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Abstract

This study examined the impact of aging and age-related maculopathy (ARM) on the inactivation of phototransduction in rod pho-
toreceptors by measuring the recovery of the a-wave using a paired flash electroretinogram technique. Measurements were made on 32
older adults in normal retinal health, 25 with early ARM, 7 with late ARM, and 20 young adults for comparison purposes. ARM pres-
ence and severity were defined by the Wisconsin Age-Related Maculopathy Grading System based on grading of fundus photographs.
The inactivation of rod phototransduction exhibited an aging-related slowing. Those with early ARM did not exhibit inactivation slow-
ing over and above what would be expected based on normal retinal aging. Persons in the late stages of ARM exhibited dramatic slowing
in inactivation kinetics.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Age-related maculopathy (ARM) is the most common
cause of new, irreversible vision impairment in older adults
in many countries including the US (National Advisory
Eye Council, 1999). ARM is a heterogeneous disorder
affecting the retinal pigment epithelium (RPE), Bruch�s
membrane, and choriocapillaris, and secondarily, the pho-
toreceptors (Green & Enger, 1993; Sarks, 1976). Early
ARM can be clinically characterized by large drusen and/
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or pigmentary changes in the macula. Late ARM is charac-
terized by the presence of geographic atrophy and/or cho-
roidal neovascularization (Bressler, Bressler, & Fine, 1988).
Treatment options for ARM are for the most part directed
at the late phases (exudative form) of the disease when
vision loss is already severe (Bressler & Bressler, 2000).
Proven treatments for early disease are limited to antioxi-
dative nutritional supplements that slow progression to
advanced disease for a subset of patients with early disease
of intermediate severity (Age-related Eye Disease Study
Research Group, 2001). The biological mechanisms caus-
ing ARM remain unknown although risk factors have been
suggested by previous research including smoking (Del-
court, Diaz, Ponton-Sanchez, Papoz, & POLA Study
Group, 1998; Eye Disease Case Control Study Group,
1991; Smith et al., 2001) and complement factor H
(Edwards et al., 2005; Haines et al., 2005; Klein et al.,
2005). An improved understanding of ARM pathogenesis
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is clearly needed in order to facilitate the development of
preventative measures and more effective treatments
(Gottlieb, 2002; National Advisory Eye Council, 1999).
One strategy for understanding early ARM pathogenesis
is to focus research on photoreceptor dysfunction because
it provides insight into the pathways and mechanisms
before anatomical changes are visible in the fundus
(Jackson, Curcio, Sloan, & Owsley, 2004; Jackson, Owsley,
& Curcio, 2002).

Histopathologic studies on human donor retinas indi-
cate a predilection for parafoveal loss of rod photorecep-
tors over cones in the early, nonexudative form of ARM
(Curcio, 2001; Curcio, Jackson, & Owsley, 2000; Curcio,
Medeiros, & Millican, 1996). Although both rods and
cones in the parafoveal degenerate in ARM, rod loss pre-
cedes and is more severe than cone loss in most donor ret-
inas evaluated (Medeiros & Curcio, 2001). During the
normal course of retinal aging, rod density declines
whereas cone density remains relatively unchanged
throughout adulthood (Curcio, Millican, Allen, & Kalina,
1993; Gao & Hollyfield, 1992). Given the loss of rods early
in ARM pathogenesis, a test probing rod function may
reveal a functional counterpart to these histopathological
changes, which could have the potential for being an earlier
marker of the disease, or a method for monitoring progres-
sion following interventions. Previously we and others have
shown that rod-mediated dark adaptation, as measured
psychophysically, is dramatically delayed in those with ear-
ly ARM, even for patients with good visual acuity (Owsley,
Jackson, White, Feist, & Edwards, 2001; Steinmetz, Haim-
ovici, Jubb, Fitzke, & Bird, 1993). Interestingly this impair-
ment of dark adaptation was found adjacent to the macula,
suggesting that some dysfunction associated with early
ARMmay extend beyond the macula. Older adults in good
retinal health also exhibit rod-mediated dark adaptation
delays, although not as severe as those with early ARM
(Jackson, Owsley, & McGwin, 1999). This slowing in light
sensitivity recovery appears to be mediated by a slowing in
the rate of rhodopsin regeneration in these persons, as
revealed by their exhibiting abnormal parameters for the
second component of rod-mediated dark adaptation. This
second component is dictated by the rate of rhodopsin
regeneration as indicated by electrophysiologic work on
animal models (Baylor, Matthews, & Yau, 1980; Dowling,
1960; Lamb, 1980, 1981) and retinal densitometry findings
in human (Rushton, Campbell, Hagins, & Brindley, 1955).

