
Convex Invariant Refinement by Control
Node Splitting: a Heuristic Approach

Vivien Maisonneuve1

CRI, Mathématiques et systèmes
MINES ParisTech

Fontainebleau, France

Abstract

To improve the accuracy of invariants found when analyzing a transition system, we introduce an original
rewriting heuristic of control flow graphs, based on a control node splitting algorithm. The transformation
preserves the program behaviors, whilst allowing a finer analysis.
We have carried out experiments with PIPS, a source-to-source compiler, and Aspic, an abstract interpre-
tation tool, using 71 test cases published by Gonnord, Gulwani, Halbwachs, Jeannet & al. The number
of invariants found by these tools goes up from 28 to 69 for PIPS and from 44 to 62 for Aspic when our
heuristics is used as a preprocessing step. The total execution time of PIPS is only marginally increased,
going up from 76 to 103 s, thus showing the practical interest of our optimization technique.

Keywords: model checking, transformer, program analysis, CFG restructuring, automatic invariant
detection

1 Introduction

The standard state-based model checking problem is to characterize the set of all the
states of a transition system, modeling some program. Most of the usual techniques
consist in starting from a set of supposed predicates about a particular position in
the transition system, and then propagating it to other positions by evaluating the
effect of each transition on the predicates.

An alternative approach consists in computing state transformers [20], i.e., trans-
fer functions, instead of state predicates. Each program command, elementary or
compound statement or procedure call, is approximated by an affine transformer.
Each function is analyzed once and its transformer is reused at each call site. Pre-
conditions are then propagated using the transformers. Such an approach is useful
in order to obtain a modular analyzer and to limit analysis times. Affine trans-
formers are commonly used, as they offer good compromise between accuracy and

1 Email: vivien.maisonneuve@cri.mines-paristech.fr.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 288 (2012) 49–59

1571-0661 © 2012 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2012.10.007
Open access under CC BY-NC-ND license.

mailto:vivien.maisonneuve@cri.mines-paristech.fr
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2012.10.007
http://dx.doi.org/10.1016/j.entcs.2012.10.007
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


analysis complexity. A transformer-based representation of programs is described
in Section 2.

When analyzing a program using transformers, several factors can cause loss in
precision. An important one is the computation of loop effects. When using affine
transformers, another significant inaccuracy cause is the computation of effects of
parallel paths between two points of a program, i.e., paths that have the same ori-
gin and destination: indeed, computing the convex union of each path transformer
is required in order to obtain a convex result (see Section 3). The issue is wors-
ened on systems with multiple, parallel loops on the same program point, since the
approximation factors are combined.

We propose to address this issue with control graph restructuration. In Section 4,
a general control node splitting algorithm is introduced and we discuss how to use
it to refine invariants found by convex analysis. The results of our experiments are
shown in Section 5, while related work is discussed in Section 6.

2 Transformer Automata

In this section, we introduce the data structure used to represent transition systems
with transformers, we call it transformer automaton.

Let Var be a finite set of n typed variables (e.g., integer variables). A valuation
is a function mapping each variable to a possible value of its type. The set of
valuations on Var is noted Val.

2.1 General Definition

Definition 2.1 A transformer T is a relation transition from Val to Val: T ⊆
Val × Val.

Intuitively, a transformer represents the possible changes performed by a piece
of program on the program variables. Given two valuations v, v′ ∈ Val and some
piece of code represented by the transformer T , the boolean T (v, v′) means that the
code, called with variables initially equal to v, may result in a memory state where
variables are equal to v′.

Let T1, T2 be two transformers, we say that T2 overapproximates T1 (or simply
approximates T1) if T1 ⊂ T2, i.e. ∀v, v′ ∈ Val, T1(v, v′) ⇒ T2(v, v′).

For instance, consider an integer variable x and the instruction

c = {if (x>0) x++;}.

Then the transformer of c is Tc = {(k, k + 1) | k ∈ N
∗} while the transformer

T ′
c = {(k, l) | k, l ∈ N

∗, l > k} approximates Tc. We omit here the domain of
valuations, representing the function that maps x to k by k.

