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A b s t r a c t - - T h i s  work is devoted to revealing the essence of near-critical phenomena in nonlinear 
problems with nonparallel effects. As a generalization of the well-known concept of linear stability in 
Fourier space for a parallel basic state, we introduce a new concept valid for nonparallel flows as well. 
The new picture allows one to demonstrate the possible singular limit to the parallel case. Also, on its 
basis we derive a weakly nonlinear model valid near criticality. The damped Kuramoto-Sivashinsky 
equation with variable coefficients is used to illustrate the application of the theory. (~) 2003 Elsevier 
Science Ltd. All rights reserved. 

K e y w o r d s - - L i n e a r  stability, Nonparallel flows, Spatially developing flows, Critical phenomena, 
Global modes. 

Linear  s t ab i l i ty  of  sys tems  wi th  nonpara l le l ,  or  spa t ia l ly  developing,  basic s t a tes  has been t i le 

sub jec t  of  m a n y  studies.  Most  works are  based on regular  p e r t u r b a t i o n  procedures :  this con- 

s t i tu t e s  t he  essence of  a local approach;  refer to  [1] for a temporal formula t ion ,  and to 12] for a 

spatial one. Because  of  insufficient a g r e e m e n t  be tween  these  theor ies  and expe r imen t s ,  a global 
approach  [3] has  been  pursued.  At  present ,  a m a t h e m a t i c a l l y  r igorous connec t ion  be tween  these  

two app roaches  has  no t  been es tabl ished.  Weak ly  nonl inear  s tudies  range  f rom near  cr i t ical  

mode l  p rob lems ,  lacking r igorous  m a t h e m a t i c a l  re la t ion to  physical ly  s ignif icant  fo rmula t ions  i4], 

to those  far f rom cr i t ical  reg ime [5]. 

Let  us cons ider  a genera l  sys tem of evo lu t ion  type,  defined on (x, y )  E ()- = ~ 1 x ~t2 C R'~ ~ × I~ .... 

and  d e c o m p o s e d  into a s t a t i o n a r y  spa t ia l ly  i nhomogeneous  basic s t a t e  U ( x ,  y;  C ) ,  whose  s tabi l i ty  

we inves t iga te ,  and d i s t u rbance  u( t ,  x ,  y;  a) .  T h e  p a r a m e t e r  e* C IR + measures  the  degree of 

nonpara l l e l i sm of t he  basic s ta te ,  whi le  a E Z C_ R n is a mu l t i d imens iona l  real b i furca t ion  

pa ramete r .  T h e  form of the  sys tem in w a v e n u m b e r  space,  af ter  Four ier  t r a n s f o r m a t i o n  in the  
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extended dimensions x E R m' is 

0 
M r i  = £ri  + Af (ri), in ~ x (0, +oo),  

Bri = 0, on 0f t2  x ~ x [0, +oo),  (1) 

fi = ri0(Y; k), on f~ x {t = 0}, 

where k E R ml , and the linear operator is given by E = / : 1  + £:2® with the following definition 
for convolution (suppressing other arguments) resulting from the spatial inhomogeneity: 

E2 ® fi = (27re*) m' oo E2 , k '  ri (k ')  dk' .  (2) 

Operators ]~4, E, B, and iV" are assumed not to contain time derivatives or time explicitly. The 
nonlinear terms have the form 

(ri) = (p, + ') (ri) ® (ri) +. . . ,  
i 

where p~k)(u), etc., are linear operators. 
The global modes approach applied to analyze the linear stability of (1) entails nothing more 

than the implementation of the usual spectral analysis of the associated eigenvalue problem in 
which all spatial directions are considered as eigendirections. As a result, the critical value of the 
bifurcation parameter  ac is determined when the most unstable eigenvalue crosses the imaginary 
axis from left to right. However, global analysis does not reveal the intrinsic wavenumber structure 
of the solution in the unstable region as a local approach would. This information is essential in 
the rigorous investigation of the weakly nonlinear regime. 

In the case e* = 0, the local approach results in the classical picture, where for a > ac the 
solution grows for ranges of wavenumbers forming the instability regions in the space (a, k) with 
envelope(s), referred to as marginal stability curve(s) tha t  correspond to the set of wavenumbers 
that  neither grow nor decay. Thus, we have the following. 

DEFINITION 1. The marginal stability curve &(k) consists of the set of points in the space (a, k), 
such that the norm of the solution []ri[l(t; 5) for the linear part of (1) neither grows nor decays 
with time (i.e., it is either constant or oscillatory), and is defined from the linear part of (1) 
with fi0 = 6(k - 5 -1 (k ) )  and £2{~-=0. 