In addition to the rate of rhodopsin regeneration being
essential for the recovery of light sensitivity by rods, the
onset time of the inactivation phase of transduction, and
the rate of that inactivation are also critically important
(Birch, Hood, Nusinowitz, & Pepperberg, 1995; Lyubarsky
& Pugh, 1996). After the eye�s exposure to a very intense
light, there is a time delay before the onset of photocurrent
recovery, and then the response recovers at an exponential
rate described by a time constant. This rapid inactivation
phase is the earliest phase of light sensitivity recovery when
the dark current is being re-established, and in the dark
adaptation literature is referred to as the first component
of dark adaptation (Lamb, 1980, 1981; Lamb & Pugh,
2004; Leibrock, Reuter, & Lamb, 1998). Traditional dark
adaptometry techniques cannot be used to examine the first
component of rod-mediated sensitivity recovery because it
is obscured by the cone portion of the dark adaptation
function (i.e., the cones are more sensitive than the rods
and recover faster). In addition, using full-field, single-flash
electroretinogram (ERG) recording techniques, the inacti-
vation phase of the a-wave is typically obscured by the b-
wave and other post-receptoral components. To estimate
the parameters of inactivation of transduction in humans,
Birch and colleagues (Birch et al., 1995) developed the
‘‘double flash’’ technique. Using this method, recovery of
the a-wave response can be inferred by measuring the
recovery of the a-wave to a probe flash presented after
the saturating flash. By varying the interval between the
saturating flash and the probe flash, a recovery function
of the a-wave can be estimated which provides information
for both the time delay for the onset of inactivation and the
time constant of inactivation.

In the study reported here, the double-flash ERG tech-
nique allowed for the examination of whether the delays
in rod-mediated dark-adaptation observed in older adults
and in those with ARM may extend to the first-component
of rod-mediated dark adaptation. That is, is there a deficit
in the inactivation phase of phototransduction in rods rel-
ative to normal young eyes? If inactivation is delayed or the
rate of recovery is slower relative to normal eyes, this
would imply that at least some of the mechanistic basis
of dark adaptation impairment in aging and early ARM
is intrinsic to the rod itself, irrespective of dysfunction in
Bruch�s membrane or the RPE. This is because the first
component of dark adaptation does not depend on the
functioning of Bruch�s membrane/RPE complex (Lamb &
Pugh, 2004).

2. Method

2.1. Subjects

Participants were recruited from the comprehensive
ophthalmology and the retina services of the Department
of Ophthalmology, University of Alabama at Birmingham.
Eligibility criteria for older adults were as follows: (1) at
least 60 years of age; (2) best-corrected, distance visual acu-
ity as listed in the medical record of 20/80 or better in at
least one eye. Since the primary focus of the study was
on the early phases of ARM, an acuity cut-off of 20/80
was used; (3) diagnosis of ARM or normal retinal health
based on grading of stereoscopic color 30� fundus photo-
graphs taken on the day of ERG testing after dilation of
the pupil to at least 6 mm. Photographs were taken with
a FF4 Zeiss fundus camera on the eye selected for ERG
testing, which was the eye with better visual acuity. Photo-
graphs were evaluated using the Wisconsin Age-related
Maculopathy Grading System (WARMGS) (Klein et al.,
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1991) at the University of Wisconsin Reading Center by
graders masked to patient characteristics including previ-
ous diagnoses.

For the purposes of this study, retina were considered to
not have signs of early ARM based on the following
WARMGS grades: (1) maximum drusen type coded 0
(none), 1 (hard indistinct drusen), or 2 (hard distinct dru-
sen); (2) maximum drusen size coded 0 (none), 1 (drusen
indistinct or questionable), or 2 (distinct drusen with a
diameter less than 63 lm); (3) increased retinal pigmenta-
tion coded 0 (none), or 1 (questionable); and (4) decreased
RPE pigmentation coded 0 (none) or 1 (questionable). Ear-
ly ARM was defined as WARMGS grade of: (1) maximum
drusen type coded 3 (soft distinct drusen) or 4 (soft indis-
tinct or reticular drusen); (2) maximum drusen size P3
(drusen diameter greater than 63 lm); (3) increased retinal
pigmentation P2 (presence of increased pigmentation);
and (4) decreased RPE pigmentation P2 (presence of
decreased pigmentation). Late ARM was defined as those
with a grade of 2 on the late ARM variable, indicating
the presence of geographic atrophy and/or choroidal neo-
vascularization. Late ARM eyes could also have some of
the other characteristics of early ARM patients as
described above, but their having a late ARM grade of 2
automatically placed them in the Late ARM category.