Definition 2.2 A transformer automaton is a triplet α = (K, kini, Trans) where
• K is a finite set of control points;

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–5950



• kini ∈ K is the initial control point;
• Trans is a finite set of transitions, i.e. of triplets (k, T, k′) with k, k′ ∈ K and T

is a transformer.

Remark 2.3 Val is isomorphic to Z
n, which allows to represent a valuation v ∈

Val of variables with a vector Xv ∈ Z
n. The i-th component of Xv, noted Xv[i],

represents the value of the i-th variable in the valuation v. Similarly, a transformer
is isomorphic to a relation on Z

n.

Example 2.4 Figure 1a shows an example of transformer automaton α = (K,k1,Trans)
where the set of controls is K = {k1, k2}, k1 is the initial state and Trans =
{(k1, Tini, k2), (k2, T1, k2), (k2, T2, k2)}. Code of the corresponding program is given
in Figure 1b, the notation (?) representing a boolean, nondeterministic choice.

k1

k2

Tini : x, x
′ �→ x′ ≥ 0

T1 : x, x′ �→
x > 0∧

x′ = x− 1

T2 : x, x′ �→
x ≤ 0∧

x′ = x+ 1

// k1
x = rand();

while (?) {
// k2
if (x > 0 && ?) x--;
else if (x <= 0 && ?) x++;

}
Figure 1. A transformer automaton (a) and the corresponding program code (b)

Semantics
Here is the semantic of transformer automata, in terms of transition systems.
Let α = (K, kini, Trans) be a transformer automaton. It is associated with a

transition system (Q, Qini, →) as follows:
• Q = K ×Val: a state is a couple formed by a control point k ∈ K and a valuation

v ∈ Val.
• Qini = {kini} × Val: initial states have their first components equal to kini.
• The transition relation: (k, v) → (k′, v′) if and only if there exists a transition

(k, T, k′) ∈ Trans, verifying T (v, v′).

Q, Qini and → respectively defines the states, the initial states and the state tran-
sition relation of α.

In a transformer automaton α, a trace t is a list of states t = q0, . . . , qm such
that q0 ∈ Qini and ∀i ∈ [1, m], qi−1 → qi. A state q is reachable if there exists a
trace t so that q is the last state of t. For instance, in Figure 1a, the state (k2, 2)
is reachable through the trace (k1, 0) → (k2, 4) → (k2, 3) → (k2, 2), while the state
(k2, −1) is not reachable.

2.2 Affine Case

In this section, we define affine transformer automata, a particular class of trans-
former automata whose transformers are convex polyhedrons.

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–59 51



Definition 2.5 An affine transformer T is a finite set of affine inequalities on 2n

variables, say x1, . . . , xn, x′
1, . . . , x′

n. The associated affine relation T̃ is the relation
verifying

∀Xv, Xv′ ∈ Z
n, T̃ (Xv, Xv′) iff the valuation

⎧⎪⎨
⎪⎩∀i,

xi �→ Xv[i]

x′
i �→ Xv′ [i]

⎫⎪⎬
⎪⎭ satisfies T.

By abuse of language, we call affine transformer and note T the affine relation T̃ .

Using this latter definition, affine transformers are a particular class of trans-
formers. Note that since the universal transformer TΩ = Val × Val is affine, any
transformer can be approximated by an affine transformer.

An affine transformer automaton is a transformer automaton whose all trans-
formers are affine. For instance, the transformer automaton represented in Figure 1a
is affine. Any transformer automaton can be approximated by an affine transformer
automaton.

3 Affine Transformer Automaton Analysis

When analyzing a structured program, each program structure is represented by
a transformer. Preconditions are then propagated to each control point using the
transformers. Unstructured programs can be turned into equivalent, structured
programs: see for example [1].

We present here an iterative approach relying on affine transformers, used for ex-
ample by the program analyzer PIPS [26]. We suppose elementary instructions have
been turned into transformers, and just show how control structures are handled.

