A Summary of Noncyclic Difference Sets, $k<20$

Robert E. Kibler
Department of Defense, Fort George G. Meade, Maryland 20755
Communicated by the Managing Editors

Received September 30, 1975

> This note contains a list of (v, k, λ) difference sets in noncyclic groups, for $k<20$.

We begin with the usual definition of a cyclic difference set. In the cyclic group Z_{v} of v elements, with the usual additive notation, a set D of k distinct elements from Z_{v} is called a difference set if each nonzero element of Z_{v} occurs exactly λ times in the set $D-D=\left\{d_{i}-d_{j}: d_{i}, d_{j} \in D\right\}$. Since $D-D$ contains $k(k-1)$ nonzero elements, a necessary condition for D to be a difference set is $k(k-1)=\lambda(v-1)$.

If instead of Z_{v} we consider a group G with v elements (now written multiplicatively), the condition for a set D of k distinct elements to be a difference set is that each nonidentity element of G occurs exactly λ times in the set $D D^{-1}=\left\{d_{i} d_{j}^{-1}: d_{i}, d_{j} \in D\right\}$. We write $n=k-\lambda$.

If D is a difference set in G then the set $E=D g$ is also a difference set (for $g \in G$) because $E E^{-1}=\left\{d_{i} g g^{-1} d_{j}^{-1}: d_{i}, d_{j} \in D\right\}=D D^{-1}$. Also if α is an automorphism of G then $F=D^{\alpha}=\left\{d_{i}{ }^{\alpha}: d_{i} \in D\right\}$ is again a difference set since $F F^{-1}=\left\{d_{i}{ }^{\alpha}\left(d_{j}^{\alpha}\right)^{-1}: d_{i}, d_{j} \in D\right\}=\left\{\left(d_{i} d_{j}^{-1}\right)^{\alpha}: d_{i}, d_{j} \in D\right\}$. We say that two difference sets D, D^{\prime} are equivalent if there exists an automorphism α of G and an element $g \in G$ such that $D^{\prime}=D^{\alpha} g$. If for some pair (α, g) we have $D=D^{\alpha} g$ then the pair is called a multiplier of the difference set. Clearly the multipliers of a fixed difference set form a group.

While much is known about difference sets in the cyclic case [1], little systematic work has been done for noncyclic groups.

A difference set gives rise, under translation by group elements, to a symmetric balanced incomplete block design [3]. By the theorem of Bruck et al. [3, p. 107], such a design can exist only if (1) v is even and n is a square or (2) v is odd and $z^{2}=n x^{2}+(-1)^{(v-1) / 2} \lambda y^{2}$ has a solution in integers x, y, z not all zero.

It is shown in [2] that condition (1), each nonidentity element of G occurs exactly λ times in $D D^{-1}$, is equivalent to condition (2), each nonidentity element of G occurs exactly λ times in $D^{-1} D$.

In the same paper it is shown that if H is a homomorphic image of G under $\theta,[G: H]=w$, and if for $h \in H$ we denote by $N(h)$ the number of $d \in D$ such that $d \theta=h$ then we have

$$
\begin{aligned}
\sum_{h} N(h) & =k, \\
\sum_{h} N(h)^{2} & =n+\lambda u^{\prime},
\end{aligned}
$$

and

$$
\sum_{h} N(h) N(g h)=\lambda w \quad \text { for } \quad g \neq 1 .
$$

With this theorem as our principal tool we have enumerated the noncyclic difference sets for $k<20$. Some of our possible parameter sets were eliminated by [4].

The most interesting cases are $(v, k, \lambda)=(16,6,2)$ and $(36,15,6)$, where the variety of groups available provides a wealth of examples. Aside from these two cases we have only the following examples:

$$
\begin{equation*}
(21,5,1) \quad a^{7}=b^{3}=1, b a=a^{2} b \quad 1, a, a^{3}, b, a^{2} b^{2} \tag{1.}
\end{equation*}
$$

2.