Patients whose test eye had a grade of 8 (‘‘cannot
grade’’) on any of the following WARMGS variables were
excluded from the sample: maximum drusen type, maxi-
mum drusen size, decreased pigmentation, increased pig-
mentation, late ARM, geographic atrophy, retinal
detachment, subretinal hemorrhage, subretinal scar, and
ARM treatment. Patients having evidence of diabetic reti-
nopathy and its associated lesions (i.e., any patient with
grades other than 10 (absent), 12 (non-diabetic), or 13
(questionable) on diabetic retinopathy level) were also
excluded.

Young adults were also enrolled in the study to have a
reference group against which older participants without
signs of early ARM could be compared on ERG parame-
ters. They were recruited from the comprehensive ophthal-
mology service as described above. Inclusion criteria were
(1) aged 16–30 years; (2) no ophthalmic conditions or signs
of maculopathy noted in a dilated comprehensive eye exam
performed within the previous six months; (3) best-correct-
ed distance acuity of 20/20 or better in each eye according
to this exam. Fundus photographs were not taken on
young enrollees.

Patients, regardless of age, were excluded if their medi-
cal record or a general health interview indicated that they
had any of the following: (1) glaucoma, optic neuropathy,
or any ocular conditions other than ARM, refractive error
or dry eye; (2) refractive error (spherical equivalent) whose
absolute value was >6 diopters; (3) neurological diseases
such as Alzheimer�s disease, Parkinson�s disease, and a his-
tory of stroke; (4) diabetes; (5) serious frailty or medical
conditions expected to lead to mortality or disability within
12 months.
This study was approved by the Institutional Review
Board of the University of Alabama at Birmingham. The
research followed the Tenets of the Declaration of Helsin-
ki. Informed consent was obtained from all subjects after
the nature and possible consequences of the study were
explained.

2.2. Procedures

Prior to ERG testing, best-corrected, distance visual acu-
ity was measured for each eye on the day of ERG testing
using the ETDRS chart (Ferris, Kassoff, Bresnick, & Bailey,
1982; Ferris & Sperduto, 1982) and expressed as logMAR.
Contrast sensitivity was assessed for each eye using the Pel-
li–Robson chart and its standard administration protocol
(Pelli, Robson, & Wilkins, 1988) and scored with the letter-
by-letter method (Elliott, Bullimore, & Bailey, 1991).

The apparatus used to measure the rod a-wave was the
UTAS-E 3000 visual electrodiagnostic system (LKC Tech-
nologies) a commonly used, clinical instrument also suit-
able for research purposes. Our general technique for
measuring the rod a-wave is similar to that of previous
studies (Birch, Hood, Locke, Hoffman, & Tzekov, 2002;
Cideciyan & Jacobson, 1996; Hansen & Fulton, 2005;
Hood & Birch, 1993; Smith & Lamb, 1997). Measurement
of the inactivation of the a-wave is based on the double-
flash method of Birch et al. (1995) and Hansen and Fulton
(2005). The tested eye (the eye with better acuity) was dilat-
ed to at least 6 mm in diameter using 1% tropicamide and
2.5% phenylephrine hydrochloride. Pupil size was mea-
sured before and after ERG recording to ensure adequate
dilation of the pupil was achieved throughout testing. Par-
ticipants were dark-adapted for 45 min prior to ERG
recording. The cornea was anesthetized with 0.5% propar-
acaine hydrochloride. Recordings were obtained through
the use of a Burian Allen bipolar electrode placed on the
anesthetized cornea. Responses were amplified (band-pass
0.5–8000 Hz; 4-pole) and digitized at a 7 kHz sampling rate
for a duration of 60 ms. Subjects were instructed to look
straight ahead and to keep their eye stable. A 10.9 ln scot
Td—second test flash (55,000 K) was used to saturate pho-
toreceptor response. After an interval of time had elapsed
(inter-flash interval), a second probe flash was presented
to measure the photoreceptor response. The inter-flash
intervals used were 2, 4, 8, 16, 32, 48, and 64 s. A blue
probe flash (8.9 ln scot Td—second; 450 nm; Kodak 47A)
was used to predominantly stimulate the rods. For each
inter-flash interval, a photopically matched red flash
(605 nm; Kodak 26) was used to predominantly stimulate
the cones in a separate trial. In addition to the double flash
pairings, responses to each of the probe flashes were mea-
sured to estimate the maximum photoreceptor response
for each individual. After each ERG measurement, a 2-
min recovery period was used to allow full recovery of
the photoreceptors. To isolate the rod photoreceptor
response, the response to the red probe flash was computer
subtracted from the response to the blue probe flash.
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The recovery of the rod a-wave response (R/Rmax) was
expressed as a proportion of the a-wave amplitude of the
paired flash response (R) divided by the a-wave amplitude
(Rmax) of the probe flash alone. To describe the response
recovery kinetics, in the following equation was used as:

R=Rmax ¼ 1� exp½�ðt � T cÞ=ðT rÞ�; ð1Þ
where t is the time in seconds, Tc is the delay before the
start of recovery in seconds, and Tr is the time constant
of the recovery (seconds). The equation was fit to the data
with Tc constrained to >0 s. Because older adults and espe-
cially ARM patients may have recovery functions of a dif-
ferent shape compared with young normals, the time at
which R/Rmax reached its half maximal value, T50, was cal-
culated using linear interpolation. Calculating T50 using
linear interpolation describes the speed of a-wave recovery
independent of the shape of the recovery (Hansen & Ful-
ton, 2005). Thus, the same parameter can be calculated
and compared across groups that are each best described
by a different model.

To compare demographic and visual function variables
across groups of study subjects, analysis of variance (for
continuous variables) and v2 tests (for categorical vari-
ables) were used. Rod-mediated ERG parameters were
compared across the older adult groups with and without
adjustment for age using analysis of covariance. The role
of pseudophakia versus phakia in ERG parameters was
assessed by analysis of variance. The association between
ERG parameters and fundus features were assessed by
analysis of variance. SAS Version 8.02 (SAS Institute,
Cary, NC) was used for all statistical analyses.
3. Results

Table 1 presents descriptive characteristics of the sample
for demographics and visual function. There were 32 per-
sons 61–80 years of age meeting the definition of normal
retinal health who were classified as ‘‘old normal’’, 26 per-
Table 1
Demographics and visual function for the patient groups

Young normal (n = 20) Old norm

Age, years mean (SD) 23.9 (3.2) 68.7 (5.2

Gender, n (%)
Female 15 (75.0) 17 (53.1)
Male 5 (25.0) 15 (46.9)

Race/ethnicity, n (%)
White, non-Hispanic 16 (80) 32 (100)
African American 4 (20) 0
Hispanic 0 0

Visual acuity (logMAR), mean (SD)
Tested eye �0.06 (0.07) 0.02 (0.0
Fellow eye �0.03 (0.07) 0.14 (0.2

Contrast sensitivity (log), mean (SD)
Tested eye 1.65 (0.11) 1.48 (0.1
Fellow eye 1.60 (0.12) 1.47 (0.1
sons (62–88 years of age) classified as early ARM, and 7
persons (67–95 years of age) as late ARM; of the latter,
three had geographic atrophy and four had choroidal neo-
vascularization. The fundus grading data, which dictated
which group older adults were in, were not available until
several months after ERG testing. Although the focus of
the study is on early ARM (and we specifically tried to
recruit persons whose most recent eye exam indicated that
they had early ARM), we decided to include the late ARM
patients as a separate group in the analyses because the
data from the entire protocol including ERG data had
already been collected.

The average age of the 20 young-normal participants
was 24 years (range 17–29 years) while each of the three
older groups had average ages in the late sixties and seven-
ties (Table 1). The old normal group was younger than the
early and late ARM groups (p = 0.002 and p = 0.002,
respectively); the ages of the early and late ARM groups
were not significantly different. There were a higher pro-
portion of African Americans in the young normal group
and early ARM group compared with the old-normal
and late ARM groups. However, results from analyses
comparing ERG parameters in young and old-normal
adults described below are unchanged if analyses are limit-
ed to white participants (data not shown). Visual acuity
was best in young subjects, and was decreased in the older
groups, from better to worse as follows: old-normal, early
ARM, late ARM (all p values <0.01, Table 1). A similar
pattern of results was also observed for contrast sensitivity
with the exception of contrast sensitivity in the tested eye
for the old normal and early ARM groups; this difference
was not significant. Otherwise all group comparisons on
contrast sensitivity were significant with p values of
<0.01. These findings were true for both the tested and fel-
low eyes.