Sequence
A sequence of affine transformers “T1 followed by T2” is overapproximated by

the union of constraints in T1 (on variables x1, . . . , xn, x′′
1, . . . , x′′

n) with constraints
in T2 (on variables x′′

1, . . . , x′′
n, x′

1, . . . , x′
n), then projected on x1, . . . , xn, x′

1, . . . , x′
n

to eliminate the “intermediate” variables x′′
1, . . . , x′′

n. We note this operation T2 ◦T1.

Choice
The effect of a choice “T1 or T2” is the transformer T1 ∪T2, which is not affine in

the general case (the union of two convex polyhedrons is not a convex polyhedron).
The best convex approximation is the convex union T1�T2. This is a lossy operation.

Loop
Given an affine transformer T , an affine transformer T ∗ representing the effect

of any number of iterations of T can be computed, for example with the Affine
Derivative Closure algorithm [2] used in PIPS, but other algorithms exist [3,29].

This operation is also cause of inaccuracy. First, because the possible effects
of an arbitrary number of iterations of an affine transformer T cannot be encoded
as an affine transformer in the general case. For example, a loop whose body is

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–5952



T : (x, x′) �→ x′ = x + 2, cannot be associated to a more precise affine transformer
than T ∗ : (x, x′) �→ x′ ≥ x. Second, because a heuristic to compute the effects of an
unbounded number of iterations should perform a transitive closure approximation
at a given point.

Example 3.1 With this iterative approach, the structure represented in Figure 2a
can be approximated by the single affine transformer (T3 ◦ T ∗

2 ◦ T1) � (T5 ◦ T4).

T1

T2

T3

T4 T5

T ′
1

T ′
2

Figure 2. Transformer automaton structures

4 Improving Parallel Loop Handling

The two main sources of imprecision that appeared in Section 3 were the compu-
tation of loops (∗) and parallel paths (�). These imprecisions are accumulated if
there are structures in the automaton with two or more loops involved in the same
control (Figure 2b, approximated by (T ′

1 � T ′
2)∗).

4.1 Control Node Splitting Algorithm

If such a structure is met during analysis, there are two ideas to improve accuracy.
The first one is to refine transformers involved in loops, so that both the transitive
closure approximation and the convex union might be more precise. The second
is to reduce the number of parallel loops. Both require a restructuration of the
transformer automaton.

The Control Node Splitting Algorithm allow us to play on loop transformers and
layout.

Control Node Splitting Algorithm
Let α = (K, kini, Trans) be a transformer automaton, k ∈ K � {kini} a control

of α and Part = P1 � · · · � Pm a partition of the domain of valuations Val. The
transformer automaton αPart/k is obtained from α by performing the following steps:

(i) Delete control k.
Add fresh controls kP1 , . . . , kPm .

(ii) Delete each transition (k, c, k′) leaving k (k′ �= k).
For all i ∈ [1, m], add the transition (kPi , co, k′) with co(v, v′) = c(v, v′)∧v ∈ Pi.

(iii) Delete each transition (k′, c, k) entering in k (k′ �= k).
For all j ∈ [1, m], add the transition (k′, ci, kPj ) with ci(v, v′) = c(v, v′)∧v′ ∈ Pj .

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–59 53



(iv) Delete each transition (k, c, k) looping in k.
For all i, j ∈ [1, m], add the transition (kPi , cl, kPj ) with cl(v, v′) = c(v, v′)∧v ∈
Pi ∧ v′ ∈ Pj .

Controls that are not accessible or not coaccessible are not created, neither are the
related transitions. Transitions whose transformer is unsatisfiable are not created
either.

This algorithm can be applied to any transformer automaton. If run on an affine
automaton, and if every partition element Pi of Part is convex, then the resulting
automaton αPart/k is affine.

4.2 Correctness Theorems

We consider a general transformer automaton α and its image αPart/k obtained
through the control node splitting algorithm.

