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Abstract

Feature selection, as a dimensionality reduction technique, aims to choosing a small subset of the relevant features from the original

features by removing irrelevant, redundant or noisy features. Feature selection usually can lead to better learning performance, i.e.,

higher learning accuracy, lower computational cost, and better model interpretability. Recently, researchers from computer vision, text

mining and so on have proposed a variety of feature selection algorithms and in terms of theory and experiment, show the effectiveness of

their works. This paper is aimed at reviewing the state of the art on these techniques. Furthermore, a thorough experiment is conducted

to check if the use of feature selection can improve the performance of learning, considering some of the approaches mentioned in the

literature. The experimental results show that unsupervised feature selection algorithms benefits machine learning tasks improving the

performance of clustering.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Recently, available data has increased explosively in both number of samples and dimensionality in many machine

learning applications such as text mining, computer vision and biomedical. In order to knowledge acquisition, it is im-

portant and necessary to study how to utilize these large scale data. Our interest focus mainly on the high dimensionality

of data. The huge number of high dimensional data has imposed significantly big challenge on existing machine leaning

methods. Due to presence of noisy, redundant and irrelevant dimensions, they can not only make learning algorithms very

slow and even degenerate the performance of learning tasks, but also can lead to difficulty on interpretability of model.

Feature selection are capable of choosing a small subset of relevant features from the original ones by removing noisy,

irrelevant and redundant features.

In terms of availability of label information, feature selection technique can be roughly classified into three families:

supervised methods [1, 2, 3, 4], semi-supervised methods [5, 6, 7], and unsupervised methods [8, 9, 10, 11, 12]. The

availability of label information allows supervised feature selection algorithms to effectively select discriminative and

relevant features to distinguish samples from different classes. Some supervised methods have been proposed and studied

[3, 13]. When a small portion of data is labeled, we can utilize semi-supervised feature selection which can take advantage

of both labeled data and unlabeled data. Most of the existing semi-supervised feature selection algorithms [5, 14] rely on

the construction of the similarity matrix and select those features that best fit the similarity matrix. Due to the absence

of labels that are used for guiding the search for discriminative features, unsupervised feature selection is considered as a

much harder problem [9]. In order to attain the goal of feature selection, several criteria have been proposed to evaluate

feature relevance [2, 15].
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Based on the different strategies of searching, feature selection can also be classified into three methods, i.e., filter

methods, wrapper methods and embedded methods. Filter methods select the most discriminative features through the

character of data. Generally, filter methods perform feature selection before classification and clustering tasks and usually

fall into a two-step strategy. First, all features are ranked according to certain criteria. Then, the features with the highest

rankings are selected. Many filter-type methods have been used, including reliefF [16, 17], F-statistic [18], mRMR [19]

and information gain [17]. Wrapper methods use the intended learning algorithm itself to evaluate the features. The

work [20] utilizes Support Vector Machine methods based on Recursive Feature Elimination (RFE) to select the most

relevant gene to cancers. Embedded models perform feature selection in the process of model construction. Figure 1 shows

the classification of feature selection methods.

Feature 
Selection

Label
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Strategy

Supervised
Semi-

supervised
Unsupervised Wrapper Filter Embedded

Fig. 1. Feature selection category

Sparsity regularization recently is very important to make the model learned robust in machine learning and recently

has been applied to feature selection. �1-SVM method [21, 22] based on �1-norm regularization has been proposed to

perform feature selection. The work [23] used logistic regression with �1 norm regularization for feature selection. By

combining �1-norm and �2-norm, Hybrid Huberized SVM (HHSVM), a more structured regularization, has been proposed

in [24]. The authors in [25, 26] developed a model with �2,1-norm regularization to select features shared by multi tasks.

The work [3] employed a joint �2,1-norm minimization on both loss function and regularization.

The rest of paper is organized as follows. Section 2 introduces the related work. The state of the art feature selection

algorithms are introduced in Section 3. In section 4, we conduct extensive experiments and report experimental results.

Finally, we provide the conclusions in section 5.

