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Summary

Neurons often possess elaborate axonal and dendritic
arbors. Why do these arbors exist and what deter-
mines their form and dimensions? To answer these
questions, | consider the wiring up of a large highly
interconnected neuronal network, such as the cortical
column. Implementation of such a network in the allot-
ted volume requires all the salient features of neuronal
morphology: the existence of branching dendrites and
axons and the presence of dendritic spines. Therefore,
the requirement of high interconnectivity is, in itself,
sufficient to account for the existence of these fea-
tures. Moreover, the actual lengths of axons and den-
drites are close to the smallest possible length for a
given interconnectivity, arguing that high interconnec-
tivity is essential for cortical function.

Introduction

The geometrical shapes of nerve cells are extraordinarily
complex. Unlike most other cells of the body, neurons
have long and branching processes: axons and (often
spiny) dendrites (Figure 1). Numbers and dimensions
of axonal and dendritic branches vary systematically
between different neuronal classes. Such complexity
and variability of neuronal structure raises a question
about its function. Cajal argued that the shape of neu-
rons reflects their role in communication: dendrites con-
duct signals from postsynaptic terminals to the integra-
tion site, which is often the cell body; axons conduct
signals from the cell body to presynaptic terminals (Ra-
moén y Cajal, 1899). One hundred years later, the role of
axons and dendrites in communication is not in doubt,
yet a quantitative theory of neuronal shape is still miss-
ing. Such a theory would establish how much of neuronal
shape can be explained by communication require-
ments and how much it reflects signal processing, or
computation, requirements. In particular, dendrites may
perform nonlinear operations (Koch et al., 1982; Mel,
1993; Polsky et al., 2004), axons may serve as delay
lines or frequency-dependent filters (Carr and Konishi,
1988; Debanne, 2004), and spines may be filtering com-
partments (Koch and Zador, 1993; Rose and Call, 1992;
Svoboda et al., 1996; Yuste et al., 2000). Understanding
of these and other physiological processes can benefit
from a quantitative formulation of structure-function re-
lationships.

Much progress in formulating structure-function rela-
tionships has been made by the wiring optimization ap-
proach, which is rooted in Cajal’s laws of economy of
space, time, and matter (Ramén y Cajal, 1899). In this
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approach, brain design is viewed as a solution to an
optimization problem, where the wiring cost is mini-
mized for a given network functionality. Wiring optimiza-
tion has been invoked to explain many aspects of brain
design: why the brain is located in the head (Cherniak,
1994), why neocortex folds in a characteristic species-
specific pattern (Van Essen, 1997), why gray and white
matter segregate in the cerebral cortex (Murre and
Sturdy, 1995; Ruppin et al., 1993), why there are separate
visual cortical areas (Barlow, 1986; Mitchison, 1991),
why the number of areas and neuron density scale with
brain size (Changizi, 2001; Ringo, 1991), why cortical
areas in mammals and ganglia in C. elegans are ar-
ranged as they are (Cherniak, 1994, 1995; Cherniak et
al., 2004; Chklovskii, 2004; Klyachko and Stevens, 2003;
Young, 1992), why topographic maps exist (Allman and
Kaas, 1974; Chklovskii and Koulakov, 2004; Cowey,
1979; Nelson and Bower, 1990), why ocular dominance
patterns (Chklovskii, 2000a; Chklovskii and Koulakov,
2000, 2004; Mitchison, 1991, 1992; http://arxiv.org/abs/
q-bio.NC/0311027) and orientation preference maps are
present in the visual cortex (Chklovskii and Koulakov,
2004; Durbin and Mitchison, 1990; Koulakov and Chklov-
skii, 2001; Mitchison, 1991), why axonal and dendritic
arbors have particular dimensions (Cherniak et al., 1999;
Chklovskii, 2000b; Chklovskii and Stepanyants, 2003;
Hsu et al., 1998) and branching angles (Cherniak, 1992;
Cherniak et al., 1999; Shefi et al., 2004), and why axons
and dendrites occupy a certain fraction of the gray mat-
ter (Chklovskii et al., 2002; Stepanyants et al., 2002).