Theorem 4.1 For all i ∈ [1, m], for all v ∈ Val, if q = (kPi , v) is a reachable state
of αPart/k then v ∈ Pi.

In other words, we have a guarantee that in every control kPi of αPart/k, the
invariant given by Pi holds.

Given two controls k1 in α, k2 in αPart/k, we introduce a “state equivalence”
relation ∼St. between states of α and αPart/k, defined by: (k1, v) ∼St. (k2, v) iff
• Either k1 = k and k2 = kPi where i ∈ [1, m] satisfies: v ∈ Pi.
• Either k1 = k2 �= k.

We also define a relation ∼Tr. between traces of α and αPart/k: t1 ∼Tr. t2 iff states in
t1 and t2 pairwise satisfy ∼St.. Both relations ∼St. and ∼Tr. are bijective, so notions
of image and inverse image by ∼St. and ∼Tr. are defined.

Then the following two theorems hold:

Theorem 4.2 For all trace t1 of α, there exists a trace t2 of αPart/k such that
t1 ∼Tr. t2.

Theorem 4.3 For all trace t2 of αPart/k, there exists a trace t1 of α such that
t1 ∼Tr. t2.

These two theorems show that control node splitting preserves reachable states:

Corollary 4.4 Let q1 a state of α and q2 a state in αPart/k such that q1 ∼St. q2. q1
is reachable in α if and only if q2 is reachable in αPart/k.

Equivalence results 4.2, 4.3 and 4.4 give correspondences between automata α

and αPart/k in terms of traces and reachable states. Thus, safety and liveness prop-
erties on α can be translated into equivalent properties on αPart/k, and conversely.
This allows us to use the automaton αPart/k instead of α to prove properties on
programs, if it turns out to be easier.

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–5954



4.3 Partition Choice

It is well known that the choice of a control structure affects result accuracy.
Thereby, when dealing with a given transformer automaton α, an important ques-
tion is to determine the control points that should be split as well as the partitions
they should be split along, in order to make the analysis more accurate.

We have seen previously that most of the accuracy losses arise from the analysis
of control points with parallel loops. These control points are candidates to be
split. Concerning the partition choices, a trade-off should be found between different
criteria.

First, the automaton structure should be kept as simple as possible, in terms of
control and, even more, of transition number. In the general case, partitioning a
control k within m components not only adds m control states to the automaton,
but also up to m2 transitions between the newly created controls — from any control
to any control; the larger size and more complex structure will increase the analysis
complexity. To avoid these issues, the number m of partition components must
be bounded and the partition, carefully chosen so that some of the created states
are not reachable or not co-reachable, or that some of the created transitions are
not satisfiable, as they will not be present in αPart/k. If possible, the priority is to
eliminate transitions involved in loops or in cycles, for the same reasons as above.

Also, the resulting transition transformers should be as precise as possible, espe-
cially the ones involved in loops or parallel paths, still with the aim to limit accuracy
losses due to approximations.

Choosing the partition can be done manually, considering the system behavior.
We propose below an automatic heuristic technique too, which allows to find the
expected invariant on 69 small scale test cases published in the related papers (see
Section 5).

Guard-Based State Partitioning
Let α be an affine transformer automaton. On every control k with parallel

cycles, let T1, . . . , Tp be the affine transformers of transitions looping on k. We
recall that every affine transformer Ti, i ∈ [1, p] is a set of affine inequalities on
variables x1, . . . , xn, x′

1, . . . , x′
n. For all i, let Gi be the projection of Ti on variables

x1, . . . , xn, i.e. the “guard” of Ti.
Let Gi = Val � Gi. As Gi is the complementary of a convex polyhedron, it is

a polyhedron itself so it can be partitioned into a finite set of convex polyhedrons
Gi,1, . . . , Gi,ji [7]. So Pi = {Gi, Gi,1, . . . , Gi,ji} is a partition of Val. The partition
taken on control point k is:

Partk = P1 ⊗ · · · ⊗ Pp

where ⊗ is the “product partition” operation defined by: ∀E1, . . . , En,
∀F1, . . . , Fm, {E1, . . . , En} ⊗ {F1, . . . , Fm} = {Ei ∩ Fj | i ∈ [1, n], j ∈ [1, m]}.