2. Related work

Supervised feature selection approaches are for those data which are labeled. Traditional supervised methods such

as Fisher Score [27] rank features individually according to the criterion, which can not consider the correlation among

different features. Linear discriminant analysis (LDA for short) [28] was proposed to elevate features by maximizing the

ratio between the class scatter and within class scatter. Unfortunately, LDA suffers from the small sample size problem

because it needs to calculate the inverse matrix of within class scatter, which is singular when the number of training

samples is smaller than the dimensionality of the data [29]. To avoid this problem, maximum margin criterion(MMC for

short) based algorithm is proposed in [30], which uses a linear combination of traces between class scatter and within class

scatter in the objective function and introduces a constraint of orthogonal weight matrix. However, all supervised methods

have the common limitation of the requirement of sufficient labeled data, which is very expensive to obtain in practice. The

performances of such supervised methods, however, usually drop dramatically when the labeled training data are scarce

[31].

Semi-supervised feature selections, by contrast, exploit not only labeled but also unlabeled training data. As a result,

semi-supervised methods are able to select features by utilizing unlabeled data when there is limited number of labeled

data. Among others, graph Laplacian based semi-supervised methods assumes that most data examples lie on a low-

dimensional manifold, such as semi-supervised Discriminant Analysis (SDA) [32]. In graph Laplacian based methods,

graph Laplacian matrix is introduced to harness the unlabeled samples. However, they are usually less efficient on handling

large-scale data because of the time-consuming computation of the graph [33]. Therefore, it is necessary and important to

study unsupervised feature selection.

Due to the absence of label information that is used for guiding the search for discriminative features, unsupervised

feature selection is considered as a much harder problem [9]. Many researchers have proposed some criterions to define

feature relevance. One commonly used criterion is choosing those features that can best preserve the manifold structure

of the original data. Another frequently used method is to seek cluster indicators through clustering algorithms and then
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transform the unsupervised feature selection into a supervised framework. There are two different ways to use this method.

One way is to seek cluster indicators(considered as pseudo labels) and simultaneously perform the supervised feature

selection within one unified framework. The works [10] and [34] integrated nonnegative spectral cluster and structural

learning into a joint framework. Another first seeks cluster indicators, then perform feature selection to remove or select

certain features, and finally to repeat these two steps iteratively until certain criteria is met. The authors in [8] first use

spectral analysis to obtain indicator matrix of data points, then use indicator matrix to perform feature selection like

supervised one.

3. Algorithms

Before going to introduce the state of the art feature selection algorithms, we would like to give some notations to be

used in our paper. We assume that we have n data points X = {xi}ni=1
and each xi has d features { f1, f2, · · · , fd}. And we

use X to denote as data matrix. Given a square matrix A, the trace of A is the sum of the diagonal elements of A. And the

Frobenius norm of A ∈ �m×n is given by

‖A‖F =
√√ m∑

i=1

n∑
j=1

A2
i j

Following the previous work [35], we give �2,1 norm of the matrix A ∈ �m×n

‖A‖2,1 =
m∑

i=1

√√ n∑
j=1

A2
i j =

m∑
i=1

‖ai‖2

where ai is the i-th row of A and ‖ · ‖2 is Euclidean norm. The affinity matrix is defined as follows

S i j =

⎧⎪⎪⎨⎪⎪⎩exp(−‖xi−x j‖2
σ2 ) xi ∈ Nk(x j) or x j ∈ Nk(x)i)

0 otherise

which can be used to exploit the local data structure of data points, where Nk(x j) denotes the set of k nearest neighbors of

xi. Following [36], the normalized Graph Laplacian matrix is defined as L = D−1/2(D − S )D−1/2, where D is a diagonal

matrix, whose the i-th diagonal element is the sum of the i-th column of S , i.e., Dii =
∑

j S i j.

Relief [16] and its multi-class extension ReliefF [37] are supervised feature weighting algorithms of the filter model.

