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Abstract

A formalization of the recently introduced formalism for inflation is developed from a noncompact Kaluza—Klein theory.
In particular, the case for a single scalar field inflationary model is studied. We obtain that the scalar potential, which assume
different representations in different frames, has a geometrical origin.
0 2004 Elsevier B.VOpen access under CC BY license.
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In the last years, many people has worked in ex- be effectively four-dimensional (4D|j3] or studied
tra dimension$l]. As has been emphasized, Standard finite-volume but topologically noncompact extra di-
Model matter can propagate a large distance in ex- mensiong4].
tra dimensions without conflict with observations if A very important question in theoretical physics
Standard Model is confined to(& + 1)-dimensional consists to provide a good geometrical description
subspace, or “3-brane”, in the higher dimensi®is of matter using only one extra coordinate (Say.

It should be possible if the four familiar dimensions The explanation of this issue in the framework of the
where dependent of coordinate in the extra dimen- early universe, in particular for inflationary thedby,
sions. In some works on noncompact extra dimen- should be of great importance in cosmology. In this
sions the authors studied trapping of matter fields to Letter, we are aimed to study this topic using the
Kaluza—Klein formalism where the fifth coordinate is
noncompact. In this framework should be interesting
 E-mail addressesedgar@itzel.ifm.umich.mx to explain the origin of an effective four-dimensional
(J.E.M. Aguilar),mbellini@mdp.edu.a(M. Bellini). (4D) scalar potentiaV (¢) which could be originated
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from a 5D apparent vacuum. The idea that matter in
four dimensions (4D) can be explained from a 5D
Ricci-flat (R4 = 0) Riemannian manifold is a con-
sequence of the Campbell's theorem. It says that any
analytic N-dimensional Riemannian manifold can be
locally embedded in &V + 1)-dimensional Ricci-flat
manifold. This is of great importance for establish-
ing the generality of the proposal that 4D field equa-
tions with sources can be locally embedded in 5D field
equations without sourcg§]. For apparent vacuum
we understand a 5D flat metric and a 5D Lagrangian
for a neutral scalar field, where the 5D dynamics is
only kinetic, that is, the 5D potential in the 5D La-
grangian do not exists. In other words, we shall con-
sider an 5D apparent vacuum for scalar fields without
sources or interactions.

We consider the 5D metric, recently introduced by
Ledesma and Bellini (LB)7]

dS? =2 dN? — y2e®N dr? — dy?, (1)

where the parametersV(r) are dimensionless and
the fifth coordinate) has spatial unities. The metric
(1) describes a flat 5D manifold in apparent vacuum
(Gap = 0). To describe neutral matter in a 5D geo-
metrical vacuun{l) we can consider the Lagrangian

5g

®)
g0 L(p,¢.4),

OL(p,¢a)=~— )

where ®¢ = 388N is the determinant of the 5D
metric tensor with componenigsp (A, B take the
values 01,2, 3,4) and®go = ¢85V is a constant
of dimensionalization determined by g evaluated
with the initial conditions of the systemy: = vy, and
N = No. We shall consideNo = 0, so that> go = /8.
Since the 5D metri€l) describes a manifold in appar-
ent vacuum, the density Lagrangi#&nin (2) must to
be

®)

which describes a free sealfield because there is no
interaction: V[¢(N, r,¥)] = 0. Taking into account
the metric(1) and the LagrangiafR), we obtain the
equation of motion fop
oy 2
2y — +3
(2053 +2°)

1
O L, 9.a) = EgABw,Aw,B,
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whereg—g is zero because the coordinai@é, 7, v)
are independents.
Now, as in earlier work§7,8], we can consider the

3D comoving framelr = 0. Taking the metri¢1) with

r i P C 17A[/B
U" =0, the geodesic dynamiéd— = -, UAU
with gapUAU® =1, give us the following velocities
UA:

1
Uwz—i, Ur=0,
Vu?(N) -1
gV = 1) )

YVu2(N) -1
for S(N) = —N and u(N) = coth(N). In this rep-
resentation?¥ = y/u(N). Thus the fifth coordinate
evolves as

Y (N) = yoel IN/HM), (6)

Here, ¥ is a constant of integration that has spatial
unities. From the mathematical point of view, we are
taking a foliation of the 5D metri€l) with r constant.
Hence, to describe the metric in physical coordinates
we can make the following transformations:

t:/l//(N)dN, R=ry,

L=y (N)e JdN/uW), (7)

such that fory (1) = 1/H.(¢) (i.e., for u(N) =
—THJIN 0), we obtain the resulting 5D metric

dS?=dr? — 2/ Hedt g2 _ 412 (8)

where L = Y is a constant andd.(t) = a/a is

the classical Hubble parameter. The new variables
has physical meaning, becausés the cosmic time
and (R, L) are spatial variables. Furthermar€) is

the scale factor of the universe and describes its 3D
Euclidean (spatial) volume. Hence the effective 4D
metric is a spatially (3D) flat FRW one
ds? — ds? = dr? — 2/ dt g g2

€)

and has a scalar curvatuféR = 6(H, + 2H?). The
metric (9) has a metric tensor with componernts,
(i, v take the values @, 2, 3). The determinant of
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this tensor is¥g = (a/ag)®. Furthermore, the met-
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The important fact here is that the new frame give us

ric (9) describes globally a isotropic and homogeneous an effective spatially flat FRW metric embedded in a

universe.