Making quantitative predictions with wiring minimiza-
tion requires an expression for the wiring cost. This issue
is complicated by the fact that the exact origin of the
wiring cost has not been established unequivocally. Ax-
ons and dendrites take up valuable space (Cherniak,
1992; Hsu et al., 1998; Mitchison, 1991), introduce delays
(Rushton, 1951) and attenuation (Rall et al., 1992), re-
quire material and metabolic energy (Attwell and Laugh-
lin, 2001), and rely on genetic information for guidance
in development (Dickson, 2002). Despite all that, there
is growing evidence that the wiring cost can be approxi-
mated by the wiring volume. Indeed, pattern formation
in the cortex (Mitchison, 1991), observed angles of den-
dritic branching (Cherniak, 1992; Shefi et al., 2004), dif-
ferential axon diameters in rod and cone pathways (Hsu
et al., 1998), and equipartition of volume between axons
and dendrites in the cortical neuropil (Stepanyants et
al., 2002) are best explained by the minimization of the
wiring volume. Moreover, the wiring volume adds up
linearly and can be conservatively exchanged between
various axons and dendrites, making it a convenient
approximation for the cost. Then the assumption that
evolution minimized the wiring cost, while maximizing
the network functionality, leads to the following optimal
design problem. For a fixed functionality of the network,
as specified by the synaptic connectivity, find the wiring
design that minimizes the wiring volume.

In this paper, | consider the wiring up of a three-
dimensional neuronal network inspired by the cortical
column. Each neuron is assumed to make a synaptic
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Figure 1. Reconstruction of a Pyramidal Neuron from Rat Neocortex

Axons are shown in blue, dendrites and cell body are shown in red.
Spines are small protrusions on the dendrites shown in the inset.
Image is courtesy of G. Shepherd, Jr. and K. Svoboda; inset is
courtesy of A. Holtmaat and K. Svoboda.

connection onto every other neuron, or, in other words,
network connectivity is all-to-all. This seemingly drastic
assumption is justified below by using the concept of
potential synapse. The minimal volume of the all-to-all
connected network is calculated in terms of the number
of neurons, N, and the wire diameter, d. The network
volume depends on the chosen wiring design. | start
with the simplest possible wiring design, nonbranching
(or point-to-point) axons, and show that it occupies a
prohibitively large volume. This means that evolution
had to solve a difficult wiring problem. Adding features
of neuronal morphology, such as branching axons,
branching dendrites, and dendritic spines, reduces the
size of the network, implying that neuronal morphology
makes wiring more efficient. Moreover, only the final
wiring design, including all the salient morphology fea-
tures, yields the correct size of the cortical column.
Therefore, if one assumes that cortical function requires
high (potential) interconnectivity in a small volume, one
need not look further to find a reason for the existence
and total length of axons and spiny dendrites.

Results

Design I: Point-to-Point Axons

In the simplest wiring design, a synaptic connection
between any pair of neurons requires a dedicated axon,
which | call a point-to-point axon (Figure 2). The total
volume of the network can be readily found by using a
scaling estimate. In such an estimate, numerical coeffi-
cients of order one are ignored and the results apply
when the number of neurons is large. The average length
of each axon scales with the linear dimension of the
network, R, e.g., with the width or height of a cubic
volume. Each neuron has to send such an axon to every
other neuron, meaning that there are N axons per neu-
ron. Therefore, the wiring length per neuron, /, is given by

I ~ NR. )

Since the brain consists mostly of wiring (about 60%
of the gray matter [Braitenberg and Schiiz, 1998]), the
neuronal network volume can be estimated via the wiring
volume. Assuming a fixed axon diameter, d, the wiring
volume is given by

Figure 2. Design I: Point-to-Point Axons

Neuronal network containing N neurons (green spheres) with all-to-
all connectivity implemented by point-to-point axons (design I). For
the sake of illustration, only axons belonging to one neuron are
shown (blue lines originating from the gray sphere). The rest of the
axons fill up the space between the neurons and determine the
volume of the network, R°.

R® ~ Nid?. )

Substituting Equation 1 into Equation 2 gives the net-
work volume

R® ~ dNB. (3)

Although this estimate works well for the global cortical
network as a whole (see Appendix), it fails completely
for a network of neurons within the cortical column.
Initially, | compare theoretical predictions with data from
mouse neocortex because of their relatively high quality,
leaving interspecies comparison to the section on Com-
parison with Experiment. One cubic millimeter of mouse
neocortex contains N = 10° neurons (Braitenberg and
Schiiz, 1998). Intracortical axons have an average diam-
eterd = 0.3 pm (Braitenberg and Schiiz, 1998). Substitu-
tion of these numbers into Equation 3 yields a column
volume 30,000 times greater than in reality (R = 3 cm
versus actual size of 1 mm). This result shows that point-
to-point axons are insufficient to wire up the all-to-all
connected network in the allotted volume.