Assuming that p instances are randomly sampled from data, for the case where there are two classes, the evaluation criterion

of Relief is defined as

S C( fi) =
1

2

p∑
t=1

d( ft,i − fNM(xt),i) − d( ft,i − fNH(xt),i) (1)

where ft,i denotes the value of sample xt on feature fi, fNM(xt),i and fNH(xt),i denote the values on the i-th feature of the

nearest points to xt with the same and different class label, respectively. d(·) is a distance measurement. To handle multi-

class problems, the above criterion Eq.(1) can be extended to the following formulation:

S C( fi) =
1

p

p∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝− 1

mxt

∑
x j∈NH(xt)

d( ft,i − f j,i) +
∑
y�yxt

1

mxt ,y

P(y)

1 − P(yxt )

∑
x j∈NM(xt ,y)

d( ft,i − f j,i)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2)

where yxt is the class label of the instance xt and P(y) is the probability of an instance being from the class y. NH(x) and

NM(x, y) denote a set of nearest points to x with the same class of x and a different class (the class y), respectively. mxt and

mxt ;y are the sizes of the sets NH(x) and NM(x, y), respectively. Usually, the size of both NH(x) and NM(x, y), ∀y � yxt , is

set to a prespecified constant k. The evaluation criteria of Relief and ReliefF suggest that the two algorithms select features

contributing to the separation of samples from different classes.

Laplacian Score was proposed in [15] to select features that can retain sample locality specified by an affinity matrix K.

Given K, its corresponding degree matrix D and Laplacian matrix L are obtained. Then the Laplacian Score of a feature f
is calculated in the following way:

LS =
f̂ TL f̂

f̂ D f̂
, where f̂ = f − f TD1

1TD1
(3)

where 1 is a vector of the same size with vector f . Since features are evaluated independently in Laplacian Score, selecting

k features with Laplacian Score can be achieved by greedily picking the top k features which have the minimal LS values.
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Proposed in [2], SPEC is an extension of Laplacian Score. In SPEC, given the affinity matrix K, the degree matrix

D, and the normalized Laplacian matrix L, three evaluation criteria are proposed for weighting feature relevance in the

following ways:

S C1( fi) = f̃ T
i γ(L) f̃i =

n∑
j=1

α2
jγ(λ j) (4a)

S C2( fi) =
f̃ T
i γ(L) f̃i

1 − ( f̃ T
i ξ1)2

=

∑n
j=2 α

2
jγ(λ j)∑n

j=2 α
2
j

(4b)

S C3( fi) =
k∑

j=1

(γ(2) − γ(λ j))α
2
j (4c)

where f̂i = (D
1
2 fi) · ‖D 1

2 fi)‖−1, (λ( j), ξ( j) is the j-th eigenvalue and the eigenvector pair of L. α j = cos θ j, where θ j is the

angle between f̂i and ξ j; and γ(·) is an increasing function which is used to re-scale the eigenvalues of L for denoising. The

top eigenvectors of L are the optimal soft cluster indicators of the data [36]. By comparing with these eigenvectors, SPEC

selects features that assign similar values to instances that are similar according to K. In [2], it is shown that Laplacian

Score is a special case of the second criterion, S C2 defined in SPEC. Note that SPEC also evaluates features independently.

SPFS [38] performs feature selection by preserving sample similarity, which can handle feature redundancy. The

problem can be formulated by:

min
‖W‖2,1≤η

n∑
i, j=1

(xT
i WWTx j − S i j)

2 (5)

Here η > 0 is a hyper-parameter.

MCFS [8] adopt a two-step strategy to select those features such that the multi-cluster structure of data can be best

preserved. To be specific, firstly, cluster indicator can be obtained through spectral clustering(problem (6a)), then use the

indicator matrix to perform feature selection(problem (6b)). Consider the two following optimization problem:

min
FTF=I

Tr(FTLF) (6a)

min
wi
‖ fi − XTwi‖ + β‖wi‖1 (6b)

where ‖wi‖1 is the �1 norm of wi. Since the formulation only involves a sparse eigen-problem and a L1 regularized least

squares problem, problem (6) can be efficiently.

Under the assumption that the class label of input data can be predicted by a linear classifier, UDFS [10] incorporated

discriminative analysis and �2,1-norm minimization into a joint framework for unsupervised feature selection. Feature

selection can be performed by optimizing the following problem

min
WTW=I

Tr(WTXLXTW) + β‖W‖2,1 (7)

where β ≥ 0 is a regularization parameter.

