Neuroimaging and electroencephalographic changes after vagus nerve stimulation in a boy with medically intractable myoclonic astatic epilepsy

Pi-Chuan Fan, Steven Shinn-Forng Peng, Ruoh-Fang Yen, Jeng-Yi Shieh, Meng-Fai Kuo

Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
Department of Nuclear Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
Department of Neurosurgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan

Received 25 March 2012; received in revised form 30 January 2013; accepted 20 February 2013

KEYWORDS
electroencephalography; fimbria–fornix; glucose metabolism; myoclonic astatic epilepsy; vagus nerve stimulation

Myoclonic astatic epilepsy (MAE) is characterized by multiple seizure types, which are often refractory. Although vagus nerve stimulation (VNS) is an alternative treatment for medically intractable seizures, its exact mechanism of action remains unclear. Herein, we report the case of a 4-year-old boy with intractable MAE who has been in a seizure-free status for 2 years and 3 months since 6 months after the implantation of a vagus nerve stimulator (Model 103, Cyberonics, Inc., Houston, TX). Various test results 6 months after VNS were compared with those before VNS. Results of an electroencephalograph revealed disappearance of epileptiform discharges and an increased beta–gamma spectrum rhythm. The brain diffusion-tensor imaging showed an increased ratio of fraction anisotropy in the right fimbria–fornix, indicating improved diffusion of the white matter tract, and 18F-fluorodeoxyglucose positron emission tomography revealed globally improved cerebral glucose metabolism. His cognitive and...
Introduction

Myoclonic astatic epilepsy (MAE), also known as Doose syndrome, is a generalized epileptic syndrome of young children characterized by multiple seizure types, predominantly myoclonic, astatic, and myoclonic astatic seizures, as well as by generalized tonic–clonic seizures, absence, myoclonic absence, and tonic seizures. It should be differentiated from Dravet syndrome (severe myoclonic epilepsy of infancy), which begins with febrile seizure in infants, subsequently evolving into myoclonic seizure and partial epilepsy. Drop attacks predominate in cases of MAE, which are different from the tonic seizures frequently reported in the Lennox–Gastaut syndrome. In cases of MAE, electroencephalography (EEG) is characterized by a biparietal theta background rhythm, irregularly generalized spike wave, and polyspike-wave discharges. Before the onset of epilepsy, children are developmentally normal and organic brain abnormalities are absent. The victims may become neurologically regressed if the seizures are intractable. However, little is known about the optimal treatment of MAE and the efficacy of antiepileptic treatments has not been studied in randomized clinical trials.

Vagus nerve stimulation (VNS) is an alternative treatment for patients with medically refractory epilepsy, who are unsuitable candidates for conventional epilepsy surgery. It remains the only nonexperimental surgical option available for patients who need surgical management but are reluctant to undergo an intracranial procedure. The vagus nerve has a mixed composition with 80% afferent fibers, which originate in the jugular and nodose ganglia and innervate the nucleus of tractus solitarius bilaterally, sending projections to various regions associated with seizure activity. By stimulating these afferent fibers, VNS attempts to remotely exert its antiseizure effects on intracranial structures. However, the mechanism of these effects remains unclear.

We herein report the case of a 4-year-old boy with medically intractable MAE who became seizure free after undergoing VNS treatment. The changes in EEG and neuroimages after VNS, including brain magnetic resonance imaging (MRI) and positron emission tomography (PET), are described.

Case report

A 4-year-old boy, the first child of unrelated parents, was uneventfully delivered by elective cesarean section at 38 weeks of gestation. His growth and development were normal until 2 years of age when myoclonic jerks before sleep were noted by his parents. His generalized myoclonic jerks became worse with shoulder shrugs and brief loss of consciousness (for seconds) 3 months later. There were no obvious precipitating factors. He was treated with valproic acid initially, but in vain. Multiple antiepileptic drugs had then been tried without benefits, including nitrazepam, levetiracetam, clonazepam, topiramate, vigabatrin, lamotrigine, and oral steroids. He still had more than 50 myoclonic jerks, followed by atonic drops with brief absence seizures daily. He was then referred to our hospital. Initially, intravenous pyridoxal phosphate (30 mg/kg) was administered with partial response, which reduced the number of seizures from 70 to 40 per day. A 24-hour video EEG showed frequent bursts of symmetric generalized polyspike waves (Fig. 1A). Results of a brain MRI scan showed no specific finding. An interictal 18F-fluorodeoxyglucose PET (18F-FDG PET) study was carried out and the images revealed diffuse hypometabolism at the bilateral frontal, parietal, and temporal lobes (Fig. 3A). Statistical parametric mapping (SPM; SPM99, Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London, UK) analysis that compared our patient with 10 healthy young men (age: mean = 33.5 ± 6.0; range = 20–39) as controls showed statistically significant hypometabolism in the marked areas.