Fig. 1 shows examples of the a-wave families for a nor-
mal young adult, a normal old adult, an early ARM
patient, and a late ARM patient. Blue-flash responses are
al (n = 32) Early ARM (n = 25) Late ARM (n = 7)

) 73.5 (6.3) 77.4 (9.3)

13 (52.0) 2 (28.6)
12 (48.0) 5 (71.4)

19 (76) 7 (100)
5 (20) 0
1 (4) 0

9) 0.13 (0.17) 0.25 (0.14)
3) 0.38 (0.39) 0.94 (0.21)

3) 1.34 (0.35) 1.21 (0.26)
3) 1.24 (0.38) 0.83 (0.51)
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Fig. 1. a-Wave families for a normal young adult (A–C), normal old adult (D–F), early ARM patient (G–I), and late ARM patient (J–L). The first column
is the response to the blue flash. The second column is the response to the red flash and the third column is the computer subtracted rod response. In each
a-wave family, the responses from smallest a-wave amplitude to largest amplitude are the inter-flash intervals (2, 4, 8, 16, 32, 48, and 64 s) and probe flash
alone.
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in the first column, and red-flash responses are in the sec-
ond column. Computer-subtracted rod responses are in
the third column. The R/Rmax function of a normal young
adult is shown in Fig. 2. This figure illustrates the fit of
both Eq. (1), from which Tc and Tr are estimated (stippled
curve), and the half maximal response, T50, by linear



Fig. 2. R/Rmax (circles) plotted as a function of inter-flash interval
(seconds) for a normal young adult. The stippled curve is the fit of the
recovery model from which Tc and Tr are estimated. The half maximal
response, T50, is estimated by linear interpolation (solid line).

Fig. 3. Ra/Rmax plotted as a function of inter-flash interval for young
normal (circles), old normal (squares), early ARM (triangles), and late
ARM (diamonds) groups. Old normal group�s Ra/Rmax values were offset
0.5 s for visibility. Error bars are ±1 standard error of the mean.
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interpolation (solid line). Mean ERG parameters and stan-
dard deviations for each group are listed in Table 2.

The first question addressed was what impact normal
aging had on the inactivation of the rod-mediated ERG
a-wave. The time at which the young-normals� a-wave
reached its half maximal value, T50, was about 6 s faster
than old normals (p < 0.04). The time at which recovery
commenced (Tc) was similarly distributed for young and
old-normal adults (p = 0.12). The time constant of the a-
wave amplitude recovery (Tr) was on average 13.17 s higher
for old-normal adults compared with young adults
(p < 0.004). Although the model�s goodness of fit (r2) was
high for both young adults and old-normals, the goodness
of fit was significantly lower for the old-adults (r2 = 0.93,
range: 0.76–0.99) compared with the young normals
(r2 = 0.97, range: 0.92–1.00) (p < 0.02).

To determine whether poorer model fits in the old nor-
mal group biased the analysis, four old normals with an r2

value less than 0.85 were excluded in a subsequent analysis.
With these four individuals excluded the old adults� mean
Table 2
Rod-mediated ERG parameters for each group estimated from Eq. (1)

Young normal
(n = 20)

Old normal
(n = 32)

Early A
(n = 25

Tc, mean (SD) 2.58 (0.78) 1.98 (1.58) 1.29 (1
Age-adjusteda 1.99 1.29

Tr, mean (SD) 11.03 (4.32) 24.21 (18.85) 32.76 (2
Age-adjusteda 24.60 32.49

T50, mean (SD) 11.82 (4.20) 17.72 (11.69) 17.31 (1
Age-adjusteda 18.42 16.83

a Age-adjustments were not applied to the young and old-normal group comp
adjustments were made in evaluating statistical significance since age was sign
R2 increases to 0.95, similar to the young adults
(p = 0.09). Tc values between the two groups were compa-
rable (p = 0.38). The mean Tr of the old adults was elevated
about 9 s compared with young adults (p < 0.02).

The slowing of a-wave recovery in the older age groups
is best illustrated in Fig. 3 where mean R/Rmax is plotted as
a function of inter-flash interval for each group. For the
first three inter-flash intervals (2, 4, and 8 s), there is no dif-
ference R/Rmax between the four groups (p = 0.88). For the
remaining inter-flash intervals (P16 s), R/Rmax values are
significantly higher for young adults compared with all
the older groups (p < 0.03). Old normals and early ARM
patients exhibit similar a-wave recovery (p = 0.86). Late
ARM patients exhibit slowed recovery (i.e., lower R/Rmax

values) compared with the old normals (p < 0.03) and early
ARM patients (p < 0.03).