$(57,8,1) \quad a^{19}=b^{3}=1, b a=a^{7} b$ 1, $a, a^{3}, a^{8}, b, a^{4} b, a^{13} b, a^{18} b^{2}$
3. $(57,8,1) \quad a^{19}=b^{3}=1, b a-a^{7} b$ $1, a, a^{3}, a^{8}, b, a^{5} b^{2}, a^{9} b^{2}, a^{18} b^{2}$
4. $(45,12,3) \quad a^{15}=b^{3}=1, b a=a b$

1, $a^{2}, a^{3}, a^{4}, a^{7}, a^{12}, b, a^{8} b, a^{14} b, b^{2}$, $a^{9} b^{2}, a^{13} b^{2}$
5. $(45,12,3) \quad a^{15}=b^{3}=1, b a=a b \quad 1, a^{2}, a^{3}, a^{7}, a^{9}, a^{12}, b, a^{4} b, a^{8} b, b^{2}$, $a^{13} b^{2}, a^{14} b^{2}$
6. $(27,13,6) \quad a^{3}=b^{3}=c^{3}$, abelian
7. $(27,13,6) \quad a^{9}=b^{3}=1, b a=a^{4} b$
8. $(27,13,6) \quad a^{9}=b^{3}=1, b a=a^{4} b$
9. $(40,13,4) \quad a^{5}=b^{8}=1, b a=a^{4} b$
10. $(183,14,1) \quad a^{61}=b^{3}=1, b a=a^{13} b$
11. $(183,14,1) \quad a^{61}=b^{3}=1, b a=a^{13} b$,

1, $a, a^{2}, b, a b, b^{2}, c, a c, b c, a c^{2}$, $a^{2} b c^{2}, b^{2} c^{2}, a^{2} b^{2} c^{2}$
$1, a, a^{2}, a^{4}, a^{5}, a^{7}, b, a b, a^{2} b, a^{5} b$, $a^{5} b^{2}, a^{6} b^{2}, a^{8} b^{2}$
1, $a, a^{2}, a^{4}, a^{5}, a^{7}, b, a^{5} b, a^{8} b$, $a^{2} b^{2}, a^{4} b^{2}, a^{5} b^{2}, a^{6} b^{2}$
$1, a, a^{2}, b, a^{3} b, a b^{2}, a^{3} b^{2}, a^{4} b^{2}, a b^{4}$, $a b^{5}, a^{2} b^{5}, a b^{6}, a^{4} b^{7}$
$1, a, a^{3}, a^{20}, a^{26}, a^{48}, a^{57}, b, a^{8} b$, $a^{18} b, a^{29} b, a^{17} b^{2}, a^{32} b^{2}, a^{44} b^{2}$
$1, a, a^{3}, a^{20}, a^{26}, a^{48}, a^{57}, b, a^{12} b$, $a^{46} b, a^{9} b^{2}, a^{17} b^{2}, a^{27} b^{2}, a^{38} b^{2}$
12. $(273,17,1) \quad a^{13}=b^{7}=c^{3}=1, b a=a b, \quad a, b, a^{2} b, a^{4} b^{2}, a^{11} b^{2}, a^{5} b^{4}, a^{10} b^{4}$, $c a=a^{3} c, c b=b^{2} c \quad a^{4} c, a^{9} b c, a^{12} b c, a^{2} b^{2} c, a^{6} b^{2} c$, $a^{10} b^{4} c, a^{11} b^{4} c, b^{3} c^{2}, b^{5} c^{2}, b^{6} c^{2}$
13. $(273,17,1) \quad a^{13}=b^{7}=c^{3}=1, b a=a b \quad a, b, a^{2} b, a^{4} b^{2}, a^{11} b^{2}, a^{5} b^{4}, a^{10} b^{4}$, $c a=a^{12} c, c b=b c \quad a^{4} c, a^{9} b c, a^{12} b c, a^{2} b^{2} c, a^{6} b^{2} c$, $a^{10} b^{4} c, a^{11} b^{4} c, b^{3} c^{2}, b^{5} c^{2}, b^{6} c^{2}$
The multiplier group is trivial in example 4 ; it is Z_{3} for examples $1,2,3,7$, 8,10 , and 11 ; for examples $9,12,13$, and 5 it is Z_{4}, Z_{6}, Z_{6}, and Z_{8}, respectively. The multiplier group of example 6 is noncyclic of order 39. Examples 7 and 8 are due to Alltop [9]; except for $\# 13$, the examples with $\lambda=1$ were given in [2, p. 475]. Example 6 is well known [2, p. 480]. Examples 4 and 5 appear in [5, p. 9].

