged by confocal microscopy followed by processing

for EM (see Experimental Procedures for more details).

Representative fluorescence images of host cells infectedwith

ShigellaWT or ipgD are shown in the upper panels of Figures 5A

and 5B, respectively. Both DAPI and Rab11 fluorescence signals

were delineated by thresholding to further correlate them with

the ultrastructural data sets (also see Figure S6). In the lower

panels, FIB/SEM data of the same invasion sites are shown,

including a segmentation of bacteria-containing vacuoles (in

blue) and vesicles (in orange). The Rab11 fluorescence signal

(in green) was superimposed on the FIB/SEM data to obtain

the correlative analysis of the Shigella invasion sites. Strikingly,

the ShigellaWT-containing vacuoles were surrounded by a large

number of heterogeneous vesicles, which partially colocalize

with Rab11 fluorescence signal (Figure 5A; Movie S4, upper

panel). By contrast, only very few vesicles were present around

the ipgD-containing vacuoles, and none were Rab11 positive

(Figure 5B; Movie S4, lower panel). Furthermore, some of the

Rab11-positive vesicles observed appeared to be in contact

with the bacterial-containing vacuole, perhaps in the process

of fusion or fission (Figure 5A; Movie S4, upper panel). However,

the precise nature of these contacts requires further investiga-

tion. Thus, our correlative large volume microscopy data re-

vealed the presence of Rab11-positive vesicles in the vicinity

of Shigella WT-containing vacuoles, which was dependent on

the bacterial effector IpgD.

Shigella ipgD Vacuolar Rupture Is Strongly Delayed with
Bacteria Trapped in ‘‘Actin-Cage’’ Structures Compared
to Shigella WT
We compared the dynamics of ShigellaWT and ipgD invasion by

monitoring the actin and Galectin-3 signals in living cells similarly

to the analysis of Rab11 knockdown (Figures 3D and 3E).

Although the entry site of ipgD displayed an altered morphology

compared to the WT, both strains entered epithelial cells at the

same pace (Figures 6A and 6C; Movie S5 and Movie S6), con-

firming previously reported data (Niebuhr et al., 2002). By

contrast, we found that Shigella ipgD vacuolar rupture was

significantly delayed, doubling the time period required for Ga-

lectin-3 recruitment to the damaged vacuole in comparison to

Shigella WT (Figure 6B; Movie S5 and Movie S6).

Additionally, a more detailed analysis of these time-lapse

image series provided a precise description of the events sur-

rounding vacuolar destabilization during invasion by the Shigella

WT and ipgD strains (Figures 6C and 6D; Movie S5 and Movie

S6). Shigella entry started while triggering an actin focus that is

less pronounced for ipgD. Upon bacterial internalization, Shigella

WT rapidly disrupted its vacuole highlighted by the recruitment

of the host Galectin-3 strongly accumulating at the damaged

vacuolar membrane, thereby forming readily visible ‘‘Galectin-3

ghosts.’’ In contrast, Shigella ipgD remained confined in a struc-

ture that resembled an ‘‘actin cage’’ stabilizing vacuolar mem-

brane integrity. In-depth controls were performed to confirm

that the ipgD mutant surrounded by an actin cage are within a

vacuole (Figure S7). It is noteworthy that 83% of the ipgD-con-

taining vacuoles, but only 17% of the Shigella WT strain, were
Cell Hos
surrounded by an actin cage, potentially explaining the different

kinetics of vacuolar rupture between the two strains. Eventually,

we found that ipgD also destabilized its vacuole, yet less than

40% of vacuoles were surrounded by a complete ‘‘Galectin-3

ghost’’ similar to the one observed for the WT. In over 60% of

the cases, the recruitment of Galectin-3 to the ipgD-containing

vacuoles appeared incomplete. The final stage of Shigella inva-

sion is the well-described formation of an actin tail at one pole of

the bacterium (Ray et al., 2010). Interestingly, we found that only

34% of ipgD bacteria formed an actin tail, in contrast to 96% of

ShigellaWT reflecting the delay of vacuolar escape into the host

cytosol (Figures 6C and 6D; Movie S5 and Movie S6). To further

support this notion, infected cells harboring Shigella ipgD-actin

cages were treated with latranculin A, a chemical inhibitor of

actin polymerization, and followed by live confocal imaging.