NDFS [39] performs spectral clustering to learn the cluster labels of the input samples, during which the feature

selection is performed simultaneously. The joint learning of the cluster labels and feature selection matrix enables NDFS

to select the most discriminative features. To learn more accurate cluster labels, a nonnegative constraint is explicitly

imposed to the class indicators. Its formulation is presented as follows

min
W,F

Tr(T TLF) + α‖F − XTW‖2F + β‖W‖2,1
s.t. FTF = I, F ≥ 0

(8)

where α ≥ 0 and β ≥ 0 are balance parameters. Due to the presence of orthogonal constraint, optimization of problem (8)

is difficult. NDFS use the idea of penalty function to solve the formulation.

Matrix factorization has been proven to be effective to perform feature selection. EUFS [40] embeds feature selection

into a clustering algorithm via sparse learning without transformation. The problem can be formulated as

min
U,V
‖X − UVT‖2,1 + α‖V‖2,1 + βTr(UTLU)

s.t. UTU = I,U ≥ 0
(9)

where α ≥ 0 and β ≥ 0 are balance parameters. �2,1 norm is applied to cost function to reduce the effect of noise and

outliers. In order to obtain more sparse solution, �2,1 regularization has been used. The authors in [40] has developed a

novel iterative method called Alternating Direction Method of Multiplier (ADMM for short) to optimize problem (9).
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4. Experiments

Due to the space limitation of paper, in this section, we conduct extensive experiments only for unsupervised feature

selection. In our experiments, we used 12 publicly available data sets.

4.1. Datasets

The experiments are conducted on 12 publicly available datasets, including five image datasets (PIX10P, PIE10P,

COIL20, ORL and JAFFE), two handwritten digit datasets (MNISIT and BA), two text datasets (tr11 and oh15), three

microarray datasets (TOX-171, Tumors9 and Leukemia1). Table 1 summarizes the statistics of these data sets.

Table 1. Datasets Description

Domain Dataset # of Features Size # of Classes Domain Dataset # of Features Size # of Classes

Image,Face

PIE10P 2420 210 10

Bio

PIX10P 10000 100 10 Leukemia1 5327 72 3

COIL20 1024 1440 20 Tumors9 5726 60 9

JAFFE 676 213 10 TOX-171 5748 171 4

ORL 1024 400 40

Handwritten,Digits
BA 1404 320 36

Text
tr11 6429 414 9

MNIST 5000 784 10 oh15 3100 913 10

4.2. Compared Algorithms

In our experiment, the state of the art unsupervised feature selection methods mentioned above have been considered.

we list them as follows:

All Features: Using all features perform clustering

MaxVar: Features corresponding to the maximum variance are selected to cluster

Laplacian Score [15]: Features consistent with Gaussian Laplacian matrix are selected to best preserve the local manifold

structure

SPEC [2]: Features are selected using spectral regression

SPFS-SFS [38]: The traditional forward search strategy is utilized for similarity preserving feature selection in the SPFS

framework

MCFS [8]: Features are selected based on spectral analysis and sparse regression problem

UDFS [10]: Features are selected by a joint framework of discriminative analysis and �2,1 norm minimization

NDFS [39]: Discriminative features are selected by a joint framework of nonnegative spectral analysis and linear regres-

sion with �2,1 norm regularization

EUFS [40]: Unsupervised feature selection which embeds feature selection into a clustering algorithm via sparse learning

without transformation.

4.3. Experiment setting

Since most of feature selection algorithms selected in experiment have one or more parameters, we have to set them

before conducting experiments. In order to fairly compare with each other, we choose the best result from several different

parameters setting for each algorithm. In this subsection, we give parameters setting used in these algorithms. Based on

[34], for Laplacian Score, SPEC, SPFS-SFS, MCFS, UDFS, NDFS and EUFS, we would like to fix the neighborhood size

K to be 5 for all data sets. To find the best clustering results for these algorithms, a well-known technique called grid-search

strategy can be used, where the parameters range from {10−8, 10−6, . . . , 106, 108}. In experiments, we also need to specify

the number of selected features. It is not realistic to know the optimal number of features . we empirically choose the

number of selected features from {50, 100, 150, 200, 250, 300}. Based on the selected features, We use K-means algorithm

to cluster the data points into c groups. Because the initial center points have great impact on performance of K-means

algorithm, we conduct K-means algorithm 20 times repeatedly with random initialization. Then, we report the average

results with standard deviation.