What is missing here? One answer is that the cortical
column is not an all-to-all connected network, but this
is only a partial explanation. First, even including the
observed connectivity sparseness of 0.01-0.1 (Holm-
gren et al., 2003; Markram et al., 1997; Mason et al.,
1991; Sjostrom et al., 2001; Thomson and Deuchars,
1997), this reduces the network size only to 3-10 mm,
still significantly greater than the actual size of 1 mm.
Second, as argued in the section on Comparison with
Experiment, the functionality of the neuronal network
may be specified by potential synaptic connectivity bet-
ter than by actual synaptic connectivity (Stepanyants et
al., 2002). In turn, the potential connectivity in the cortical
column js close to all-to-all (A.B. Stepanyants et al.,
2003, Soc. Neurosci., abstract). Therefore, to account
for the cortical column size, | need to explore more
sophisticated wiring designs.

Design II: Branching Axons

One redundancy in design | is that the same signal is
carried from a given neuron along many point-to-point
axons that run almost parallel to each other (Figure 2).
Introducing axons that synapse on multiple neurons can
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Figure 3. Design II: Branching Axons

Neuronal network wired up with branching axons (design Il). Only
the axonal arbor (blue lines), belonging to one neuron (gray sphere),
is shown. The rest of the axons fill up the space between the neurons
and determine the network volume. The volume of the branching
axons network (design Il) is smaller than that with the point-to-point
axons (design ).

rectify such redundancy (Cherniak et al., 1999; Mitchi-
son, 1991, 1992; Murre and Sturdy, 1995). Multiple syn-
apse axons can make synapses along the way (en pas-
sant) and/or by adding branches (Figure 3). Both of these
possibilities are encountered in cortical neurons (Brai-
tenberg and Schiiz, 1998). Since each en passant syn-
apse may be viewed as a zero-length branch, in this
paper, no distinction is made between these possibili-
ties, and design Il is referred to as branching axons.

Next, | calculate the volume of a neuronal network
wired with branching axons (Figure 3). The axonal length
per neuron is given approximately by the number of
neurons, N, times the typical interneuron distance. In
turn, the interneuron distance can be estimated under
the assumption of the uniform spatial distribution (ap-
propriate for cell bodies in the gray matter [Braitenberg
and Schiiz, 1998]) to be R/N'3. Then, the wiring length
per neuron is

I ~ N*R. @)

Substituting Equation 4 into Equation 2 gives the volume
of the network

R’ ~ d°N°2, (5)

This result was previously obtained by Murre and Sturdy
(1995) and shows that the volume of the network with
branching axons scales with the smaller power of N
than that for the point-to-point axons, Equation 3. This
implies that, in the limit of a large number of neurons,
implementing a network with branching axons reduces
the network volume. For example, the cortical column
containing 10° neurons would increase 300-fold (or al-
most 7-fold in linear size) if point-to-point axons were
used instead of branching axons. Of course, there may
be other constraints on the wiring design. For example,
the network of cortical columns, discussed in the Ap-
pendix, cannot utilize the branching axon design be-
cause each axon from a given cortical column belongs
to a different neuron, and, most likely, carries a different
signal, appropriate only for the target column. However,
other things being equal, evolution should prefer branch-
ing axons to point-to-point ones.

Although advantageous, wiring up a network with
branching axons does not account fully for the cortical
column size. Substitution of the intracortical axon diam-

Figure 4. Design lll: Branching Axons and Dendrites

Neuronal network wired up with branching axons and dendrites
(design Ill). Only the axon (blue) belonging to one neuron (gray
sphere in the center) and the dendrite (red) belonging to another
(gray sphere in the corner) are shown. The rest of the axons and
dendrites fill up the space between the neurons and determine the
network size. Axons and dendrites form three-dimensional meshes
that make contact with each other in the neuropil. The total network
volume (design lll) is smaller than that of the axons-only network
(design II).

eter d = 0.3 pm (Braitenberg and Schiiz, 1998) into
Equation 5 yields cortical column volume 90 times
greater than in reality (R = 4.4 mm versus actual column
size of 1 mm). This mismatch is primarily due to the
existence of dendrites, which further reduce the network
size, as | argue next.