Remarkably, the actin cage disassembled upon treatment,

rapidly followed by vacuolar rupture as assessed by the recruit-

ment of a complete Galectin-3 ghost (Figure S7D). Overall, our

time-lapse data revealed that ipgD-containing vacuoles are

confined in an actin cage prior to vacuolar rupture that appears

to protect it from the subsequent rupture process.

DISCUSSION

Using a high-content siRNA screening approach, we found that

Shigella particularly targets Rab11, a component of the host re-

cycling compartment, by injecting its T3SS effector IpgD to

achieve efficient vacuolar escape. Such subversion of the host

is intriguing because vacuolar rupture has been assumed to be

controlled directly by bacterial factors. For example, the T3SS

effector/translocators IpaB and IpaC have been implicated in

membrane destabilization due to their ability to insert into the

host cell membrane for the delivery of bacterial effectors (Dick-

enson et al., 2013; High et al., 1992; Senerovic et al., 2012).

Nevertheless, T3SS translocators with high homology to IpaB/

IpaC are also present in numerous vacuolar bound Gram-nega-

tive bacterial pathogens (e.g., Salmonella, Yersinia, Pseudo-

monas), arguing for the existence of additional factors or other

mechanisms controlling vacuolar membrane integrity during

Shigella infection (Coburn et al., 2007; Håkansson et al., 1996;

Hume et al., 2003). Apart from Rab11, we also found other

host proteins involved in the step of Shigella vacuolar rupture.

This suggests a complex mechanism where several host path-

ways are hijacked by the pathogen that is also supported by

the deceleration of vacuolar rupture, but not to a complete inhi-

bition after Rab11 knockdown. Involvement of multiple proteins

from the host protein machinery in vacuolar escape has also

been proposed for Listeria via the g-interferon inducible lyso-

somal thiol reductase (GILT), the cystic fibrosis transmembrane

conductance regulator (CFTCR), and via the heat shock protein

HSP70 (Davis et al., 2012; Radtke et al., 2011; Singh et al., 2008).

In the case of Francisella, the v-ATPase or the ubiquitin ligase

CDC27 has been connected with the rupture process (Akimana

et al., 2010). Together, it emerges that host factors are common

targets for bacterial vacuolar escape.

A widespread strategy used by intravacuolar pathogens is the

subversion of host vesicular trafficking to avoid lysosomal degra-

dation and subsequently promote bacterial proliferation (Brumell

and Scidmore, 2007). Altering endocytic trafficking expressing
t & Microbe 16, 517–530, October 8, 2014 ª2014 Elsevier Inc. 523
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Figure 5. Ultrastructural Characterization

of the Shigella WT and ipgD Invasion Site

Using Large-Volume Correlative Micro-

scopy

(A and B) Fluorescence confocal microscopy was

followed by large volume FIB/SEM of the same

invasion site of Shigella WT (A) or ipgD (B) within

host epithelial cells. Image of the entire host cell

with Rab11-EGFP and DAPI fluorescence signals

is shown in upper right corner (scale bar, 5 mm). A

zoom image of the invasion site including the

segmentation of both Rab11-EGFP and DAPI

fluorescence signals is shown in upper left corner

(scale bar, 1 mm). FIB/SEM image of the same in-

vasion site is shown in lower left corner (scale bar,

1 mm). Using Amira software, the bacteria-con-

taining vacuoles and host vesicles were seg-

mented from the 3D EM data set (shown in blue

and orange, respectively). Fluorescent Rab11-

positive vesicles (green) were correlated with the

host vesicles (orange).
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constitutively active Rab5 or dominant-negative Rab7 leads to

vacuolar destabilization of SCVs (Brumell et al., 2002). Our study

reveals the massive recruitment of Rab11-positive vesicles
Figure 4. The Bacterial Inositol Phosphatase IpgD Controls the Recruitment of Rab11 to the S