5D manifold where the initial value of the fifth co-

Now we can make the same treatment to the density ordinate Lo = o = 1/Hp is the primordial Hubble

Lagrangian(3) and the differential equatia@). Using
the transformation§7) we obtain

(4)£[§0(1-é7 t)? @,;L(I-é, t)]
1

1 a?
= —ghv v — =l (RH)? = 22 |(Vrp)2, (10
58" e, 2[( ) az}( rP)", (10)

2
5+ 3Hp — 02
¢+3Hp ——5Vie

H3 _H,
+[(44_3_c_

HS\ .
H, H,. H¢

a2
+ (a—g —~ HCZR2> v,%go} =0.

Hence, with this represgation the effective scalar
4D potential V (¢) and its derivative with respect to
¢(R,t) are

11)

1 2
Vip) = 5[(RHC>2 - (‘;—0) ](vmz, (12)
/ _ Hc3 HC HCS .
vor=(4 % )
ag 2,2 \o2

Egs.(10) and (11)describe the dynamics of the infla-
ton fieldp(R, t) in a metric(9) with a Lagrangian

@DL[@(R, 1), 9,4(R,1)]

(4)g 1 v
%H:Eg Yupv+ V((p)],

(14)

where|@go| = 1. In the new representatidr, , L),
we obtain the following new velocitie§4 = g%zUB

Ut 2u(t) UR = _ 2r
Vi) =1 Vi) =1

Ut =0, (15)

where the old veIocitieSIBAareUN, U"=0andU".
Furthermore, the velocitigg? complies with the con-
straint condition

SasUAUB =1. (16)

horizon, which emerges naturally as a constant in this
representation.

The solutionN = arctanfil/u(¢)] corresponds to
a power-law expanding universe with time dependent
power p(r) for a scale factor ~ P, SinceH,(t) =
a/a, the resulting Hubble parameter is

H(1) = pIn(t/10) + p(t)/t, (17)

wherer is the time for which inflation ends. The func-
tion u written as a function of time is

2
c

(18)

where the overdot represents the derivative with re-
spect to the time. In this frame, the 4D energy density
p and the pressure p afg
8rGp = 3HCZ,
87Gp=—(3H? + 2H,).

(19)
(20)

Furthermore, note that the conditi¢b6) implies that

lu(t)| = ,/Mg@z’l > 1, wherer is a constant.
Moreover, the functiom(r) can be related to the de-
celeration parametey(r) = —ia/a%: u(t) = 1/[1+
q(1)], such that for inflationary models the required
condition|g (¢)| >~ 1 (but with negativey), is fulfilled
for r = R(¢t)H.(¢) > 1. In other words, it means that
the effective 4D background metr{®) is only valid
on super Hubble scale®:>>> 1/ H,, in agreement with
the expected for a background metric. Note that the
function Yu(r) = —H/H? < 1 give us the slow-roll
paramete[9] during inflation[10]. So, the feasible
values for the constamt during inflation being given
only from geometrical arguments. This is an important
prediction of the model here developed.

On the other handV (¢) andV'(¢) can be written
as a function of the old coordinatés/, r, ¢) in the
comoving frame/” =0

2
Vip) = %[rz — e_ZN]iz<% 90) ,

r

(21)
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) IZ 4 3\ « whereM, = G~Y/2 is the Planckian mass. The quan-
Vip) = <3$ - 7) ¢ tum dynamics is described by
vy oy )
al\2 1% $+3% - v 4y v<"+1>(¢> )¢" =0, (29)
+](202) —1|Le (22) a
ar oy n=1""
Here, the overstar denotes the derivative with respect(H ) + 87 G f a_o(v¢)2
to N. Note thatAN is the number of e-folds of the 3 \2

universe. To inflation solves the horizon/flatness prob-
lemsitis required thah N > 60 at the end of inflation. + Z 1 VO (p)p" ). (30)
At this point we can introduce the 4D Hamil- n!

tonian’t = 7°¢ L, where the 4D Lagrangian is On cosmological scales, the quantum fluctuations are