Design llI: Branching Axons and Dendrites

A shortcoming of the axons-only network is that each
axon has to make its way to every cell body. Since all
the signals received by a neuron are merged in the cell
body, the same functionality can be achieved by a single
process reaching out in the direction of axons and meet-
ing them halfway (Chklovskii, 2000b). This process con-
ducts signals from the synapses to the cell body and,
hence, should be called a dendrite (Ramén y Cajal,
1899). Because a single dendrite takes up less volume
than the many converging axons, this solution is more
efficient. In reality, axons converge on a cell body from
various directions, requiring several dendritic branches.
Yet, in the limit of large convergence, adding dendrites
to the wiring design lowers the wiring cost (Chklovskii,
2000b). This argument is consistent with correlations
between convergence and dendritic complexity ob-
served in ciliary ganglion (Purves and Hume, 1981;
Purves and Lichtman, 1985; Purves et al., 1986) as well
as the dimensions of dendrites and axons in the retina,
cerebellum, and the olfactory bulb (Chklovskii, 2000b).
Below, | show that adding dendrites to the all-to-all
connected network, which possesses both high conver-
gence and divergence, also improves the wiring effi-
ciency.

In the all-to-all connected network, convergence and
divergence are equal, suggesting a symmetry between
axons and dendrites. This leads me to consider axons
and dendrites built to the same design: a 3D mesh of
wires with the constant caliber d uniformly spanning the
volume of the network (Figure 4) (for axons and dendrites
of different diameters, see below). The mesh size (diam-
eter of the holes in the mesh) is uniquely related to the
axonal (or dendritic) length. In turn, the axonal length
follows from the condition that an axonal arbor must
make contact with every dendritic arbor. In order to
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calculate axonal length, an expression for the number
of contacts is derived and set to one. The derivation
neglects the topology of the arbors and correlations in
the locations of branch segments (Stepanyants et al.,
2002). First, the total volume, R?, is divided into cubes
of volume, d?, i.e., into R%/d?® voxels. Then, the number
of contacts between an axon and a dendrite is given by
the number of voxels that contain them both. Each axon
occupies I/d voxels, the same number as a dendrite.
The fraction of voxels containing the axon is (//d)/(R%/d°),
the same as the fraction containing the dendrite. Then,
the fraction of voxels containing both the axon and the
dendrite is the product of the two fractions, /2d*/R¢. By
multiplying this fraction by the total number of voxels,
| find the number of voxels containing axon and dendrite,
I’d/R®. Then, the condition for having one contact is
given by (Stepanyants et al., 2002)

PdIR® ~ 1. 6)

Combining Equations 6 and 2 and excluding / gives the
following estimate for the volume of the network with
branching axons and dendrites:

R® ~ &BNP. @)

This result shows that adding branching dendrites (de-
sign Ill) to the axons-only network (design Il) reduces
the scaling exponent, implying that, in the limit of large
N, this reduces the network volume. Substitution of the
axonal diameter, d = 0.3 pm (Braitenberg and Schiiz,
1998), and N = 10° into Equation 7 yields a cortical
column size of R = 0.7 mm, which is smaller than for
the axons-only network and close to actual size. This
estimate is not right, however, because it ignores the
fact that the dendritic diameter, dy = 0.9 um (Braitenberg
and Schiiz, 1998), is greater than axonal, d, = 0.3 pm
(Braitenberg and Schiiz, 1998). Combining axons and
dendrites with correct diameters yields an estimate for
the column size R = 1.6 mm, which is still greater (four
times by volume) than the actual size.

Design lll can be improved by the addition of dendritic
spines, which expand the reach of the dendrites without
increasing their length (Sorra and Harris, 2000; Stepan-
yants et al., 2002; Swindale, 1981). Although this does
not affect the scaling exponent in Equation 7, the prefac-
tor is reduced. Then, dendritic spines reduce the size
of the network and bring the size estimate in agreement
with reality, as shown next.

Design IV: Branching Axons and Spiny Dendrites
Adding dendritic spines reduces the size of the branching
axon and dendrite network (design lll) because axons
and dendritic shafts do not have to touch in order to
make a synapse, but can pass within the spine length,
s, of each other (Figure 5; Sorra and Harris, 2000; Stepa-
nyants et al., 2002; Swindale, 1981). Then, the condition
on the existence of a synapse between an axon and a
dendrite, Equation 6, is replaced by (Stepanyants et
al., 2002)

Ps/R® ~ 1. (8)

Combining Equations 2 and 8, | find that the network
volume scales with the neuron number as

Figure 5. Design IV: Branching Axons and Spiny Dendrites

Dendritic spines (red mushroom-like object) can implement a syn-
apse between a dendrite (red cylinder) and an axon (blue) that pass
within the distance, s, of each other. Addition of spines increases
the reach of the dendrites and reduces the network size (design 1V)
relative to the smooth dendrite network (design Iil).