(A–C) Live confocal microscopy shows the requirement of the enzymatic action of IpgD to recruit Rab11 t

Rab11-EGFP and actin-mOrange were infected with a Shigella ipgD strain (A), a ipgD/IpgD strain complem

plemented with an inositol phosphatase inactive IpgDC438S (C) and imaged. Rab11 was not recruited at the e

strains. However, it was restored at the invasion site of the ipgD/IpgD. Scale bar, 5 mm.

(D) Quantitative analysis of Rab11 recruitment at Shigella invasion site using different bacterial strains (see Fig

SEM from at least three independent experiments (n R 30 per condition) are plotted.

Cell Host & Microbe 16, 517–530
to the Shigella-containing vacuoles,

whereas Rab5-positive EEs only tran-

siently appear and disappear, and

Rab4-positive vesicles are not enriched.

Rab11 knockdown strongly delays the

vacuolar rupture of Shigella without

affecting the entry within epithelial cells.

Interestingly, Chlamydia also recruits

Rab11 to the inclusion, and both Rab11

and Rab6 knockdown prevent Golgi

fragmentation, causing a defect in lipid

transport to the inclusion and bacterial

proliferation (Derré et al., 2007; Rejman

Lipinski et al., 2009). Also, Legionella re-

cruits Rab11 to its vacuole; however,

this does not impair intracellular bacterial

replication (Hoffmann et al., 2014). It

would be interesting to address whether

it has an impact on the vacuolar mem-

brane integrity using fluorescent markers

as in this work. Recently, Mounier et al.

have shown that Shigella induces Golgi

fragmentation via IpaB-dependent chole-

sterol relocalization. They described also

the tubulation of transferrin (Tf)- and

Rab11-positive compartments leading

to an impairment of recycling after
45 min p.i., a time point when Shigella is already proliferating

within the cytosol (Mounier et al., 2012). We found an early im-

plication of Rab11 during Shigella invasion that occurs via
higella-Containing Vacuoles

o invading Shigella. HeLa cells cotransfected with

ented in trans (B), or ipgD/IpgDC438S strain com-

ntry foci of both Shigella ipgD and ipgD/IpgDC438S

ure 2E and Experimental Procedures). Mean data ±

, October 8, 2014 ª2014 Elsevier Inc. 525
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recruitment to the entry site within minutes and is surprisingly

only accompanied by weak Tf colocalization (data not shown),

suggesting that both processes are distinct. Indeed, similar tu-

bulation is observed with VAMP4, a SNARE present at the

trans-Golgi network, but not with VAMP3, which is a RE marker

that also accumulates at the invasion site of Shigella (data not

shown). Thus, the tubulation of Tf- and Rab11-positive compart-

ments is probably due to the disruption of the retrograde

pathway, whereas we report an involvement of the recycling

pathway. This highlights the delicate subversion of distinct

host pathways by Shigella. Interestingly, previously reported

screen data suggest that Rab11 knockdown inhibits Listeria

infection (Derré et al., 2007), raising the possibility that our find-

ings can be extended to other cytosolic pathogens.