4.4. Evaluation Metrics

There are two commonly used metrics which can be used to evaluate performance of clustering. They are clustering

accuracy(ACC for short) and normalized mutual information(NMI for short). Generally speaking, the larger ACC and NMI

are, the better performance of clustering is. We present the concrete mathematical formulations as below.



924   Jianyu Miao and Lingfeng Niu  /  Procedia Computer Science   91  ( 2016 )  919 – 926 

Clustering Accuracy(Acc): Like classification accuracy, we can compare the label obtained from clustering with true

label to get clustering accuracy.

Acc =

n∑
i=1
δ(map(li), yi)

n
where li and yi are the cluster label and true class label of xi, respectively, n is the total number of data points, δ(x, y)

is the delta function that equals 1 if x = y and equals 0 otherwise, and map(li) is the permutation mapping function

that maps each cluster label ri to equivalent label from data set.

Normalized Mutual Information(NMI): NMI can be used to evaluate the quality of clusters. Now given a clustering

result, the NMI can be calculated with the following formulation

NMI =

c∑
i=1

c∑
j=1

ni j log
ni j

nin̂ j√
(

c∑
i=1

ni log ni
n )(

c∑
j=1

n̂ j log
n̂ j

n )

where ni and n̂ j denote the number of contained in the cluster Ci and class Lj for i = 1, 2 . . . , c, j = 1, 2 . . . , c,

respectively, and ni j is the number of data that are in the intersection between cluster Ci and class Lj.

4.5. Experiment Results

We give the clustering results of different methods on the 12 real life datasets in Table 2(ACC) and Table 3(NMI).

The results include the average and the standard deviation of clustering accuracy and normalized mutual information,

respectively. From the two tables, we can make the following several observations. First, feature selection is necessary and

effective. It can not only significantly reduce the numbers of feature and make machine learning algorithms more efficient,

but also can improve the performance. Secondly, in general, almost no one feature selection method can obtain the best

result on all data sets.

Table 2. Clustering results of different methods on 12 data sets. The best result for each data set is highlighted in bold face.

Dataset
ACC ± std(%)

All Features MaxVar Laplacian Score SPFS-SFS SPEC MCFS UDFS NDFS EUFS

PIE10P 26.7 ± 1.5 27.1 ±1.1 30.1 ± 0.4 28.9 ± 2.1 27.5 ± 0.8 29.3 ± 2.1 29.5 ± 3.3 29.4 ± 1.6 47.5 ± 2.3
PIX10P 85.2 ± 3.3 82.9 ± 3.6 86.9 ± 4.7 86.2 ± 3.2 86.1 ± 5.2 88.1 ± 6.7 83.6 ± 2.9 83.3 ± 7.5 86.5 ± 4.0

COIL20 62.7 ± 3.1 61.4 ± 1.6 62.2 ± 1.9 64.3 ± 2.1 65.5 ± 3.8 65.9 ± 2.2 65.5 ± 2.9 63.9 ± 2.4 66.2 ± 2.7
ORL 49.7 ± 3.2 50.8 ± 1.4 49.9 ± 2.4 50.4 ± 1.2 51.4 ± 2.2 57.0 ± 3.2 53.8± 3.0 57.6 ± 1.7 50.2 ± 2.3