R® ~ = N2, 9)
s

Equation 9 shows that adding dendritic spines to the
wiring design lll, Equation 7, reduces the prefactor and,
hence, the network volume. Assuming that the spine
length s = 2.5 um (Spacek and Hartmann, 1983) and
accounting for the difference in axon and dendrite cali-
bers (see below), | get the cortical column size, R =
0.7 mm. This is reasonably close to the actual size con-
sidering that wiring takes up about 60% of the 1 mm?®
cortical volume. Although neat, this agreement should
not be overinterpreted. Scaling estimates presented
here do not include numerical coefficients and are cor-
rect only by order of magnitude. Yet, | can still argue
that the existing cortical column cannot be wired in
the allotted volume if any of the salient morphological
features are missing. For example, Equation 9 shows
that elimination of spines from the actual cortical column
would increase its volume several-fold. Finally, an effect
similar to adding dendritic spine might be achieved by
positioning synaptic boutons on short axonal branches,
i.e., terminaux boutons.

Proof of Design Optimality

Can the network volume of design IV be reduced further?
Not by order of magnitude. To demonstrate this, | esti-
mate the minimum wire length, which determines the
network volume if the wire diameter is fixed. Each den-
drite has to be long enough for N axons to pass within
distance s from it (Figure 6). Because of volume exclu-
sion, the number of axons that can synapse on a den-
drite is given by the cross-sectional area of dendritic
arbor (from the point of view of axon), Is, times the
maximum flux density of axons, 1/d%

N~ —. (10)

I~NZL. 1)

This is the same expression as one gets for design IV
by combining Equations 2 and 9. This proves that in
design IV the dendrite volume and, by symmetry, the
axon volume, are the smallest possible for an all-to-all
connected network with N neurons. Therefore, design
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Figure 6. Cross-Section of a Dendrite with Adjacent Axons

Dendrites must be sufficiently long to ensure that every presynaptic
axon can synapse with them. Because of volume exclusion among
axons, the maximum number of available presynaptic axons, N, is
given by the dendritic length, /, times the spine length, s, divided
by the axon diameter, d, squared. Dendritic length estimated this
way coincides with that in design IV, thus proving its optimality. The
same argument relates minimum axonal length to dendritic di-
ameter.

IV cannot be improved further, provided wire diameter
and spine length are fixed.

Why could not spines be much longer? They could
be, but then their volume should be counted toward the
wiring cost, just as dendritic branches were. So far the
spine volume has been excluded from the wiring cost
because it depends weakly on the spine length. Indeed,
the spine volume is dominated by its head, which does
not scale with the spine length. Although the spine neck
volume scales with the spine length, its cross-sectional
area is rather small (Harris and Stevens, 1989). Presum-
ably, much longer spines would require a thicker neck,
which gives a large contribution to the volume. An inte-
gral treatment of dendrites and spines as wiring requires
relaxing the constraint on the wire diameter, which leads
to the next question.

If evolution attempts to minimize the wiring volume,
why not make axons and dendrites thinner? The answer
is that thinner wires impair brain functionality by adding
to signal delay (Rushton, 1951) in axons and to attenua-
tion (Rall et al., 1992) in dendrites and by reducing infor-
mation transmission capacity in synapses (Hsu et al.,
1998). Then, the trade-off between signal delay, attenua-
tion, and information rate on the one hand and wiring
volume on the other determines the wire diameter
(Chklovskii et al., 2002; Chklovskii and Stepanyants,
2003; Hsu et al., 1998). This argument explains the ob-
served difference in axonal diameters between different
pathways (Hsu et al., 1998) across branch points (Chklov-
skii and Stepanyants, 2003) and explains the fraction of
neuropil taken up by wiring (Chklovskii et al., 2002). In
the present theory, the wiring cost is minimized for fixed
functionality. Therefore, fixed axonal and dendritic di-
ameters are assumed.

The difference in average diameter between axons,
d,, and dendrites, d, is easily incorporated into the the-
ory by replacing Equation 11 with two separate expres-
sions for axonal and dendritic length:

d
s

l,~N 12)

(13)
Substituting these expressions into Equation 2 yields
the following estimate for the network volume:

e
=

R® ~ (14)

This expression shows that when axons and dendrites
have different diameters, Equation 9 contains their geo-
metric mean. In addition, Equation 14 shows that axons
and dendrites occupy approximately equal volume, a
result consistent with anatomical data (Braitenberg and
Schiiz, 1998; Chklovskii et al., 2002; Nafstad and Black-
stad, 1966; Stepanyants et al., 2002).