MAE was suspected. Adrenocorticotropic hormones were given for 5 days, but discontinued due to increased number of seizures up to more than 90 per day. The patient was then followed up at our neurologic clinic under the treatment of pyridoxine, valproic acid, lamotrigine and clobazam. He still had more than 50 myoclonic jerks, followed by atonic drops with brief absence seizures daily. After an 8-month follow-up, the patient was prescribed topiramate, vigabatrin, and oral steroids. Then, he was referred to our hospital. His major seizures with drops decreased from 70 to 40 per day. Global regression in motor, speech, cognition, and behavior was noted after frequent seizures. He became very hyperactive, wheelchair dependent and incommunicable, lacked verbal output, and required a helmet to avoid head trauma.

He received a vagus nerve stimulator implantation (Model 103, Cyberonics, Inc., Houston, TX) at 4 years of age. Three months after VNS, his major seizures with drops disappeared, although 7–15 absence seizures persisted daily. He became more communicable and started to have social smiles 5 months after VNS. No more seizures were noted and the EEG showed diffuse beta or gamma spectrum fast activities (Fig. 1B) without epileptiform discharges 6 months after VNS.

Compared with baseline (Fig. 2A), the fractional anisotropy (FA) map from brain diffusion tensor image (DTI) at 10 months after VNS showed increased FA in the right fimbria–fornix at the level of both cerebral peduncles (Fig. 2B). Another PET study during VNS, which was performed at 1 year and 3 months after vagus nerve stimulator implantation, revealed global improvement of glucose metabolism in the cerebrum and cerebellum (Fig. 3C: axial images; Fig. 3D: SPM images after VNS).
analysis with a height threshold of $p < 0.001$ and extent-size threshold of >90 voxels. Slight asymmetric uptake was noted in the thalamus; the maximal standard uptake value (SUV_{max}) of the right thalamus is 6.6, while that of the left thalamus is 6.1. The psychosocial evaluation by Bayley-III at 2 years after VNS showed significant improvement of raw scores from 41 (equivalent to 12 months old) to 63 (equivalent to 24 months old) in cognitive performance and from 81 to 103 in social—emotional performance; however, there was no improvement in language performance (raw scores from 47 to 43).

We started to taper his antiepileptic drugs at 1 year after VNS. Treatment with clonazepam had been discontinued, valproic acid tapered to 7 mg/kg per day, and lamotrigine therapy maintained at 7 mg/kg per day. He remains in seizure-free status for more than 2 years, walks and runs independently, plays with peers, and follows orders. He started to be verbally expressive recently.

Figure 1 Electroencephalography (EEG) of the patient with myoclonic astatic epilepsy before and after vagus nerve stimulation (VNS). (A) Pre-VNS interictal EEG reveals symmetrical polyspike-wave discharges. (B) Post-VNS EEG at 6 months shows disappearance of epileptiform discharges and increase in diffuse fast activities (high cut set at 35 Hz).
Discussion

To the best of our knowledge, this is the first report to describe the effects of VNS on the fornix and cerebral glucose metabolism in a patient with MAE.

VNS, usually through the left vagus nerve, was able to increase activity, measured by neuronal fos expression, in known vagal projection pathways, e.g., the medullary vagal complex, locus coeruleus, several thalamic and hypothalamic nuclei, amygdala, and the cingulate and retrosplenial cortex. It was demonstrated to evoke potentials in the cortex, thalamus, hypothalamus, and amygdala of cats and monkeys. In vivo DTI, reported to accurately predict white matter abnormalities of the fimbria—fornix in human temporal lobe epilepsy, provides significant validation of the application of DTI as a noninvasive marker of white matter pathology in seizure patients. The baseline cerebral DTI of this patient showed decreased anisotropic diffusion of white matter in the right fimbria—fornix, which was improved after the seizures were controlled by VNS. The fornix is a bidirectional pathway from the hippocampus, through the hypothalamus to the mammillary bodies and the anterior nuclei of thalamus, which are the target locations affected by VNS. Therefore, the fornix may be involved, while seizures are refractory and later improved after VNS. It is interesting to note that the 18F-FDG uptake in the right thalamus is also slightly higher than the uptake in the left thalamus after VNS in this patient.