To examine the ERG parameters of the ARM patients,
an analysis of covariance was performed on each ERG
parameter (Tc, Tr, and T50) as the dependent variable,
examining the main effect of group. Because the age distri-
butions of the three older groups were significantly differ-
ent (p < 0.001), age was used as a covariate. After age
adjustment, the mean T50 value was delayed about 16 s
for late ARM patients compared with normal old adults
RM
)

Late ARM
(n = 7)

p Value young
vs. old-normal

p Value older
groups

.39) 1.28 (1.21) .12
1.26 .5

0.42) 37.62 (27.36) .004
36.81 .13

2.44) 33.67 (24.05) .04
32.23 .004

arisons. In comparing parameters among the three older adult groups, age-
ificantly different in these three older age groups.
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and early ARM patients (p < 0.004). The Tc, and Tr,
parameters were similar for all three groups (p = 0.50;
p = 0.13, respectively). The model�s goodness of fit (r2)
was statistically similar for both early and late ARM par-
ticipants, averaging 0.91 (range: 0.75–1.00) and 0.88
(range: 0.67–0.97), respectively (p = 0.46).

Because the model did not fit some of the ARM patients
as well as the old normal adults, we attempted to fit a nest-
ed exponential model (Kang Derwent et al., 2004) to each
individual�s recovery function. R/Rmax was normalized and
fitted with the following equation:

½1� ðR=RmaxÞ� ¼ 1� expf�A1½expð�t=T 1Þ þ A2

� expð�t=T 2Þ�g; ð2Þ

where A1 and A2 are scaling factors and T1 and T2 are
exponential time constants. The double exponential equa-
tion was selected because the recovery during the first 8 s
was similar between groups and group differences arise
after 8 s. Thus, the expectation is the first time constant
(T1) would be similar between the groups, where as, the
second time constant (T2) would be slower in the older
groups compared to the young groups.

Estimated time constants from Eq. (2) for each group
are listed in Table 3. The first time constant (T1) was sim-
ilar between the old normal group compared with the
young group (p = 0.94) and similar between all three old
groups (p = 0.86). The second time constant of the old nor-
mal group was almost twice as large in magnitude com-
pared with the young group, but did not reach statistical
significance (p = 0.10). The second time constant was sim-
ilar among the three old groups (p = 0.49). The nested
exponential equation (Kang Derwent et al., 2004) appeared
to fit better than the equation originally applied to the data
(Birch et al., 1995) in that the mean R2 was higher for nest-
ed exponential equation (mean = 0.99; range 0.90–1.00)
compared with the single exponential (mean = 0.93;
range = 0.67–1.00) (p < 0.001). However the variability of
the fits were much higher for nested exponential compared
to single exponential. The average standard deviation for
an individual�s estimate of T1 is 13.56, thus the 95% confi-
dence interval was �23.66 to 30.03. The average standard
deviation for an individual�s T2 parameter estimate was
360.47 yielding a confidence interval of �601.78 to
811.26. Because the confidence in the parameters estimated
using Eq. (2) was low, and the equation failed to converge
for four normal old adults and four early ARM patients,
parameters estimated using Eq. (2) were considered unreli-
able for this application. The T50 parameter may be a more
Table 3
Rod-mediated ERG parameters for each group estimated from Eq. (2)

Young normal
(n = 20)

Old normal
(n = 27)

Early AR
(n = 21)

T1, mean (SD) 2.85 (1.49) 2.82 (1.22) 3.02 (1
T2, mean (SD) 55.29 (77.93) 109.32 (128.87) 120.62 (1
reliable estimate of recovery speed across all of the groups
in this study.

The effects of lens density must be taken into account
when interpreting these results, since the aging lens prefer-
entially absorbs the short-wavelengths (Pokorny, Smith, &
Lutze, 1987; van Norren & Vos, 1974) used to isolate the
rod response, thus effectively reducing the flash�s retinal
illuminance more so for older adults than young. Paired
flash ERG techniques like that used here are more robust
to the effect of aging-related increases in lens density com-
pared with single flash techniques because probe responses
are normalized to an individual�s maximum response. The
concern, however, is that the saturating flash may be less
effective and allows the older individual to recovery faster
compared with an individual with a more transparent lens.
To examine whether older adults� increased lens density
impacts their ERG parameters, we compared the ERG
parameters in older adults having an intraocular lens
(IOL) of the conventional type (Alcon Acrysof which has
an ultra-violet radiation filter) in the test eye (n = 13) to
those older adults who were phakic (n = 44). Normal old
adults and early ARM patients groups were combined
because the ERG parameters between the two old groups
were similar. Because the pseudophakic patients were
about 6 years older on average than the phakic patients
(p < 0.0006), analyses were adjusted for age. There were
no IOL versus phakic differences in the combined old-nor-
mal and early ARM groups with respect to either Tc, Tr, or
T50. (p = 0.59; p = 0.62; p = 0.40) Late ARM patients were
not included in the analysis because their recovery was sig-
nificantly slower than old normals and early ARM
patients; however, if they are included, there remains no
difference in the ERG parameters between IOL and phakic
patients. Tc, Tr, or T50. (p = 0.88; p = 0.50; p = 0.18).