JAFFE 85.3 ± 6.1 85.5 ± 4.2 86.2 ± 3.7 87.1 ± 3.3 85.9 ± 5.1 90.7 ± 6.1 90.5 ± 1.4 91.0 ± 3.4 80.1 ± 6.2

MNIST 51.8 ± 2.0 52.0 ± 1.7 52.6 ± 1.8 54.1 ± 1.1 52.4 ± 0.5 52.2 ± 0.3 57.1 ± 1.2 49.6 ± 1.1 53.2 ± 2.1

BA 40.9 ± 1.6 41.7 ± 1.3 43.3 ± 1.9 43.9 ± 1.4 42.7 ± 1.1 42.9 ± 1.8 43.8 ± 1.6 42.9 ± 1.8 45.6 ± 1.4
tr11 31.8 ± 2.2 31.4 ± 2.4 39.5 ± 3.2 37.6 ± 1.2 38.0 ± 3.1 32.1 ± 1.8 35.5 ± 2.1 34.6 ± 1.4 35.5 ± 1.9

oh15 31.6 ± 2.7 32.2 ± 2.1 34.7 ± 2.4 35.2 ± 1.9 34.2 ± 2.0 32.5 ± 1.3 32.6 ± 2.4 34.5 ± 1.7 34.2 ± 1.9

TOX-171 42.8 ± 2.1 42.9 ± 1.6 43.1 ± 1.4 44.5 ± 0.3 40.4 ± 0.0 42.9 ± 1.6 45.6 ± 1.2 46.9 ± 1.5 42.0 ± 1.8

Tumors9 40.8 ± 3.7 41.2 ± 2.6 42.3 ± 2.6 42.9 ± 2.7 35.8 ± 2.4 42.4 ± 3.6 43.3 ± 3.5 45.6 ± 4.6 42.2 ± 3.9

Leukemia1 61.0 ± 5.9 61.3 ± 4.2 62.5 ± 0.0 79.2 ± 2.1 81.6 ± 1.6 69.7 ± 3.2 81.0 ± 3.8 90.5 ± 2.5 72.5 ± 4.2

Table 3. Clustering results of different methods on 12 data sets. The best result for each data set is highlighted in bold face.

Dataset
NMI ± std(%)

All Features MaxVar Laplacian Score SPFS-SFS SPEC MCFS UDFS NDFS EUFS

PIE10P 25.5 ± 3.4 28.6 ± 2.7 30.5 ± 2.5 30.8 ± 0.5 25.3 ± 1.5 31.9 ± 3.1 49.9 ± 2.7 30.1 ± 3.1 49.3 ± 1.8

PIX10P 88.0 ± 2.1 89.1 ± 1.6 89.8 ± 0.7 90.0 ± 3.2 91.0 ± 1.9 91.7 ± 3.1 85.6 ± 1.9 86.8 ± 4.5 91.5 ± 1.3

COIL20 77.1 ± 1.3 71.9 ± 0.7 72.5 ± 1.1 73.7 ± 0.5 75.3 ± 1.6 74.5 ± 1.2 76.0 ± 1.3 74.3 ± 1.8 76.6 ± 1.7
ORL 70.0 ± 1.7 70.7 ± 2.1 71.1 ± 1.3 70.9 ± 1.2 71.4 ± 1.3 75.2 ± 1.7 73.4±1.5 75.6 ± 1.6 70.5 ± 1.3

JAFFE 87.5 ± 3.8 83.1 ± 3.4 87.2 ± 2.4 90.8 ± 3.7 87.4 ± 2.2 91.4 ± 3.8 90.3 ± 5.2 89.4 ± 2.1 82.3 ± 3.4

MNIST 48.9 ± 1.0 47.6 ± 0.4 48.1 ± 1.0 48.9 ± 0.4 48.3 ± 0.4 52.0 ± 0.2 50.0 ± 0.9 44.8 ± 0.5 47.5 ± 0.7

BA 57.2 ± 1.1 57.7 ± 0.9 58.7 ± 0.7 58.9 ± 1.2 58.3 ± 0.8 58.6 ± 0.8 59.1 ± 0.9 58.1 ± 0.9 58.4 ± 0.9

tr11 5.7 ± 1.6 8.9 ± 2.2 15.2 ± 3.5 15.3 ± 3.4 14.5 ± 3.0 7.1 ± 1.7 11.1 ± 1.6 9.9 ± 3.5 12.7 ± 3.9

oh15 20.5 ± 2.1 23.2 ± 1.6 25.7 ± 1.9 26.2 ± 1.3 24.9 ± 1.6 23.4 ± 1.1 23.2 ± 2.1 22.3 ± 1.8 24.5 ± 2.7