PIs are major spatiotemporal regulators of membrane traf-

ficking, and numerous intracellular bacterial pathogens subvert

PIs to ensure their survival and proliferation (Weber et al.,

2009). In this regard, Shigella modulates PIs injecting the viru-

lence factor IpgD, a PI(4,5)P2 phosphatase producing PI(5)P

(Niebuhr et al., 2002). Our results clearly show that the IpgD

inositol phosphatase activity is required for the recruitment of

Rab11-positive vesicles to the Shigella-containing vacuoles. In

an attempt to determine how the remodeling of PIs by IpgD could

promote Rab11 recruitment, we investigated the PIs pattern dur-

ing Shigella invasion of host cells. Interestingly, we found that

PI(4,5)P2 is markedly depleted from the host cell plasma mem-

brane at an early stage of the infection, before Rab11 recruitment

occurs. This confirmed findings by Niebuhr et al. that assessed

biochemically the cellular levels of PIs, notably revealing a global

drop of PI(4,5)P2 levels with a concomitant increase in PI(5)P

controlled by the IpgD effector (Niebuhr et al., 2002). Nonethe-

less, none of the PI surveyed in this study (including PI(4,5)P2,

PI(5)P, PI(4)P, and PI(3)P) was found at the Shigella-containing

vacuole. Collectively, our data suggest a mechanism of Shigella

subverting its environment rather than the vacuolar membrane it-

self to lead to its rupture. It is noteworthy that PI(5)P has been

shown to block the trafficking of activated EGFR on EEs, protect-

ing it from lysosomal degradation, but spares the recycling and

retrograde pathways (Ramel et al., 2011). In contrast, chemical

inhibition of EGFR phosphorylation did not affect Rab11 recruit-

ment induced by Shigella (data not shown). Thus, the accumula-

tion of Rab11-positive vesicles at the invasion site of Shigella is

not due to the recycling of activated EGFR, even though both

are IpgD dependent.

Actin cages around Listeria- and Shigella-containing vacuoles

have been reported previously by others and us (Ehsani et al.,

2012; Yam and Theriot, 2004). However, actin cage dynamics

around internalized bacteria as well as their role during bacterial
Figure 6. The Bacterial Effector IpgD Is Required for Efficient Vacuola

(A–D) Live confocal microscopy shows that Shigella ipgD entry into epithelial cells

WT. HeLa cells cotransfected with pEGFP-actin and pOrange-Galectin were infe

(A and B) Quantitative analysis of bacterial entry (time of actin foci formation onse

Galectin-3 recruitment) are plotted in (A) and (B), respectively. Results were obtai

analyzed using the Mann-Whitney test.

(C) Representation of the time course of the successive intracellular stage ofShige

mean times with the 95% confidence intervals (CI) for each key step.

(D) Qualitative analysis of structural features during Shigella entry. Results were

chi-square test.

Cell Hos
invasion remain entirely unknown. Our data reveal that ipgD-

containing vacuoles are more likely to be confined in actin cages

than Shigella WT, suggesting a link with PIs. Furthermore, it is

known that PI(4,5)P2 regulates numerous actin-binding proteins

promoting F-actin polymerization with local PI(4,5)P2 enrichment

and F-actin disassembly upon PI(4,5)P2 hydrolysis (Janmey and

Lindberg, 2004; Scott et al., 2005). Thus, it is tempting to pro-

pose that actin cage dynamics are tightly regulated by the

PI(4,5)P2 content at the Shigella invasion site. During cell divi-

sion, Rab35 recruits the PI 5-phosphatase OCRL that depletes

PI(4,5)P2 to prevent F-actin accumulation at the intercellular

bridge for successful abscission (Dambournet et al., 2011). Simi-

larly, our data suggest that Shigella globally depletes PI(4,5)P2

via IpgD, preventing the formation of a lasting actin cage around

the bacteria-containing vacuole, thereby promoting vacuolar

destabilization. Indeed, the actin cages could stabilize the bacte-

ria-containing vacuoles by direct structural support. Likewise,

Salmonella- andChlamydia-containing vacuoles are surrounded

by an F-actin meshwork resembling the actin cage structures in

our study. Importantly, disruption of the actin mesh has also

been correlated with vacuolar rupture for both of them (Kumar

and Valdivia, 2008; Méresse et al., 2001). Alternatively, actin

cages could indirectly affect vacuole stability by preventing the

access or exchange with the host vesicular traffic. This is sup-

ported by our CLEM data on Rab11-positive vesicles at early

stages of Shigella invasion with intact bacterial containing vacu-

oles. Furthermore, Rab11 knockdown does not affect vacuolar

rupture through the formation of an actin cage. Taken together,

this suggests that the fusion of Rab11-positive vesicles with

the bacterial vacuole promotes its rupture.