Comparison with Experiment

Equations 12 and 13 predict axonal and dendritic length,
which can be compared with anatomical data from
mouse neocortex (Braitenberg and Schiiz, 1998). Substi-
tuting axonal diameter, d, = 0.3 um (Braitenberg and
Schiiz, 1998), dendritic diameter, dy = 0.9 pm (Braiten-
berg and Schiiz, 1998), and spine length, s = 2.5 um
(Spacek and Hartmann, 1983), yields the total axonal
length per neuron, I, = 4 cm, and the total dendritic
length per neuron, /; = 4 mm. These results are in agree-
ment with experimental data (Braitenberg and Schiiz,
1998).

As previously mentioned, comparison of the all-to-all
network with the cortical column may seem atrtificial
because connectivity in the cortical column is sparse.
This is not a problem, however, if the brain functionality
is specified by the potential synaptic connectivity. Po-
tential synapse (Stepanyants et al., 2002) means a loca-
tion in the neuropil where an axon and a dendrite come
within a spine length of each other (Figure 6). The poten-
tial synapse is a necessary although not sufficient condi-
tion for the actual one. Its significance derives from the
observation of the structural plasticity in adult neocortex
(Trachtenberg et al., 2002): longitudinal in vivo imaging
shows that dendritic spines constantly extend and re-
tract, forming and eliminating actual synapses. At the
same time, axonal and dendritic branches do not change
(Mizrahi and Katz, 2003; Trachtenberg et al., 2002),
meaning that the potential synapses remain stable.
Therefore, it may be more appropriate to characterize
the cortical column by its potential connectivity. Al-
though potential connectivity depends on the cortical
layer and cell type, it remains close to all-to-all over
several hundred micrometers (A.B Stepanyants et al.,
2003, Soc. Neurosci., abstract). For the purposes of the
scaling estimate, the actual volume of the cortical col-
umn has been rounded off to 1 mm?. Possible overesti-
mate of the column volume is compensated, to some
extent, by neglecting the fact that a pair of neurons
can make more than one potential synapse. The ratio
between the numbers of actual and potential synapses
is called the filling fraction, f (Stepanyants et al., 2002).
Its value is typically much smaller than one (Stepanyants
et al., 2002), as would be expected from the sparseness
of local cortical connectivity.

Given that the cortical column has all-to-all potential
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Figure 7. Volume of Network with All-to-All

network volume, mm?

Connectivity as a Function of the Number of
o Neurons, N

= Out of all wiring designs (solid lines), only
branching axons and spiny dendrites (ma-
genta line) give the correct volume (<1 mmd)
for the mouse cortical column, N = 10° neu-
rons. Dashed line gives the actual network
volume provided neuron density is that of the
mouse cortex. Differences in slope reflect dif-
ferences in scaling exponents. Note that log-
log scale underemphasizes the actual reduc-
tion in volume. This calculation assumes a
fixed wire diameter, d, = 0.3 um for axons
and dy = 0.9 pum for dendrites.

number of neurons, N

connectivity, its volume can be calculated using Equa-
tions 3, 5,7, and 9 (see Figure 7). Different wiring designs
yield very different volumes (notice log-log scale), while
different slopes reflect different exponents. Predicted
network volume can be compared with the actual corti-
cal network, which is calculated assuming that the den-
sity of neurons is fixed. If the cortical column includes
~10° neurons, then only the final design fits into the
volume allotted for the cortical column (Figure 7), mean-
ing that all the morphological features are necessary to
implement observed high interconnectivity. It is possible
that the number of neurons in the cortical column is
smaller. Then, depending on how many neurons there
are, some of the features may not be needed (Figure 7).
Similar considerations may explain why smaller neu-
ronal networks (Okada et al., 2001; White et al., 1986) can
be implemented without some morphological features,
such as dendrites or spines.