TOX-171 13.6 ± 2.3 11.4 ± 3.2 12.5 ± 1.7 20.2 ± 3.2 9.7 ± 0.0 12.7 ± 0.4 16.7 ± 4.8 22.3 ± 1.8 13.0 ± 1.7

Tumors9 39.5 ± 3.1 40.2 ± 2.5 41.0 ± 2.3 41.3 ± 2.1 34.5 ± 2.4 41.1 ± 2.7 41.5 ± 3.5 44.1 ± 3.4 41.1 ± 3.2

Leukemia1 37.6 ± 10.7 36.1 ± 5.5 36.7 ± 0.0 49.3 ± 2.6 58.5 ± 1.7 53.5 ± 1.3 59.6 ± 4.5 66.2 ± 7.4 61.8 ± 0.9
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5. Conclusions

This paper gives a survey on feature selection methods proposed in literature. Several state of the art feature selection

methods are introduced. As we can see in our experiments, there are one or more parameters to be set. However, in

practice, we do not and can not know the best parameters corresponding to the given data set. So How to select the

adaptive hyper-parameters and the number of selected features are open problems and also are our future work.

Acknowledgements

The authors would like to express their sincere thanks to the associate editor and the reviewers who made great con-

tributions to the improvement of this paper. This work was partially supported by National Science Foundation of Chi-

na(No.71110107026, No.91546201 and No.71331005).

References

[1] L. Wolf, A. Shashua, Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach, The

Journal of Machine Learning Research 6 (2005) 1855–1887.

[2] Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th international conference on

Machine learning, ACM, 2007, pp. 1151–1157.

[3] F. Nie, H. Huang, X. Cai, C. H. Ding, Efficient and robust feature selection via joint ?2, 1-norms minimization, in: Advances in neural information

processing systems, 2010, pp. 1813–1821.

[4] J. Li, Z. Chen, L. Wei, W. Xu, G. Kou, Feature selection via least squares support feature machine, International Journal of Information Technology

& Decision Making 6 (04) (2007) 671–686.

[5] Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis., in: SDM, SIAM, 2007, pp. 641–646.

[6] Z. Xu, I. King, M. R.-T. Lyu, R. Jin, Discriminative semi-supervised feature selection via manifold regularization, Neural Networks, IEEE Trans-

actions on 21 (7) (2010) 1033–1047.

[7] P. Wang, Y. Li, B. Chen, X. Hu, J. Yan, Y. Xia, J. Yang, Proportional hybrid mechanism for population based feature selection algorithm, Interna-

tional Journal of Information Technology & Decision Making (2013) 1–30.

[8] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD international conference

on Knowledge discovery and data mining, ACM, 2010, pp. 333–342.

[9] J. G. Dy, C. E. Brodley, Feature selection for unsupervised learning, The Journal of Machine Learning Research 5 (2004) 845–889.

[10] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, X. Zhou, l2, 1-norm regularized discriminative feature selection for unsupervised learning, in: IJCAI

Proceedings-International Joint Conference on Artificial Intelligence, Vol. 22, Citeseer, 2011, p. 1589.

[11] E. R. Hruschka, E. R. Hruschka Jr, T. F. Covões, N. F. Ebecken, Bayesian feature selection for clustering problems, Journal of Information &

Knowledge Management 5 (04) (2006) 315–327.

[12] R. Liu, R. Rallo, Y. Cohen, Unsupervised feature selection using incremental least squares, International Journal of Information Technology &

Decision Making 10 (06) (2011) 967–987.

[13] B. Krishnapuram, A. Harternink, L. Carin, M. A. Figueiredo, A bayesian approach to joint feature selection and classifier design, Pattern Analysis

and Machine Intelligence, IEEE Transactions on 26 (9) (2004) 1105–1111.

[14] Q. Cheng, H. Zhou, J. Cheng, The fisher-markov selector: fast selecting maximally separable feature subset for multiclass classification with

applications to high-dimensional data, Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (6) (2011) 1217–1233.