Changes in the lipid and/or protein content of the membrane

have mechanical and biochemical consequences that influence

membrane stability. Interestingly, PI(4,5)P2 hydrolysis has been

shown to alter the membrane structure, notably due to the

replacement of the large PI(4,5)P2 polar headgroup by the small

DAG headgroup (Hammond et al., 2006; Janmey and Kinnu-

nen, 2006). Therefore, it is not surprising that modulation of

lipid/protein composition of bacteria-containing vacuoles leads

to strong phenotypes. For instance, the Salmonella effector

SseJ depletes cholesterol from the SCV, thus increasing mem-

brane fluidity and sensitivity to cytoskeleton motor-dependent

forces, leading to a loss of vacuolar integrity (Ohlson et al.,

2005).

Based on our findings, we propose amodel for bacterial vacu-

olar rupture whereby the interaction with specific host vesicles

by sequential fusion and fission events controls the fate of the

bacteria-containing vacuoles, presumably by modulating the

membrane composition and/or inducing physical stress.
r Escape Induced by Shigella within Epithelial Cells

is not impaired but vacuolar rupture is strongly delayed compared to Shigella

cted with Shigella WT or ipgD.

t) and vacuolar rupture (time interval (dTime) between entry foci formation and

ned from three independent experiments (n = 60 per condition) and statistically

llaWTand ipgD invasion into epithelial cells with representative images and the

plotted as a percentage of total bacteria and statistically analyzed using the
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EXPERIMENTAL PROCEDURES

Bacterial Strains, Cell Culture, and Infection

The bacterial strains, cell culture, and infection conditions used in this study

are described in the Supplemental Experimental Procedures.

siRNA Library Screen

The Human Membrane Trafficking library of 140 siRNA SMARTpool from Dhar-

maconwas tested in amedium-throughput siRNA screen. It consists of a pool of

four different oligos for each target gene. Each 96-well plate (Greiner) of the

screen was designed as follows: eight positive control wells, transfected with

scrambled siRNA and challenged with invasive Shigella (M90T AfaI); eight nega-

tive control wells, transfected with scrambled siRNA and challenged with nonin-

vasive Shigella (BS176 AfaI); and four replicates for each siRNA target, infected

with the invasive Shigella (M90T AfaI). Reverse siRNA transfection of HeLa cells

was performed using the Lipofectamine RNAi max reagent (Life technologies)

and a final siRNA concentration of 10 nM for 72 hr. Loading of cells with the

CCF4/AM substrate (Life Technologies) was identical to previously established

protocols (Ray et al., 2010). The siRNA library screen images were acquired on

an automated confocal microscope OPERA QEHS (Perkin Elmer) with a 103

objective in the following sequence: CCF4 (ex/em 405/540 and 405/450 on

two separated cameras), Rhodamine Phalloidin (ex/em 561/600), and Draq5

(ex/em 640/690) channels. Per well, a field of 20 adjacent images was acquired,

coveringz40%–50% of each measured 96-well plate. Automated image anal-

ysis was performed using a customized algorithm developed in the Acapella

software (PerkinElmer).Weusedboth theZ0 factor and theSSMDstatistical tests

for the scoring of our hits (see also Supplemental Experimental Procedures). The

knockdown efficiencies of siRNA transfection were assessed by qRT-PCR.

Plasmids and Transfection

HeLa cells were seeded into 96-well plates at a density of 7,000 cells per well

24 hr prior to transfection. The cells were then transfected with one or two

expression plasmids using X-tremeGENE 9 reagent (Roche) for 24 or 48 hr, ac-

cording to the manufacturer’s instructions. A list of the plasmids used in this

study is provided in Table S1.

Time-Lapse Live-Cell Confocal Microscopy

Living cells were imaged at 37�C using a PerkinElmer UltraView spinning disc

confocal microscope with a 403/1.3 NA oil objective. Every 60 or 90 s, a stack

of 13 z planes (step size of 500 nm) was acquired sequentially in two channels

for 75 min using a 488 and 561 nm laser. Fluorescence emission was detected

with 525 (W50) nm and 615 (W70) nm filters, respectively. After two time points,

the image acquisition was paused to add the bacteria at a moi of 50.