Are rod-mediated inactivation ERG parameters related
to fundus characteristics in the older participants as char-
acterized by the WARMGS? The WARMGS characteris-
tics of interest were maximum drusen type, maximum
drusen size, drusen area, increased RPE pigmentation,
and RPE depigmentation. To insure adequate power, the
levels of each characteristic were concatenated as follows.
For maximum drusen type 2 levels were created: (1) none
or hard drusen and (2) soft drusen. For maximum drusen
size, 3 levels were created: (1) none or questionable drusen,
(2) <63 lm diameter, and (3) P63 lm diameter. Three lev-
els were created for maximum drusen area: (1) <63 lm
diameter, (2) <250 lm diameter, and (3) <0.5 disc area.
Two levels representing the absence or presence of pigmen-
tary lesions were created for increased RPE pigmentation
M Late ARM
(n = 7)

p Value young
vs. old-normal

p Value older
groups

.45) 3.03 (1.87) .94 .86
51.24) 180.67 (157.01) .10 .49



Table 4
Rod-mediated ERG parameters as a function of fundus features as defined
by the WARMGS

ARM lesion F value p Value

Maximum drusen size
Tc 1.21 0.31
Tr 0.80 0.50
T50 0.39 0.76

Maximum drusen type
Tc 0.46 0.63
Tr 0.30 0.74
T50 0.34 0.72

Drusen area
Tc 1.42 0.25
Tr 1.32 0.28
T50 0.36 0.78

Increased RPE pigmentation
Tc 0.97 0.39
Tr 2.24 0.12
T50 0.68 0.51

RPE Depigmentation
Tc 0.92 0.41
Tr 2.65 0.08
T50 1.44 0.25
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and RPE depigmentation. Late ARM characteristics (geo-
graphic atrophy and choroidal neovascularization) were
not specifically evaluated as part of this analysis since only
a relatively small percentage of the sample had geographic
atrophy (n = 3) or choroidal neovascularization (n = 4). As
displayed in Table 4, there were no significant associations
between the ERG parameters and any of the anatomic fun-
dus characteristics as defined by the WARMGS (all
p > 0.05).

4. Discussion

The speed of phototransduction inactivation as estimat-
ed by Tr is slowed in older adults with normal retinal health
compared with young normals. For inter-flash intervals up
to 8 s there is no difference between young and old adults.
The slowing of phototransduction becomes apparent for
inter-flash intervals 16 s and longer For the longest inter-
flash interval (64 s) old adults exhibited 12% less recovery
compared with young adults even though they were
exposed to a dimmer saturating flash because of increased
optical density. Adults with normal appearing retinas
required on average 6 s longer to reach their half maximal
response during recovery, as compared to young adults.
These results provide evidence for the first time that the
first component of rod-mediated dark adaptation, namely
the inactivation of phototransduction, exhibits aging-relat-
ed slowing.

Because the inactivation phase does not depend on the
functioning of the Bruch�s membrane/RPE complex (Lamb
& Pugh, 2004), these findings imply that at least some of
the contributing cause(s) to this deficit are intrinsic to the
aged rod photoreceptor itself. One candidate mechanism
is reduced rhodopsin concentration which has been shown
to delay the kinetics of recovery both in rats and humans
(Fulton & Hansen, 2003; Hansen & Fulton, 2005). Howev-
er, rhodopsin concentration measured in whole retinas of
donor eyes appears to be relatively stable throughout
adulthood (Fulton, Dodge, Hansen, & Williams, 1999). A
potential contributor to reduced rhodopsin concentration,
if in fact it does exists in the aged retina, is that 30% of rods
in the macula die during the retinal aging process (Curcio
et al., 1993). However, surviving rods could conceivably
compensate by expressing more rhodopsin, so rod loss
itself may not signify reduced rhodopsin concentration.