The solution, in view of the fact tha t  the system is local in k, has a point support  in wavenumber 
space (Dirac delta-function) which corresponds to a harmonic function in physical space, thus, 
justifying normal mode analysis. 

As soon as e* fi 0, Definition 1 no longer applies since one cannot expect, in general, a solution 
with point support  in wavenumber space, or, more transparently, a solution of harmonic form 
in physical space, in view of the lack of translational invariance in x. On the contrary, the 
assumption of existence of a solution with point support  for the linearization of (1) immediately 
leads to a contradiction since the convolution integral (2) results in a continuous function of k, 
while the other terms give rise to delta-functions. Subsequently, this necessitates a new definition 
of marginal stability which includes the case e* = 0 as a limit. 

Before elaborating on this, let us consider a simple example demonstrat ing all necessary im- 
portant  features: 

Ou 02u 
+ a ~xx + ae2"~:u + N(u),  (3) 

where x E R, t E R +, a E C, [u[ < oo. For convenience let us assume tha t  i f a  is real then 
sign a = sign x. The linear s tat ionary neutral solution is written as 

UO = Cle-aXe i (a'/2/a) [e°'-l]  + C2e -axe- i  (a'/ala) [e°~ -11 (4) 
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( i )  I f  a - 0, then the neutral solution in physical space has the well-known form 

C e -ial/2z uo(z) = Cle ~ / ~  + 2 , (5) 

and, correspondingly, in Fourier space it has a singular character (Dirac delta-functions). 
Subsequently, the neutral curve is of the shape a = k 2, where k is wavenumber  

(ii) If a -= ie ' ,  then it is easy to observe that  the solution (4) tends to (5) nonuniformly in x 
as C ~ +0. The last fact may have an effect in wavenumber space, since the Fourier 
transformation is nonlocal. If a 1/2 ~,~ e*, expression (4), in view of its periodicity with 
period T = 2u/e* and slow divergence of nonparallel effects, has the asymptotic form 
for e* << 1 

~ ~ V  -i7~ . ' ~  ~------ ~-(¢~-k~)/~"~'~ - - + C 2 _ _ ~ e  -(~+~)~/~''~" uo(k; G) 

which corresponds to a delta-sequence according to Sobolev's sequential approach [6) The 
result is shown in Figure 1. 

F i g u r e  1. N e u t r a l  s o l u t i o n  (4) for  a = i C ,  e ° << 1. 

(iii) If I m a  = ~* -- 0 in (3), solution (4) is absolutely integrable for a ~ 0, but due to the 
exponentially divergent properties of nonparallel effects, the limit ~* ~ 0 does not produce 
a Dirac delta-function sequence 

uo(k; ~) ~ c T~/2 ~ e,{( . /4)+(k_~, , ,_~n(k/~.2)) /  .} + 0 (~*) 

The fast divergence properties are reflected in the presence of the O(e*- 1) region in which 
the difference in phase with the harmonic function e (V-~z is significant and leads to the 
above asymptot ic  behavior. 

From the example, we conclude that  it is possible to have singular behaviors: one solution 
corresponds to tha t  of the originally parallel solution obtained by setting e* = 0, and the other 
is obtained by taking the limit e* ~ +0. 

Historically, it is accepted that  in the case e* ~ 0 there exists a marginal stability curve ~(k) 
in the space (k, a),  on which disturbances neither grow nor decay. In the parallel case (e* - 0) 
the situation is very simple since disturbances of different wavenumbers are decoupled, thus, 
corresponding to the local case. In our case, the disturbance of a particular wavenumber is 
coupled nonlocaUy to all wavenumbers as indicated by (2). As one may conclude from the above 
example, the case e* ¢ 0 does not conform to the standard concept of a marginal stability curve: 
the support  of the neutral solution u0(k ,a )  (more precisely, the support  contributing to the 
norm) is a region, as shown in Figure 1, which we call the marginal stability region. 
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DEFINITION 2. Assume that there exists an initial condition ri0(Y; k) such that the linearized 
problem (1) has a nontrivial solution fi(t, y; k, 0), the norm of which Ilfill(t; o) neither grows 
nor decays with time. Then the marginal stability region TCc defined with accuracy e consists 
o[ a set o[ points in the space (0, k) formed by the sequence of filter functions ~c with finite 
support T¢~ -- Supp (I), C_ (0, k), such that l im, -0  [lfi - ~),fi[[ = 0. 

Obviously, this definition, as illustrated in Figure 2, includes as a subset Definition 1 of the 
marginal stability curve. 
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F i g u r e  2. T o p o l o g y  of nea r - c r i t i ca l  behav ior .  