18F-FDG PET, based on glucose utilization of brain, may provide information on the level of neuronal function in the brain. It has been used in presurgical identification of epileptic foci for pediatric patients with intractable seizure. The interpretation of PET images in the clinical setting is mostly based on visual interpretation. Objective voxel-based analysis technique, such as SPM, is not widely used in pediatric epileptic patients, mainly due to lack of an age-matched control database. It has been demonstrated by 18F-FDG PET that absolute cerebral glucose metabolic values

Figure 2 Brain magnetic resonance imaging before and after vagus nerve stimulation (VNS). (A) Pre-VNS diffusion tensor imaging shows decreased fraction anisotropy in the right fimbria—fornix (arrows). (B) Diffusion tensor imaging performed 10 months after VNS shows improvement in the corresponding area. (C) The cartoon drawing demonstrates the location of fimbria—fornix with their corresponding axial fractional anisotropy (FA) maps (A,B).
for various gray matter regions were low at birth and rapidly rose to reach adult values by 2 years of age. Recently, SPM analysis, using a young adult control group, was shown to be a complementary objective analytic method in identifying epileptogenic regions in children older than 6 years. We applied a similar method to the PET study performed at 3 years and 7 months of age in our patient. The PET results of diffuse pattern of multifocal hypometabolism are consistent with his EEG findings, and therefore surgery was not a recommended treatment option.

It has been proposed that VNS produces an effective decrease in seizure frequency mainly by suppressing the activity of ipsilateral thalamus. Perfusion studies using 99mTc-ethylcysteinate dimer single photon emission computed tomography (SPECT) demonstrate significant decrease of perfusion in the left thalamus at VNS initialization. An animal study using 18F-FDG PET demonstrated decreased glucose metabolism in the left hippocampus immediately after VNS and decreased left-to-right ratio in the striatum after 1 week of continuous VNS. Consistent with the findings of previous reports, we found lower 18F-FDG uptake in the left thalamus during chronic VNS in our patient. In addition, we also demonstrate a global increase in the cerebral glucose metabolism, which may be related to the seizure-free status of this patient.

Electrical stimulation of vagus nerve causes desynchronization of neuronal activity in cats and humans, which is thought as one of the mechanisms of antiepileptic action. Desynchronization may play a role in regulation or generation of seizures—such as the amygdala, the limbic cortex, and parts of the thalamus—and those that are anatomically connected with the vagus nerve. In animal studies, the 30-Hz (high frequency) VNS setting suppresses interictal epileptiform discharges. In addition, EEG beta activity (13–35 Hz) is considered as an index of central alertness. Taken together, the increase in beta or gamma spectrum fast activities (20–50 Hz) by VNS, claimed to account for improved attentional performance.

Figure 3 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) studies before and after vagus nerve stimulation (VNS) (A) Pre-VNS PET showing extensive FDG hypometabolism at the bilateral frontal, parietal, and temporal cortex; (B) statistical parametric mapping (SPM) analysis of pre-VNS PET (p < 0.001, voxel size > 90, uncorrected for multiple comparisons) with 10 young men (range: 20–39 years) as controls showing extensive significant hypometabolism at the bilateral frontal, bilateral temporal, bilateral parietal, and left cerebellar regions; (C) PET study performed at 1 year and 3 months after VNS shows global improvement of FDG metabolism. Note that the FDG uptake in the right thalamus is slightly higher than the uptake in the left thalamus; (D) SPM analysis of post-VNS PET using the same criteria and normal database.
and anticonvulsant action, potentially explains the improvement in our patient.

In summary, VNS may be an effective treatment for MAE. We hypothesize that the antiseizure effects of VNS in the treatment of MAE may be related to the improvement of cerebral glucose metabolism and white matter diffusion in the fornix, which connects the hippocampus and the thalamus. The latter may mediate cortical desynchronization, presenting as the increase in the beta–gamma spectrum rhythm, which accounts for the anticonvulsant action and improvement in cognitive performance.

References