The ($16,6,2$) Case

There are 14 groups. The cyclic and dihedral groups have no difference set. The other groups with their difference sets are:
(A) Abelian. $a^{8}=b^{2}=1$ [7]

1. $1, a, a^{2}, a^{4}, a b, a^{6} b$
2. $\mathrm{I}, a, a^{2}, a^{5}, b, a^{6} b$
(B) Abelian. $a^{4}=b^{4}=1$
3. $1, a, a^{2}, b, a b^{2}, a^{2} b^{3}[6$, p. 68-69; 7, p. 336]
4. $1, a, a^{2}, b, b^{3}, a^{3} b^{2}$
5. $1, a, b, a^{2} b, a b^{2}, a^{2} b^{2}$
(C) Abelian. $a^{4}=b^{2}=c^{2}=1$
6. $1, a, a^{2}, b, c, a^{3} b c$ [5]
7. $1, a, a^{2}, a b, a c, a^{3} b c[6$, p. 68-69; 7, p. 336]
(D) Abelian. $a^{2}=b^{2}=c^{2}=d^{2}=1$
8. $1, a, b, c, d, a b c d[2]$
(E) $a^{4}=b^{2}=c^{2}=1, b a b=a^{3}, a c=c a, b c=c b$
9. $1, a, a^{2}, b, a c, a^{2} b c$
10. $1, a, b, a^{2} b, c, a^{3} c$
(F) $a^{4}=c^{2}=1, b^{2}=a^{2}, b a=a^{3} b, a c=c a, b c=c b$
11. $1, a, a^{2}, b, c, a b c$
12. $1, a, a^{2}, b, a c, a^{2} b c$
(G) $a^{4}=1, b^{2}=a^{2}=c^{2}, b a=a^{3} b, a c=c a, b c=c b$
13. $1, a, a^{2}, b, a c, b c$
14. $1, a, b, a b, c, a^{2} c$
(H) $a^{4}=b^{2}=1, b a=a b, c^{2}=b, c a=a^{3} b c$
15. $1, a, a^{2}, a b, c, a^{2} b c$
16. 1, $a, a^{2}, a b, a c, a^{3} b c$
17. $1, a, b, a^{3} b, a c, a^{3} c$
18. $1, a, a^{2}, a^{3} b, a c, a b c$
(I) $a^{4}=b^{4}=1, b a=a^{3} b$
19. $1, a, a^{2}, b, a b^{2}, a^{2} b^{3}$
20. $1, a, a^{2}, b, b^{3}, a^{3} b^{2}$
21. $1, a, b, a^{2} b, b^{2}, a^{3} b^{2}$
(J) $a^{8}=1, b^{2}=a^{2}, b a=a^{5} b$
22. $1, a, a^{2}, a^{5}, a b, a^{7} b$
23. $1, a, a^{3}, a^{4}, b, a^{2} b$
(K) $a^{8}=1, b^{2}=a^{4}, b a=a^{3} b$
24. $1, a, a^{2}, a^{5}, b, a^{2} b$
25. $1, a, a^{3}, a^{4}, a b, a^{3} b$
(L) $a^{8}=1, b^{2}=a^{4}, b a=a^{7} b$
26. $1, a, a^{2}, a^{5}, b, a^{2} b$
27. $1, a, a^{3}, a^{4}, b, a^{2} b$