These results apply to cortical design of various mam-
malian species and can be used for comparative (allo-
metric) analysis. To demonstrate this, | calculate the
density of synapses in the optimally wired neuropil (de-
sign IV). In the cortical column with volume R3, there are
fN? synapses, where f is the filling fraction. Then, by
using Equation 9, the density of synapses (ignoring the
difference between axonal and dendritic diameter) is

- fs

e (15)

Ps
According to existing data, there is little variation in the
average diameter of local axons and dendrites (Schiiz
and Demianenko, 1995), spine length (Schiiz and Demia-
nenko, 1995), or filling fraction (Stepanyants et al., 2002)
between mammalian species. Then, Equation 15 pre-
dicts that the density of synapses does not vary signifi-
cantly either. This prediction is consistent with available
data (Schiiz and Demianenko, 1995). Another conse-
quence of Equation 9 is the expression for the density
of neurons:

S

oy~ —— 16
P NG (16)

According to Equation 9, the size of the cortical column
R ~ N3, Then, by combining this with Equation 16, |
get R ~ p, 22, If the density of neurons decreases by a
factor of 4 from mouse to human (Schiiz and Demia-
nenko, 1995), the cortical column size must increase by
a factor of 2.5. This is consistent with existing data
(Schiiz and Demianenko, 1995) if the cortical column
scales with the size of pyramidal neuron dendrites. How-
ever, the density variation between mouse and human
may be much greater than 4 times (Tower, 1954), and
the extent of the cortical column (as defined by potential
connectivity domain) (A.B. Stepanyants et al., 2003, Soc.
Neurosci., abstract) is more likely to scale with axons
rather than dendrites. Therefore, a conclusive experi-
mental test of these relations will require quantitative
anatomical measurements using the same techniques
in different species.

Discussion

This paper studies wiring up a neuronal network with
all-to-all potential connectivity inspired by the cortical
column. Inclusion of each morphological feature of corti-
cal neurons such as branching axons, dendrites, and
spines into the wiring design significantly reduces the
network volume. Only the final wiring design, including
all the salient features of the neuronal morphology, gives
a correct order-of-magnitude estimate for the cortical
column volume. This means that the existence of den-
drites as well as axons, their branching, and the pres-
ence of dendritic spines are necessary to wire up the
cortical column sufficiently efficiently to fit within the
known volume. In addition, the optimal total lengths of
axons and dendrites are of the same order of magnitude
as actual, suggesting that the cortical column is opti-
mized for high interconnectivity in a small volume.
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The current work builds on several important insights
gained from the study of the retina. Description of the
neuronal arbor as a space-filling mesh has been put
forward and validated for ganglion cells in the retina
(Panico and Sterling, 1995). The concept of potential (as
opposed to actual) convergence and divergence has
been used previously for retinal neurons (Sterling et al.,
1988). The wiring optimization approach to the two-
dimensional topographic network explains the correla-
tion between the dimensions of axonal and dendritic
arbors with the convergence/divergence ratio that has
been observed experimentally (Chklovskii, 2000b). The
current work is essentially an extension of that approach
to a three-dimensional all-to-all connected network.

In combination with previous results, the present work
strongly suggests that neuronal morphology is largely
areflection of synaptic connectivity. Specifically, dimen-
sions of axonal and dendritic arbors are correlated with
divergence and convergence factors. Evidence for this
comes from neuronal networks from various brain re-
gions and convergence/divergence ratios. In the rabbit
ciliary ganglion, for example, the complexity of dendritic
arbors is correlated with the numbers of innervating
axons (Purves and Hume, 1981; Purves and Lichtman,
1985; Purves et al., 1986). In the retinal neurons, as
mentioned in the previous paragraph, the size of den-
dritic and axonal arbors is explained by the conver-
gence/divergence ratio in agreement with wiring optimi-
zation of a two-dimensional topographic projection
(Chklovskii, 2000b). Similar observations hold for the
parallel fiber to Purkinje cell projection in the cerebellum
and for the mitral to granule cell projection in the olfac-
tory bulb, although the quasi-two dimensionality of
these projections requires further analysis (Chklovskii,
2000b). As shown in the current paper, in pyramidal cells
of the cortex, the total length of dendrites and axons
reflects high convergence and divergence, correspond-
ingly. Because convergence and divergence must be the
same (averaged over all cortical neurons), the volume
of the axonal arbor approximately equals that of the
dendritic arbor (Stepanyants et al., 2002). These obser-
vations coming from various brain structures, when
taken together, point to a general relationship between
morphology and connectivity.

The quantitative relationship between neuronal mor-
phology and synaptic connectivity is established by the
wiring optimization approach. In this approach, the dif-
ferences in neuronal morphology arises naturally be-
cause the wiring optimization problem yields different
solutions for different connectivity requirements. In
those cases, where the wiring optimization problem has
been solved, its solutions are consistent with anatomical
data (see previous paragraph). Therefore, it is likely that
the wiring optimization approach will lead to a general
theory explaining the variability in axonal and dendritic
arbors among different neurons and brain structures.
Completing this theory will require solving the wiring
optimization problem for remaining network connectivit-
ies and comparing solutions with observed neuronal
morphology. Eventually, this general theory will estab-
lish a mapping between neuronal shape and synaptic
connectivity. Such mapping can be used to predict the
latter from the former. In turn, knowing synaptic connec-
tivity is essential to understand brain function.