The weakly nonlinear behavior of the solution is governed by the order parameter equation 

dA 
d--t- = / : A  + ]V'(A), (6) 

where / :  = a~ + a®, a = a(k,  (k - k')/¢*, k', o), and the nonlinear term JV'(A) is nonlocal. This 
equation corresponds to a truncation of a general pseudodifferential equation which is rigorously 
derived in [7] through reduction of the phase-space domain of (1) using attracting manifold theory. 

The solution of the linear part  of (6) in general either decays, grows, or remains neutral. In 
this work, we investigate the structure of the solution only for the systems (6) having critical 
phenomena, and furthermore, we restrict ourselves to weakly nonparallel flows with ~* << 1. 
Obviously, all real flows which are considered for simplicity as parallel are in reality almost 
parallel. This means that  a proper mathematical formulation should provide a smooth transition 
of the neutral solution to the parallel case under the limit ¢* --, 0 if the stability analysis in 
the parallel approximation agrees well with a practically-parallel flow experiment. As a result, 
one can expect for ~* << 1 the analogous mode-clustered form of the solution as in the parallel 
case [8]. The existence of a critical point entails the following consequences for weakly nonlinear 
analysis: 

• the support of A(t; k, o) is narrow, of the order of e, around kc (wavepacket), 
• the amplitude A(t; k, 0) is small in physical space, 
• the evolution of A(t; k, e) results from a balance of both linear and nonlinear effects. 

In the parallel case, for a nonzero critical wavenumber there exists a mode-clustered form of 
the solution whose leading amplitudes enable rigorous coarsening, i.e., construction of a simpli- 
fied model with the same dynamics as one of the original evolution system. In the nonparallel 
case, in view of the nonlocal linear part  in Fourier space, the exchange of information among 
different wavenumbers occurs not only due to nonlinearity, but also owing to the convolving 
linear part. One may conclude from Figure 2 that  the most interesting situation corresponds 
to ~*/e -,~ 1, since e*/e << 1 is akin to the usual parallel case. If A(t; k ,a)  = O(1), then it follows 
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tha t  £(k ,  cr)A(t; k, a)  = O(e2). Here we consider only the case of a s ta t ionary  neutral  solution 
which is defined in Fourier space by £A0(t;  k , a )  = 0. Clearly, assuming existence of a critical 
point (k~., ac) with distinct kc: A0(t; k, ac) "~ 5(k - kc), we obtain the following relations: 

1 f _ + ~  ( " )e'*'d~ O, ~o(k~.,a~.) + 2-~e * a g + k,,-~7,k,,a~. . = 
O 0  

&o (k~, a~) + = 
O~ ~ o¢ Ok'  ~ + k~'-[:'k~'a~ . 

where 5 v = -6af- , ,  (Ao/Ao()  + (1/2)/ :kk (~toff/Aof),  with definitions 

1 / + ° ¢  0 a  ( ~ ) e ~ X  0a~ (kc, cry) + d~. 

£aa = - ~ ( k c ,  a c ) + ~  oo Ok'2 ~ + k ' ' ~ : ' k ' ' a ~  dg. 

.40 denotes the inverse Fourier t ransform of Ao, which along with its derivatives, is evaluated 
at a = a~. + e 2 6a. Note tha t  the impor tant  difference between parallel and nonparallel conditions 
on neutral i ty consists in the independence of wavenumber k and bifurcation parameter  a in the 
lat ter  case versus the functional dependence 5(k),  which defines the marginal  stabili ty curve, m 
the first instance. Therefore,  the usual relations at the critical point in the parallel case may be 
recovered from the above two relations at the critical point only by simultaneously taking the 
limits e ° --* 0 and a -~ 5(k).  

Further analysis is in the spirit of [9], where the  fact tha t  the solution near criticality is of 
mode-clustered form has been used. In the case of quadratic nonlinearity, A~ =- flA ® A, from (6) 
one obtains a system for the mode clusters analogous to tha t  givcn in [9], which after applying 
the inverse Fourier transform, takes the form of an envelope equation for ampli tude A(t ,  x. ~, a I: 

Off[ 0.A. ~)2A 
0---7 + ao(x, ~)A + ial (z, ~, .do) - ~  + a2(x , ( )  - ~  = "~(z, ~)A]Ai '2, (7) 

where ~ = ex, T = e2t, (fa = (a - ~ ) /~2  and the coefficients are defined by a0 = - d a t : o ,  al = .T. 
a2 = (1/2) L:kk, 