The multiplier groups of these sets are: Z_{2}, set 1; $Z_{2} \oplus Z_{2}$, sets 2, 13, 24, $25,26,27 ; Z_{2} \oplus Z_{2} \oplus Z_{2}$, sets $6,9,15,16,19,20,21,22,23 ; Z_{2} \oplus$ octic, sets $3,10,12,17,18 ; Z_{2} \oplus Z_{3}$, sets 11,$14 ; Z_{2} \oplus S_{4}$, set $7 ; S_{6}$, set 8 . The multiplier group G of set 4 is of order 24 generated by $a^{6}=b^{6}=1, a^{3}=b^{3}$, $a b=b^{2} a^{2}$. The multiplier group of set 5 is $G+G c$ with $c^{2}=1, c a=a^{5} c$, $c b=a^{2} b c$.

The block designs generated by these sets are nearly all isomorphic. The only exceptions are set 1 which is distinct from all the others and the isomorphic pair of set 11 and set 14 . Thus all three $(16,6,2)$ designs are generated by appropriate difference sets.

The ($36,15,6$) Case

There are 14 groups. Of these, five have cyclic 3 -Sylow subgroups and no difference set. The nine groups having noncyclic 3 -Sylow subgroups with their difference sets arc:
(I) cyclic 2-Sylow subgroup: $a^{3}=b^{3}=c^{4}=1, a b=b a$
(A) $c a=a c, c b=b c$ [7]