Although the present theory successfully predicts the
total length of axons and dendrites, it does not account
for the number and length of individual branches. In-
deed, within the current framework, designs Il-1V work
equally well with axons that have several long branches
as with axons that snake through the neuropil and make
only zero-length branches, i.e., en passant synapses.
Explanation of axonal and dendritic branching requires
extending the current theory, for example, by including
signal delay and attenuation (Chklovskii and Stepany-
ants, 2003) or information transmission capacity of syn-
apses (Hsu et al., 1998) into the cost function. Trade-off
between the wiring volume cost and other contributions
can account for variations in branch diameters and spine
dimensions. In turn, including variations in branch diam-
eter is crucial to explain the existence and the geometry
of branching arbors (Cherniak, 1992; Cherniak et al.,
1999; Mitchison, 1991, 1992).

Another challenge is to understand the architecture
of the cortical network as a whole. Presumably, there
is a limit on the number of neurons that can be wired
in the all-to-all manner. Circumventing this limit while
preserving small network diameter requires adopting
the small-world architecture (Changizi, 2001; Karbow-
ski, 2003). An example of such architecture is sketched
in the Appendix. Sparse long-range interconnections
integrate cortical columns, each having dense local in-
terconnections. Experimental measurements suggest
that the long-range connections make a small contribu-
tion to the cortical column volume (Anderson et al., 1998;
Anderson and Martin, 2002), justifying ignoring them in
the main text. Next, we need to understand how the
total brain volume is partitioned between the gray
(mostly local connections) and the white (mostly long-
range connections) matter.

Although the current work suggests the evolutionary
raison d’etre for axons, dendrites, and spines, it does
not rule out their other uses such as nonlinear operations
in dendrites (Hausser and Mel, 2003; Koch et al., 1982;
Mel, 1993; Polsky et al., 2004), delay lines in axons (Carr
and Konishi, 1988), and signal filtering in spines (Koch
and Zador, 1993; Rose and Call, 1992; Svoboda et al.,
1996; Yuste et al., 2000). These functional requirements
are not needed to explain the existence and the total
lengths of the processes in cortical pyramidal neurons.
In other parts of the brain, these or some other functional
constraints may be important. For example, as discussed
above, myelinated axons cannot make en passant syn-
apses, thus becoming point-to-point axons (design I).
Also, making synaptic connections between distant
neurons requires active signal propagation and, hence,
the use of axons rather than dendrites (design Il). De-
tecting mismatches between the wiring optimization
predictions and anatomical data will help discover other
functional and structural constraints on brain design.

Appendix

Here the volume of long-range interconnections (white
matter) in the global cortical network is estimated. For
this purpose, each cortical column (rather than each
neuron)is treated as a network node. How many neurons
are there in one column? Assuming that the density of
neurons among mammalian species scales with the
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brain volume as p, ~ V% (Prothero and Sundsten, 1984;
Tower, 1954), the number of neurons in a column scales
as N ~ V'?, according to Equation 16. How many col-
umns are there? According to Equation 9, the volume
of the column, R® ~ N2 ~ V23 meaning that the total
number of columns scales as V'2. Then the number of
columns in the brain scales the same way as the number
of neurons in a column. This argument rationalizes “the
square root compartments” model for the global cortical
network (Braitenberg and Schiiz, 1998). In this model,
the cortex is divided into N cortical columns, each con-
taining N neurons (Braitenberg and Schiiz, 1998). Each
neuron gives off an axon, which passes through the
white matter and makes synapses with neurons in a
target column. If every axon from a given column targets
a different column, the resulting network of N columns
has all-to-all connectivity (Braitenberg and Schiiz, 1998)
and small network diameter (Changizi, 2001; Karbowski,
2003). Because most axons originate from different neu-
rons and are mostly myelinated, this network must be
wired by using design | (point-to-point axons). For the
human cerebral cortex, a rough estimate of the number
of cortical columns (Braitenberg and Schiiz, 1998) isN =
10°%, axonal diameter is d = 1 um. For these parameters,
Equation 3 yields brain size R = 10 cm, which is not too
far from reality (Blinkov and Glezer, 1968) despite several
simplifying assumptions made.
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