DL, ) = /‘\((4)); @ L(p, 9. (see Eq(14)): sma.llll, so that a linear app.roximati_on_ (.e.=1)is
sufficient to make a realistic description for the evo-
143 lution of ¢. Furthermore, the second term (80) is
H= 53 [fp +— (st)2 + 2V(<p)] (23) negligible wheny is considered spatially very homo-
geneous. However, such that term could be very im-
Hence, we can define the energy density operator portant on sub Hubble scal¢$2]. With the aim to
such that = “—zp. Hence make a description of the dynamics on cosmological
“0 scales, we shall cogsider this term as null. For this rea-
son we shall takel; = (H2) ~ H2. Once done the
2[‘” T3 (V‘p)z T ZV(@] (24) linear approximation for the semiclassical treatment
we can make the identification of the squared mass for
the inflaton fieldm? = V" (¢.). Hence, after make a
linear expansion fo¥'(¢) in Eq.(22), we obtain

The 4D expectation value of the Einstein equation
H? = #0  on the 4D FRW metri¢9), will be

Ar G

H2) — .2

(1) = T2
where G is the gravitational constant. We can make

m<¢ (

2
%0 (v)? HP _gH
+ az(Vw) + 2V(<p)>, (25) V' (¢e) = (4? - 3f -3=< )¢c, (31)

C L

a semiclassical treatmerit0,11] for the quantum
field ¢, such thatp(R, 1)) = ¢.(¢):

- - 02
@(R, 1) = ¢c(t) + (R, 1), (26) + (a—g - HCZRZ)V,%¢. (32)

where(¢) = 0. Furthermore, we impose that) = 0
With this approach the classical dynamics on the back-
ground 4D FRW metri€9) is well described by the

H® _H. 9
4-¢ 3 _ 3.—C %9
H. H, at

Taking into account the expressiqi29)with (31)and
(29) with (32), we obt;xin the dynamics fap. andg.
Hence, the equationg. + 3H.¢. + V'(¢.) =0 and

equations ¢ + 3H.p. — (a/ag)?>V3p + V" ()¢ = 0 now take
b+ 32404 Vg0 =0, (@ry fheform
2 e+ [3He + f(D]de =0, (33)
H2_8”G(¢ Ve )) 28 b — H2R2V2
c 3 \2 ¢ ¢+ [3Hc(1) + f(1)]¢ — HTR*Vp =0, (34)
where

Since¢g. = 4 <, from Eq.(28) we obtain the classi- .
cal scalar potentia (¢..) as a function of the classical .\ _ ( H® _H H5) (35)

4= 3¢ 3¢ ),
Hubble parameteH, H. H. —H?

:%M2 M? Moreover, V'(¢.) and V" (¢.)¢ can be written in
V(ge) = 5P| HE = 5 (H)? i i i
¢ 127 ¢ terms of the metri¢1), for a comoving observer (with
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U"=0) so that the mode;@k(l_é, t) of the fieldy complies the
* differential equation
W@)=[&ﬂ——i——fi$‘ (36)
‘ v 1/*/2 “ Six + H2R?(kK? — k3(1)) xx =0, (39)
* 4 37 with
m2¢5[3£3‘—‘—2}¢ 111
W o 2 2
vy oy ko(f)=R2—P[g[2(3Hc+f(f))
ap 1\? 9% I
#[(30) i 57 + 5+ )| “0

Note that in this representation (a) the squared mass is
a differential operator that acts on the quantum fluc-
tuations¢, and (b) the 4D potential and its deriva-
tives with respect ta (R, ) are consequence of the
evolution of ¥ (N). In other words the nonzero cur-
vature of the 4D potential is induced by the geodesic
evolution of the fifth coordinate for an observer in a
comoving frame withJ” = 0. So, the inflationary dy-
namics, which is described by the inflaton field, should
be determined by the evolution of the space-like fifth
coordinate on a foliation of the 5D metr(t) wherer
is a constant. This is the main result of this Letter.
This formalism could take important consequences
in the early universe. During the inflationary epoch,
the slow-roll conditiony (1) = —H./H? < 1 holds.
Sinceu(t) = 1/y(t), we obtain that: > 1. This as-
sures that all the velocities 4 in (5)andU 4 in (15)

where f () is a function of the classical Hubble pa-
rameter (see Eq35)). Hence, all the dynamics of the
guantum fluctuations being described only by the clas-
sical Hubble parametédi, = a/a.

To illustrate the formalism we can study an exam-
ple whereys(N) = —1/(a«N), so thatH.(N) = —aN.
This implies that the classical Hubble parameter (writ-
ten as a function of time) is given by, (r) = Hoe*2!.