1. $1, a, a^{2}, b, a b, a^{2} b, c, b c, b^{2} c, c^{2}, a b c^{2}, a^{2} b^{2} c^{2}, c^{3}, a^{2} b c^{3}, a b^{2} c^{3}$
2. $1, a, a^{2}, b, a b, a^{2} b, c, b c, b^{2} c, c^{2}, a b c^{2}, a^{2} b^{2} c^{2}, a c^{3}, b c^{3}, a^{2} b^{2} c^{3}$
3. $1, a, a^{2}, b, a b, a^{2} b, c, b c, b^{2} c, c^{2}, a b c^{2}, a^{2} b^{2} c^{2}, a^{2} c^{3}, a b c^{3}, b^{2} c^{3}$
4. $1, a, a^{2}, b, a b, a^{2} b, c, b c, b^{2} c, a c^{2}, a^{2} b c^{2}, b^{2} c^{2}, a^{2} c^{3}, a b c^{3}, b^{2} c^{3}$
(B) $c a=a c, c b=b^{2} c$
5. $1, a, a^{2}, b, a b, a^{2} b, c, a b c, a^{2} b^{2} c, d, b d, b^{2} d, c d, a^{2} b c d, a b^{2} c d$
6. $1, a, a^{2}, b, a b, a^{2} b, c, a b c, a^{2} b^{2} c, d, b d, b^{2} d, a c d, b c d, a^{2} b^{2} c d$
7. $1, a, b, a b, b^{2}, a b^{2}, c, a b c, a^{2} b^{2} c, d, a d, a^{2} d, c d, a^{2} b c d, a b^{2} c d$
8. 1, $a, b, a b, b^{2}, a b^{2}, c, a b c, a^{2} b^{2} c, d, a d, a^{2} d, a c d, b c d, a^{2} b^{2} c d$
9. $1, a, b, a^{2} b, a b^{2}, a^{2} b^{2}, c, a c, a^{2} c, d, a b d, a^{2} b^{2} d, c d, b c d, b^{2} c d$
10. 1, $a, b, a^{2} b, a b^{2}, a^{2} b^{2}, c, a c, a^{2} c, d, a b d, a^{2} b^{2} d, a c d, a b c d, a b^{2} c d$
(C) $c a=a^{2} c, c b=b^{2} c$
11. $1, a, a^{2}, b, a b, a^{2} b, a^{2} c, b c, a b^{2} c, c^{2}, b c^{2}, b^{2} c^{2}, c^{3}, a^{2} b c^{3}, a b^{2} c^{3}$
(D) $c a=b c, c b=a^{2} c$
12. 1, $a, a^{2}, b, a b, a^{2} b, a^{2} c, b c, a b^{2} c, c^{2}, b c^{2}, b^{2} c^{2}, c^{3}, a^{2} b c^{3}, a b^{2} c^{3}$
13. 1, $a, a^{2}, b, a b, a^{2} b, a^{2} c, b c, a b^{2} c, c^{2}, b c^{2}, b^{2} c^{2}, a c^{3}, b c^{3}, a^{2} b^{2} c^{3}$
14. 1, $a, a^{2}, b, a b, a^{2} b, a^{2} c, b c, a b^{2} c, c^{2}, b c^{2}, b^{2} c^{2}, a^{2} c^{3}, a b c^{3}, b^{2} c^{3}$
15. I, $a, a^{2}, b, a b, a^{2} b, a^{2} c, b c, a b^{2} c, a c^{2}, a b c^{2}, a b^{2} c^{2}, c^{3}, a^{2} b c^{3}, a b^{2} c^{3}$
16. $1, a, a^{2}, b, a b, a^{2} b, a^{2} c, a b c, b^{2} c, c^{2}, b c^{2}, b^{2} c^{2}, c^{3}, a b c^{3}, a^{2} b^{2} c^{3}$
(II) noncyclic 2-Sylow subgroup: $a^{3}=b^{3}=c^{2}=d^{2}=1, a b=b a$, $c d=d c$
(A) $c a=a c, d a=a d, c b=b c, d b=b d[7]$
17. $1, a, a^{2}, c, a^{2} c, b c, a^{2} b c, b^{2} c, a^{2} b^{2} c, a d, a^{2} b d, b^{2} d, a c d, b c d, a^{2} b^{2} c d$
18. 1, $a, a^{2}, c, a^{2} c, b c, a^{2} b c, b^{2} c, a^{2} b^{2} c, a^{2} d, a b d, b^{2} d, c d, a b c d, a^{2} b^{2} c d$
19. $1, a, a^{2}, c, a^{2} c, a b c, a^{2} b c, b^{2} c, a b^{2} c, d, b d, b^{2} d, c d, a b c d, a^{2} b^{2} c d$
(B) $d a=a d, d b=b d, c a=a^{2} c, c b=b^{2} c$
20. 1, $a, a^{2}, b, a b, a^{2} b, c, b c, b^{2} c, d, a b d, a^{2} b^{2} d, c d, a^{2} b c d, a b^{2} c d$
(C) $c a=a^{2} c, c b=b c, d a-a d, d b-b d$.
21. 1, $a, a^{2}, b, a b, a^{2} b, c, a b c, a^{2} b^{2} c, d, b d, b^{2} d, c d, a^{2} b c d, a b^{2} c d$ 22. 1, $a, a^{2}, b, a b, a^{2} b, c, a b c, a^{2} b^{2} c, d, b d, b^{2} d, a c d, b c d, a^{2} b^{2} c d$ 23. $1, a, b, a b, b^{2}, a b^{2}, c, a b c, a^{2} b^{2} c, d, a d, a^{2} d, c d, a^{2} b c d, a b^{2} c d$ 24. $1, a, b, a b, b^{2}, a b^{2}, c, a b c, a^{2} b^{2} c, d, a d, a^{2} d, a c d, b c d, a^{2} b^{2} c d$ 25. $1, a, b, a^{2} b, a b^{2}, a^{2} b^{2}, c, a c, a^{2} c, d, a b d, a^{2} b^{2} d, c d, b c d, b^{2} c d$ 26. $1, a, b, a^{2} b, a b^{2}, a^{2} b^{2}, c, a c, a^{2} c, a^{2} d, b d, a b^{2} d, c d, b c d, b^{2} c d$
(D) $c a=a^{2} c, c b=b c, d a=a d, d b=b^{2} d$
22. $1, a, a^{2}, b, a b, a^{2} b, c, a b c, a^{2} b^{2} c, d, a^{2} b d, a b^{2} d, c d, b c d, b^{2} c d$
23. $1, a, a^{2}, b, a b, a^{2} b, c, a b c, a^{2} b^{2} c, d, a^{2} b d, a b^{2} d, a^{2} c d, a^{2} b c d, a^{2} b^{2} c d$
24. $1, a, b, a^{2} b, a b^{2}, a^{2} b^{2}, c, a c, a^{2} c, d, b d, b^{2} d, c d, a b c d, a^{2} b^{2} c d$
25. 1, $a, b, a^{2} b, a b^{2}, a^{2} b^{2}, c, a c, a^{2} c, a^{2} d, a^{2} b d, a^{2} b^{2} d, c d, a b c d, a^{2} b^{2} c d$ [8]
26. 1, $a, b, a^{2} b, a b^{2}, a^{2} b^{2}, c, b c, b^{2} c, d, a d, a^{2} d, c d, a b c d, a^{2} b^{2} c d$
27. $1, a, b, a^{2} b, a b^{2}, a^{2} b^{2}, c, b c, b^{2} c, d, a d, a^{2} d, a c d, a^{2} b c d, b^{2} c d$
(E) $\quad c b=b c, d b=b d, d a=a c, c d a=a d$
28. $1, c, d, c d, a, c a, d a^{2}, c b, c a b, c d a b, c d a^{2} b, c b^{2}, c a b^{2}, d a b^{2}, a^{2} b^{2}$
29. $1, c, d, a, c d a, c a^{2}, c d a^{2}, a b, d a b, c a^{2} b, d a^{2} b, a b^{2}, c a b^{2}, a^{2} b^{2}, c a^{2} b^{2}$