In a nutshell, controls are created to explicitly allow or disallow each transition.
The key idea behind this heuristic is that most of parallel loops have at least partly
disjuncts guards. In this case, there are seldom controls with many parallel loops,

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–59 55



if at all, and the memory state on these controls is well known (Theorem 4.1).
This assumption proved reasonable in most of our test cases. Despite this, the
main drawback of this technique is the important number of created controls and
transitions, which limits its application field to transition systems whose average
number of transitions per control node is limited.

Example 4.5 Let us consider the system in Figure 1a. This system contains two
parallel loops on the control k1, whose transformers are

T1 = (x, x′ �→ x > 0 ∧ x′ = x − 1) and T2 = (x, x′ �→ x ≤ 0 ∧ x′ = x + 1).

Their convex hull is

T1 � T2 = (x, x′ �→ x − 1 ≤ x′ ≤ x + 1)

so the invariant on control k2 is given by (T1 �T2)∗ = TΩ, which prevents us to have
any information about the value of the variable x in k2.

If we project the constraints in T1 and T2 on x, removing the variable x′, we
obtain respectively the guards {x > 0} and {x ≤ 0} which define a partition Part
of Val. Using this partition, we split the control k2 into k′

2, k′′
2 . Transitions are

rewritten accordingly to the algorithm described in Section 4.1. The result is shown
on Figure 3. Using this restructured automaton, we are able to check the invariant
(x ≥ 0) in k2 (actually, in k′

2 and k′′
2).

k1

k′2
x > 0

k′′2
x ≤ 0

T ′
ini : x, x

′ �→ x′ > 0 T ′′
ini : x, x

′ �→ x′ = 0

T ′
1 : x, x′ �→

x > 1∧
x′ = x− 1

T ′′
1 : x, x′ �→

x = 1∧
x′ = x− 1

T ′
2 : x, x

′ �→
x = 0∧

x′ = x+ 1

T ′′
2 : x, x′ �→

x < 0∧
x′ = x+ 1

Figure 3. Example of Figure 1a, restructured

5 Experimental Results

The algorithms described in this paper have been tested with the program analyzers
PIPS 2 [20,26] and Aspic 3 [9], on a set of 71 previously published test cases 4 , most
of them taken from references given below in Section 6, a few other from Henzinger
& al. [19,4], N. Halbwachs [16,18,17], and some protocol descriptions [25,23,6]. As

2 Revision 19448.
3 Version 3.1.
4 All our test cases are available at https://svn.cri.ensmp.fr/svn/validation/trunk/Semantics-New/
NSAD_2011.sub/.

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–5956

https://svn.cri.ensmp.fr/svn/validation/trunk/Semantics-New/NSAD_2011.sub/
https://svn.cri.ensmp.fr/svn/validation/trunk/Semantics-New/NSAD_2011.sub/


results depend for a part from the control structure, we decided to reduce bias factors
related to this encoding choice by coding every case as a two-control automaton,
formed by an initial state leading to a looping state. Still, the algorithm could apply
on any type of transition system.

Among these 71 cases, PIPS was able to provide the expected cycle invariants
directly for 28. Using our restructuration techniques, we were able to run 41 addi-
tional cases without suffering accuracy loss on the first group of cases. Finally, it
failed on two cases, both with and without restructuration.

Aspic was able to compute the expected cycle invariants for 44 out of our 71
test cases using direct encoding. Unsurprisingly, these results are better than those
obtained with PIPS since Aspic is a program devoted to polyhedral invariant com-
putation. 21 more test cases are properly analyzed using partitioning techniques,
while Aspic still failed on 6 cases.