~ = 3(kc, O, kc) 3(0, -kc, k~) 
,~(0, a~) + (1/2he*) f + c ~ a ( a , ~ / e * . O , a ~ ) e " * d g  

a - o o  

f~(k~, 2kc, -k~)fl(2kc, k~, kc) 

w(2kc, ac) + (1/27r¢*) f ~ W  a(~ + 2kc, g /e ' ,  2kc, ac)e ' ' z  d~'  

with fl( k, k -  k', k') = fl( k, k -  k', k') +13( k, k', k -  k'). The Landau constant  -~ is wri t ten in an adia- 
batic (or quasisteady) approximat ion analogous to Haken's  definition [10 i. The  notable features of 
the above coarse model, which differentiates it from the conventional complex Ginzburg-Landau 
equation (GLE),  consist in the spatial  inhomogeneity with fast and slow scales and coupling to 
the neutral  solution for the same value of the bifurcation parameter .  Hereafter,  we will call (7) 
simply as the variable-coejficient complex Ginzburg-Landau equation (VCGLE).  The  advantage of 
the VCGLE is its universality regardless of the complexity of the original evolution system. The 
situation resembles the case of the constant  coefficient GLE, but the dynamics of the VCGLE 
is much richer. In general, A(t; k ,a )  may not have narrow support  and /or  a ( ~  4 k, ~/e*, k, a) 
may be nonexpandable  in the vicinity of the critical wavenmnber ko thus, leading to a nonlocal 
"low-dimensional" model even if one starts  from the commonly accepted principle of locahty in 
the original variables. 
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To illustrate the basic idea of the derivation of the ampli tude equation in the case where 
effects of nonparallelism and nonlinearity are of equal order, i.e., e* = e, we use the damped  
Kuramoto-Sivashinsky equation with variable coefficients in analogy with the derivation of the 
Ginzburg-Landau equation in the constant  coefficient case [11]. The  problem can be cast in the 
form 

u, O~u ----, O, as  Izl , oo, (8) 

~ ( 0 , ~ )  = ~0(~) ,  

where a is the bifurcation pa ramete r  related to a driving force. In the  parallel limit e --* 0, 
bifurcation occurs at  ac = 0, and the most unstable wavenumbers are kc = :t=l. 

Application of our theory s tar ts  with the reformulation of (8) in Fourier space (the case v ( e x )  = 

e -~2=2 is considered) to obta in  (6) with 

•(k,  a )  = a, 
k -  k' ) , k' = - ~  (k '~ - 1) 2 e - ( k - ~ ' )  ' / ' ' '  

Subsequently, one immediately  obtains the VCGLE (7) with the following coefficients: 

2 1 
A 0  "Z~°~ a2 = 4e -e  , "Y = - ~ e e~ • a 0 = - - 6 a ,  a l  = ~ a ~ + 4 e  -~2 A0~ '  

For intermediate  times, 0 << t << e -2,  (7) simplifies to 

a'A 8 a A + 2 i  [ ( ~ )  ] Or ~ 6 a + 2  - 1  e -~2 O A  0 2 A  1 _ _  _ - ~  - 4 e - ¢  ~ O~ 2 -= - - ~  e~2 A [A] 2 , 

A(0, ~) = Ao(~) and A ~ 0, as I~[ ~ 0o. 
(9) 
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Figure 3. Compar ison of the  solution of (8) with the  w&vepacket envelope solution 
of (9). 
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The relation between solutions of (8) and (7) is established by u(t,x) = 2e[An(r , ( )cosx  - 
A I ( r , ( )  sinx]. To demonstrate the accuracy of the derived model, (8) and (9) have been solved 
numerically with identical initial conditions and compared at different times in Figure 3. Nu- 
merical simulations demonstrate that  the relative error between them decreases monotonically 
after t ~- 10, confirming that  (7) corresponds to the global attractor that  captures the long-time 
behavior of (8). 

Several comments need to be made on the stability of nonparallel flows. As follows from 
linear analysis, if initial conditions lie on the marginal solution f i0(y;k ,a) ,  then the resulting 
solution again neither grows nor decays with time globally. As opposed to the parallel case, here 
the amplitude distribution of initial conditions plays a crucial role. Furthermore, an arbitrary 
small change in the form of the initial conditions, even having support within the marginal 
stability region, will lead to linear (in)stability--this property can be interpreted as the lack of 
attractiveness in the linear formulation. But, for the case e" << 1 considered here, one should note 
the unimportance (in an asymptotic sense) of the neutral wavepacket form and the fact that the 
complete nonlinear problem possesses the property of attractiveness, in particular allowing for 
the existence of modulation equations near criticality and usually resulting in loss of memory of 
the details of initial conditions [12]. Thus, one may conclude that initial conditions of arbitrary 
form with support in the marginal stability region lead to neutral solutions separating stable and 
unstable regions in wavenumber space. As a result, the stability of weakly nonparallel flows can 
be understood only in conjunction with nonlinear effects, which attract  all solutions with initial 
conditions having support in the marginal stability region. 
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