Sets 2, 9, 25 have trivial multiplier group; sets $1,3,6,7,10,18,21,24,26$ have group Z_{2}; sets 27 and 33 have Z_{3}; sets $4,5,8,11,16,20,22,23$ have group $Z_{2} \oplus Z_{2}$; sets 29 and 32 have Z_{6}; sets $19,28,34$ have S_{3}; the multiplier group of sets $17,30,31$ is dihedral of order 12 ; that of set 14 is $Z_{3} \oplus Z_{3}$; of sets 12 and 13 is $Z_{3} \oplus S_{3}$; the group of set 15 is of order 36 , generated by $A^{3}=B^{3}=C^{2}=D^{2}=1$ with $B A=A B, C A-B C, D A-B^{2} D, C B=A C$, $D B=A^{2} D, D C=C D$ (group II.D above).

There are nine nonisomorphic block designs generated by these difference sets.

References

1. L. D. Baumert, "Cyclic Difference Sets," Springer-Verlag, New York, 1971.
2. R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc. 78 (1955), 464-481.
3. M. Hall, Jr., "Combinatorial Theory," Blaisdell, Waltham, Mass., 1967.
4. H. B. Mann, Difference sets in elementary Abelian groups, Illinois J. Math. 9 (1965), 212-219.
5. R. L. McFarland, A Family of difference sets in non-cyclic groups, J. Combinatorial Theory, Ser. A 15 (1973), 1-10.
6. H. B. Mann, "Addition Theorems," Interscience, New York, 1965.
7. R. J. Turyn, Character sums and difference sets, Pacific J. Math. 15 (1965), 319-346.
8. P. Kesava Menon, On difference sets, Proc. Amer. Math. Soc. 13 (1962), 739-745.
9. W. O. Alltop, Non-Abelian difference sets for quadratic designs, unpublished manuscript.