After restructuration, the resulting systems have typically between 2 and 10
control states, which is in the scope of our analyzers. The subway example [18],
more complex, grew much bigger (up to 23 controls) and its analysis, while correct, is
very slow compared to what could be achieved with manual control restructuration
(10 seconds vs. 0.5 seconds using 5 control states).

As for PIPS execution time, the analysis of the 28 directly working cases took
16.13 seconds on our machine 5 with direct encoding, against 20.47 seconds using
control node splitting techniques (27 % slower). Analyzing the whole set of exam-
ples took 76.49 seconds when encoded as single state transition systems, against
102.77 seconds with restructuration (34 % slower). Thus, it appears that the in-
crease in time due to restructurations does not necessarily lead to an exponential
blowup as feared by Laure Gonnord [10], at least for loops with no more than five
cycles.

6 Related Work

Partitioning techniques are a well established bunch of methods to improve the
precision of analyses. Gulwani & al. [13,12,14,15] introduce several techniques to
compute complexity bounds on procedures, including a semantics transformation on
loops called control-flow refinement.This technique is not used in the same context as
ours: it is specially devoted to bound analysis, is applied to structured programs and
not to control graphs, and uses a fundamentally different transformation. Bertrand
Jeannet [22,21] proposes a dynamic partitioning approach which tackles the problem
of the control structure complexification due to partitioning. The main idea is that
the final control structure is chosen dynamically, depending on the property to be
proved. This does not exactly match our goal, which is to refine control invariants
on a system independently of any property proof. Partitioning techniques are also
used in abstract interpretation: dynamic partitioning à la Bourdoncle [5], trace
partitioning à la Rival-Mauborgne [27], etc.

5 All experiments were performed on an Intel Core i7 machine at 2.8 GHz running Debian Linux 2.6.32-5
with 8 GB of memory, using PIPS revision 19448.

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–59 57



On the other hand, several techniques improve the computation of loop in-
variants without any control flow restructuration. The work of Kelly & al. [24]
introduced many concepts and algorithms in the computation of transitive closures.
However, they consider a different set of applications and focus mostly on the under-
approximation of transitive closures instead of overappromations. Laure Gonnord
improves results given by Linear Relation Analysis [8] [16] by identifying categories
of loops whose effects can be computed exactly, via abstract accelerations [11,10].
Also, Sven Verdoolaege & al. [29] have developed techniques to compute more ac-
curately the transitive closures of a class of parametrized relations that captures
Presburger arithmetic and affine transformers on integer variables, with a special
focus on the case of parallel paths.

7 Conclusion

We present a simple algorithm to split control nodes to refine a program control flow
graph, over a partition of the set of variable valuations (Section 4.1). Theorems are
given about the invariants of created control nodes, and to ensure the restructuration
does not change the behavior of the program (Section 4.2).

We also give heuristics concerning the choice of partitions in the case of convex
transition systems, based on the transition guards (Section 4.3). This approach is
tested on a set of previously published examples, yielding encouraging results (69
examples worked out of 71, Section 5).

Future work will address performance issues. The restructuration given by our
heuristics tends to create a large number of controls and transitions, which limits
its scope to systems whose number of parallel loops is limited. This complexity is
useless in several cases because the same invariant accuracy is obtained with much
simpler, manually restructured systems. We were also able to design transition
systems on which the proposed partition is not suited, leading to the analyzer
failure, while a better, simpler partition choice would have worked. As part of
future work, we therefore want to design better partition strategies to handle a
wider range of transition systems.

References
[1] Zahira Ammarguellat. A control-flow normalization algorithm and its complexity. IEEE Trans.

Software Eng., 18(3):237–251, 1992.

[2] Corinne Ancourt, Fabien Coelho, and François Irigoin. A modular static analysis approach to affine
loop invariants detection. Electr. Notes Theor. Comput. Sci., 267(1):3–16, 2010.

[3] Anna Beletska, Denis Barthou, Wlodzimierz Bielecki, and Albert Cohen. Computing the transitive
closure of a union of affine integer tuple relations. In COCOA, pages 98–109, 2009.