Another possible mechanism for slowing in inactivation
is a prolonged lifetime of activated rhodopsin (Birch et al.,
1995). Prolonged lifetime of activated rhodopsin by itself
or in combination with changes in the expression of down-
stream proteins may explain the increased inactivation time
(Pepperberg, Birch, Hofmann, & Hood, 1996). However,
we do not know of any evidence that these protein concen-
trations change in the aged retina. To address this question,
future work could compare young and old-normal adults
with respect to the slope of Tc in response to a wide range
of saturating flash intensities, which in turn be used to esti-
mate the lifetime of activated rhodopsin in young versus
old-normal adults (Birch et al., 1995). Other possible mech-
anisms exist such as abnormal deactivation of transduction
which would prolong deactivation kinetics (Chen et al.,
2000). Unfortunately, clinical electrophysiology has limited
ability to differentiate among these more subtle changes
that are readily apparent using single cell recording.

Early ARM patients exhibited similar rod-mediated
ERG parameters compared with old-normal adults. Thus,
these data, which were generated by full-flash ERG tech-
niques, imply that early ARM does not cause slowing in
rod phototransduction inactivation, above what is
observed by aging alone. An important issue to consider,
though, is that ARM is thought to be a largely focal disease
of the macula, and thus the full-field flash stimulation and
the recording of the full-field ensemble response (as done
here) may be masking macular abnormalities (see also
Jackson, McGwin, Phillips, Klein, & Owsley, 2004). How-
ever, despite the presumed focal nature of ARM, there is
evidence that dark adaptation outside the macula in
patients with early ARM is impaired. This issue of whether
there is slowing in rod phototransduction inactivation in
ARM could be clarified by using a focal (macular), paired
ERG paradigm. This type of dysfunction is theoretically
feasible because, in early ARM, rhodopsin expression
(Ethen, Feng, Olsen, & Ferrington, 2005) and the number
of rod photoreceptors in the macula (Curcio et al., 1996)
are significantly reduced as compared with normal adults.
For the moment though this issue will remain unresolved.

Late ARM patients did exhibit dramatically reduced
inactivation kinetics. Compared with early ARM patients
and normal old patients, late ARM patients required on
average about 16 s longer to reach their half maximal a-
wave amplitude. The mechanisms responsible for this
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impairment in late ARM are most likely the dramatic rod
loss in the macula (rods are almost non-existent in late dis-
ease) (Curcio et al., 1996) and severely reduced rhodopsin
expression in the macula in late ARM (Ethen et al., 2005).

Using the inactivation model to fit the paired flash data in
older adults raised some methodological challenges. In
many instances, fitting the model triggered the constraint
that Tc must be greater than 0 because of large increases
in Tr, relative to young normals, causing Tc to move
towards zero. Uniformly, subjects with the greatest Tr val-
ues had Tc constrained. The nested exponential was unsat-
isfactory because it produced very wide confidence
intervals around the estimates of the recovery time con-
stants and it failed for some participants. The recovery func-
tion appeared to be better fit by alternative models, such as a
sigmoid function, but these models do not estimate the time
delay before recovery. New ERG models need to be devel-
oped based on data collected from animal models of retinal
aging in order to better characterize the recovery observed
in this study. Measuring the time at which a criterion
amount of recovery occurred (Hansen & Fulton, 2005)
avoided the difficulties associated with applying the expo-
nential model. The T50 parameter exhibits less variability
in our data than the Tc and Tr estimates with fewer outliers.
In patient populations that exhibit large elevations in Tr, it
may be beneficial to measure T50 to compensate for difficul-
ties in fitting the exponential model. Using either method,
one is left with the conclusion that the speed of recovery is
slower in old-normal adults compared with young adults.

In summary, the inactivation of rod phototransduction
exhibits an aging-related slowing. At least some of the
mechanistic basis of this deficit is intrinsic to the aged
rod photoreceptor itself since the inactivation phase does
not depend on the functioning of the Bruch�s membrane/
RPE complex. It is unlikely that reduced rhodopsin expres-
sion explains the effect since rhodopsin concentration mea-
sured in whole retinas appears to be relatively stable
throughout adulthood. It remains to be determined to what
extent a prolonged lifetime of activated rhodopsin is con-
tributory. Persons with early ARM do not exhibit inactiva-
tion slowing over and above what one would expect from
normal retinal aging; however, since ARM is a macular
disease, focal ERG techniques will be needed to clarify this
issue. Persons in the late stages of ARM exhibit dramatic
slowing in inactivation kinetics, most likely due to wide-
spread rod photoreceptor death and degeneration and
severely reduced rhodopsin expression in the macula.
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