[15] X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: Advances in neural information processing systems, 2005, pp. 507–514.

[16] K. Kira, L. A. Rendell, A practical approach to feature selection, in: Proceedings of the ninth international workshop on Machine learning, 1992,

pp. 249–256.

[17] L. E. Raileanu, K. Stoffel, Theoretical comparison between the gini index and information gain criteria, Annals of Mathematics and Artificial

Intelligence 41 (1) (2004) 77–93.

[18] C. Ding, H. Peng, Minimum redundancy feature selection from microarray gene expression data, Journal of bioinformatics and computational

biology 3 (02) (2005) 185–205.

[19] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, Pattern

Analysis and Machine Intelligence, IEEE Transactions on 27 (8) (2005) 1226–1238.

[20] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines, Machine learning 46 (1-3)

(2002) 389–422.

[21] P. S. Bradley, O. L. Mangasarian, Feature selection via concave minimization and support vector machines., in: ICML, Vol. 98, 1998, pp. 82–90.

[22] G. Fung, O. L. Mangasarian, Data selection for support vector machine classifiers, in: Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining, ACM, 2000, pp. 64–70.

[23] A. Y. Ng, Feature selection, l 1 vs. l 2 regularization, and rotational invariance, in: Proceedings of the twenty-first international conference on

Machine learning, ACM, 2004, p. 78.

[24] L. Wang, J. Zhu, H. Zou, Hybrid huberized support vector machines for microarray classification, in: Proceedings of the 24th international confer-

ence on Machine learning, ACM, 2007, pp. 983–990.

[25] G. Obozinski, B. Taskar, M. Jordan, Multi-task feature selection, Statistics Department, UC Berkeley, Tech. Rep.

[26] A. Evgeniou, M. Pontil, Multi-task feature learning, Advances in neural information processing systems 19 (2007) 41.

[27] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification, John Wiley & Sons, 2012.

[28] R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of eugenics 7 (2) (1936) 179–188.

[29] K. Fukunaga, Introduction to statistical pattern recognition, Academic press, 2013.

[30] H. Li, T. Jiang, K. Zhang, Efficient and robust feature extraction by maximum margin criterion, Neural Networks, IEEE Transactions on 17 (1)

(2006) 157–165.

[31] Y. Luo, D. Tao, C. Xu, D. Li, Vector-valued multi-view semi-supervised learning for multi-label image classification, in: Proceedings of the 27th

AAAI Conference on Artificial Intelligence, AAAI 2013, 2013.



926   Jianyu Miao and Lingfeng Niu  /  Procedia Computer Science   91  ( 2016 )  919 – 926 

[32] D. Cai, X. He, J. Han, Semi-supervised discriminant analysis, in: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on,

IEEE, 2007, pp. 1–7.

[33] X. Chang, F. Nie, Y. Yang, H. Huang, A convex formulation for semi-supervised multi-label feature selection., in: AAAI, 2014, pp. 1171–1177.

[34] Z. Li, J. Liu, Y. Yang, X. Zhou, H. Lu, Clustering-guided sparse structural learning for unsupervised feature selection, Knowledge and Data

Engineering, IEEE Transactions on 26 (9) (2014) 2138–2150.

[35] C. Ding, D. Zhou, X. He, H. Zha, R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization, in:

Proceedings of the 23rd international conference on Machine learning, ACM, 2006, pp. 281–288.

[36] U. Von Luxburg, A tutorial on spectral clustering, Statistics and computing 17 (4) (2007) 395–416.

[37] I. Kononenko, Estimating attributes: analysis and extensions of relief, in: Machine Learning: ECML-94, Springer, 1994, pp. 171–182.

[38] Z. Zhao, L. Wang, H. Liu, J. Ye, On similarity preserving feature selection, Knowledge and Data Engineering, IEEE Transactions on 25 (3) (2013)

619–632.

[39] Z. Li, Y. Yang, J. Liu, X. Zhou, H. Lu, Unsupervised feature selection using nonnegative spectral analysis., in: AAAI, 2012.

[40] S. Wang, J. Tang, H. Liu, Embedded unsupervised feature selection, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.