[4] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Path invariants. In
PLDI, pages 300–309, 2007.

[5] François Bourdoncle. Abstract interpretation by dynamic partitioning. J. Funct. Program., 2(4):407–
423, 1992.

[6] Tevfik Bultan, Richard Gerber, and William Pugh. Symbolic model checking of infinite state systems
using presburger arithmetic. In CAV, pages 400–411, 1997.

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–5958



[7] Bernard Chazelle. Convex partitions of polyhedra: A lower bound and worst-case optimal algorithm.
SIAM J. Comput., 13(3):488–507, 1984.

[8] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables of a
program. In POPL, pages 84–96, 1978.

[9] Laure Gonnord. Aspic, 2005–2010.

[10] Laure Gonnord. Accélération abstraite pour l’amélioration de la précision en Analyse des Relations
Linéaires. PhD thesis, Université Joseph-Fourier - Grenoble I, 10 2007.

[11] Laure Gonnord and Nicolas Halbwachs. Combining widening and acceleration in linear relation analysis.
In SAS, pages 144–160, 2006.

[12] Sumit Gulwani. Speed: Symbolic complexity bound analysis. In CAV, pages 51–62, 2009.

[13] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and progress invariants for
bound analysis. In PLDI, pages 375–385, 2009.

[14] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. Speed: precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139, 2009.

[15] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In PLDI, pages 292–304, 2010.

[16] Nicolas Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables d’un
programme. PhD thesis, Institut National Polytechnique de Grenoble - INPG; Université Joseph-
Fourier - Grenoble I, 03 1978. Universités : Université scientifique et médicale de Grenoble et Institut
national polytechnique de Grenoble SUDOC-004907809 ; MI2S-tu985.

[17] Nicolas Halbwachs. Linear relation analysis: Principles and recent progress, 12 2010. Presentation at
Second French Compiler Research Meeting.

[18] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of real-time systems using
linear relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.

[19] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy abstraction. In
POPL, pages 58–70, 2002.

[20] François Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedural parallelization: an
overview of the PIPS project. In ICS, pages 244–251, 1991.

[21] Bertrand Jeannet. Partitionnement dynamique dans l’analyse de relations linéaires et application à
la vérification de programmes synchrones. PhD thesis, Institut National Polytechnique Grenoble, sep
2000.

[22] Bertrand Jeannet, Nicolas Halbwachs, and Pascal Raymond. Dynamic partitioning in analyses of
numerical properties. In SAS, pages 39–50, 1999.

[23] Randy H. Katz, Susan J. Eggers, David A. Wood, C. L. Perkins, and R. G. Sheldon. Implementing a
cache consistency protocol. In ISCA, pages 276–283, 1985.

[24] Wayne Kelly, William Pugh, Evan Rosser, and Tatiana Shpeisman. Transitive closure of infinite graphs
and its applications. In LCPC, pages 126–140, 1995.

[25] Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Commun. ACM,
17(8):453–455, 1974.

[26] MINES ParisTech. PIPS, 1989–2011. Open source, under GPLv3.

[27] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain. ACM Trans. Program.
Lang. Syst., 29(5), 2007.

[28] Peter Schrammel and Bertrand Jeannet. Extending abstract acceleration methods to data-flow
programs with numerical inputs. Electr. Notes Theor. Comput. Sci., 267(1):101–114, 2010.

[29] Sven Verdoolaege, Albert Cohen, and Anna Beletska. Transitive Closures of Affine Integer Tuple
Relations and their Overapproximations. Research Report RR-7560, INRIA, 03 2011.

V. Maisonneuve / Electronic Notes in Theoretical Computer Science 288 (2012) 49–59 59


	Introduction
	Transformer Automata
	General Definition
	Affine Case

	Affine Transformer Automaton Analysis
	Improving Parallel Loop Handling
	Control Node Splitting Algorithm
	Correctness Theorems
	Partition Choice

	Experimental Results
	Related Work
	Conclusion
	References