At the end of inflationaAr « 1, so thatH.(r) ~
Ho(1+ aAr) and 3H.(t) + f(t) ~ 3Ho(1 + aAt) +
30 — (4HZ/a)(1 + 2aAt) — (3HZ/a?) (1 + 3aAr),
where At = 19 — ¢t and g is the time for which in-
flation ends. At the end of inflation it is sufficient to
make aAz-first order expansion fokg, so that it can
be approximated to

to be real, and imposes the conditiors> 1 [8]. Fur- k§(t) = iZ(A — Br). (41)
thermore the equation of state can be written in terms :
of the functionu(¢) With this approximation, the general solution for the
5 modesy (1) is

= — 1 — N
P [ 3'4(1)}“)> xk(t) = C1AI[x(1)] + C2Bi[x(1)], (42)
which, sincex >>> 1 during inflation, complies with the . .
required condition for this stagep) ~ —(p). More- where Alx(s)] and Bix(1)] are the Airy functions

over, speaking in terms of the effective 4D FRW metric With argumentx(z). Furthermore, €1, C2) are some
(9), the geodesic evolution of the fifth coordinate give constants and
us the Hubble horizow () = 1/H (t) and the result- 1 13 12\ 2
ing fifth (constant) coordinaté = vy is given by the A = Z(3H0 30 L4 3_0>
o

primordial Hubble horizonL = 1/H_(1p). o?
We can define theedefined quantum fluctuations 1 , _H}
X (R, 1) = eV/2/BH(+[(O]dig 50 that the equation +5|8Hg - 97 —aHo
of motion for x yields 1 3 12
1 X ——(SH —3—g+3a—8—°>
i — [HCZRZV,% + Z(SHC + £(0) 2 o
g3
1, . . X 8H2+9—0—3Ha>t, 43
+§@m+fmﬂx=a (38) ( O e TP )
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1 H$ H?
B=_-(3Hp—3— + 30 —-8—
2 a? o

H3
x (SHoa — 8HE — 7") (44)
A—k?) —Br] (b \?
x(t) = [(b#<r_2) ) (45)

Note that in this examplélp denotes the value of the
Hubble parameter at the end of inflation. On cosmo-
logical scales (i.e., fok? < A — Br), the solution for

Xk is unstable. However in the UV sector (i.e., for
k%2> A — Br), the modes oscillate. This behavior is
well described by the function Bi(r)], so that we
shall takeC; = 0. Hence, at the end of inflation the
modesy; will be

xk(t) = C2Bi[x(1)]. (46)

Since the modes of the quantum fluctuatighsre
¢ = e V/2[BHAF D11y, the squared fluctuations
are given by

HZ _H3
~ 1 e—[3(H0+a)—470—3a—g]t
22

(%)

3

/ dk k?|x2
(47)

where the modeg; are given by Eq(46). Further-
more the density fluctuations at the end of inflation can
be estimated by the expression

3/2

sp HE H

°° 0 o120 7 (48)
o bc Mpa

which are of the order of I® for Ho ~ 10> M,, and

a ~107° M,. In our case, the spectral index being
given byn; — 1= —%. During inflationu > 1, so
that|ny; — 1] <« 1. Hence, during inflation the spectrum
approaches very well with a Harrison—Zeldovich one.
A more exhaustive treatment for density fluctuations
go beyond the scope of this Letter.

In this Letter we have studied a single scalar field
inflationary model which emerges from a 5D appar-
ent vacuum described by a flat 5D metric with coor-
dinates (v, r, ¥) and a Lagrangian for a free scalar
field. The interesting is that the scalar poteniigly)

121

FRW metric. Such that metric is view as a particular
frame (characterized witt/ = 0) of the 5D metric
(8), where the potentidl (¢) is represented as the dif-
ferential operato(12). In other words, the potential,
which assume different representations in different
frames, has a geometrical origin. Moreover, the mass
of the inflaton field appears in the framig" =0 as a
differential operator applied to que quantum fluctua-
tionsd)(ﬁ, t). Hence, for the semiclagsical (and linear
on ¢) treatment here developed?2¢ (R, 1) is a local
operator with nonzero expectation value. At this point
we must to exalt this result, because a particular frame
in physics is intrinsically related to an observer (or ex-
perimental result). Note that in the potent{aP) the

KK modes are excluded. These modes should be re-
lated to a spin-2 graviton that appears in the KK theory
when the electromagnetic effects are included. This is
not our case. In this Letter we are excluded the electro-
magnetics fields in the metric because the electromag-
netics effects should be nonimportant on cosmological
scales.

To conclude, this formalism could be generalized
to other inflationary models with many scalar fields
[13]. Deflationary models could be examined using
a line elementS(N) = N (we emphasize that here
we have used(N) = —N which describes expanding
universes). Moreover, models with nonzero cosmolog-
ical parameters could be studied. The formalism also
could be successfully extended to the study of topolog-
ical defectd14] by using a line elemen§ = S(r) on
some frama/" = 0, rather the here usefl= S(N).
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