Correlative Focused Ion Beam/Scanning Electron Large-Volume

Tomography

We performed CLEM, using fluorescence confocal microscopy followed by

FIB/SEM tomography. HeLa cells grown on Mattek dishes were fixed with

0.1% glutaraldehyde (GA) and 4% paraformaldehyde (PFA) for 30 min. After

confocal microscopy imaging of the specimen details using a 603/1.3 NA wa-

ter objective, positions of interest weremarked at 103 and 203magnifications

(Figure S6). After overnight fixation with 2.5% GA in 0.1 M cacodylate buffer,

samples were treated with 2.5% GA supplemented with 0.4% tannic acid

(pH 7.2) in 0.1 M cacodylate buffer for 30 min. Then they were stained with

1% OsO4 in DDW for 30 min at 4�C. Samples were then dehydrated and

embedded in Epon. FIB/SEM large-volume tomography was performed in a

Helios Nanolab Dual beam (FEI) as previously described (Weiner et al.,

2011), except using the finder grid imprint in the resin to find sites of interest.

Images were recorded with 0.69 nA or 1.4 nA at 2 kV in the immersion lens

mode, with pixel sizes of 6.5 nm. For milling slices an ion beam current of

0.46 nA or 0.92 nA at 30 kV was used with a step size of 10 nm. Inverted

contrast is presented. Amira (FEI) was used for correlating the light and elec-

tron microscopy data with internalized bacteria acting as aligning fiducials.

Image Analysis

Live-Cell Image Analysis of Shigella Invasion

All time-lapses shown aremaximum3Dprojections from entire z stacks assem-

bled in ImageJ. Actin-mOrange and Galectin-3-EGFP image series were visu-
528 Cell Host & Microbe 16, 517–530, October 8, 2014 ª2014 Elsevie
ally analyzed. Shigella entry was tracked determining the time points of the

onset of actin foci formation. The successive step of vacuolar rupturewasmoni-

tored measuring the time interval (DT) between the beginning of entry foci for-

mation and the appearance of a Galectin-3 signal around the entering bacteria.

Finally, bacterial intracellular motility was determined measuring the time inter-

val (DT) between entry foci formation and actin comet tail formation.

Live-Cell Image Analysis—Quantification of Rab Recruitment at the

Invasion Site

UsingVolocitysoftware (PerkinElmer), thefluorescence intensities in theemission

channels at 488 and 561 nm (corresponding to the different Rab-EGFP fusions,

and to Actin-mOrange) were measured within equally sized ROIs around the

Shigella invasion sites, andplottedover time. For eachcurve, themaximumslope

in the 561 nmchannel was used todetermine the time of actin focus appearance.

Datawere normalized by dividing the fluorescence intensity of each time point by

the one at T0 (NormRatio 488), with T0 corresponding to the average value of the

first three time points (4.5 min) before actin foci appearance.

Gentamicin Protection Assay

Gentamicin protection assays were performed as described before to assess

the efficiency of Shigella invasion into epithelial cells (Mounier et al., 2009).

Statistical Analysis

Statistical analysis was performed in GraphPad Prism software v6. Differences

between control and experimental groups were evaluated by two-tailed un-

paired t tests, unless values were not normally distributed. In such cases the

nonparametric Mann-Whitney test was applied. To compare two time course

curves at each time point, the multiple t test method was used with correction

using Holm-�Sı́dák method (Aickin and Gensler, 1996). To analyze the contin-

gency table of qualitative data (i.e., actin cage, ‘‘Galectin-3 ghost’’ and actin

tail), a Chi2 was performed. p < 0.05 was considered as significant: *p <

0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, six movies, one table, and

Supplemental Experimental Procedures and can be found with this article at

http://dx.doi.org/10.1016/j.chom.2014.09.005.
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