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Abstract

Let K be an infinite field of characteristic p �= 2, G a locally finite group and KG its group algebra. Let
ϕ : KG → KG denote the K-linear extension of an involution ϕ defined on G. In this paper we prove, under
some assumptions, that if the set of ϕ-symmetric units of KG satisfies a group identity then KG satisfies a
polynomial identity. Moreover, in case the prime radical of KG is nilpotent we characterize the groups for
which the ϕ-symmetric units satisfy a group identity.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A subset H of the unit group U(R) of a ring R with unity 1 is said to satisfy a group identity
(we will say that H satisfies a GI for short) if there exists a non-trivial word w(x1, . . . , xn) in the
free group generated by x1, . . . , xn such that w(u1, . . . , un) = 1 for all u1, . . . , un ∈ H .

Hartley (see [17, Problem 52]) conjectured that if the whole unit group U(KG) of the group
algebra KG of a periodic group G over a field K satisfies a group identity, then KG satisfies
a polynomial identity. An affirmative answer was proved in [6,8,12,13]. Recall that an algebra
A over a field K satisfies a polynomial identity (we say that A is PI for short) if there exists a
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non-zero polynomial f (x1, x2, . . . , xn) in the free associative K-algebra on x1, x2, . . . , xn such
that f (a1, a2, . . . , an) = 0 for all a1, a2, . . . , an ∈ A.

The answer to Hartley’s Conjecture shows that properties on the unit group give properties on
the whole group algebra. Even special subsets of the unit group can determine such information.
Indeed, in [9] was proved that for a group algebra of a torsion group over an infinite field K with
char(K) �= 2, a group identity for the symmetric units under the classical involution ∗ also gives
a polynomial identity on the whole group algebra.

Now let ϕ be an arbitrary involution on G and let K be a field. Then the K-linear extension of
ϕ is an involution on KG. Denote by (KG)+ϕ the symmetric elements of KG, i.e. elements x in KG
for which x = ϕ(x) and U+

ϕ (KG) stands for the symmetric units. In this paper we prove that if for
a locally finite group G over an infinite field K with char(K) �= 2 the symmetric units U+

ϕ (KG)

for an arbitrary involution ϕ satisfy a GI, it again follows, under some assumptions, that the
group algebra KG is PI. Moreover, in case the prime radical of KG is nilpotent we characterize
the groups for which the symmetric units satisfy a group identity.

2. Semisimple algebras

In the investigation of group identities central idempotents are crucial. In [9, Theorem 2] the
following useful fact is proved.

Theorem 2.1. Let R be a semiprime ring and ϕ an involution on R. If U+
ϕ (R) satisfies a GI, then

every symmetric idempotent of R is central.

Let K be a field with char(K) = p � 0. Let G be a group such that KG is semiprime and
U+

ϕ (KG) satisfies a GI. In case the group is endowed with the classical involution one immedi-
ately gets that a cyclic subgroup generated by a torsion element whose order is not divisible by p

is normal in G. This instantly determines the structure of G. In case ϕ is an arbitrary involution,
this property is lost. So we need other tools to derive information on G.

To deal with group algebras of finite groups we first characterize when the symmetric units
of a semisimple algebra A over an infinite field of characteristic not 2 satisfy a GI. As in most
group ring problems on units, division algebras in the Wedderburn decomposition of A form an
obstacle. To overcome this, we can exclude them or put suitable conditions on K such that, for
example, there exist free subgroups generated by symmetric units in the division algebra. Recall
that involutions on an algebra that fix the center elementwise are said to be of first kind. The
other ones are of second kind.

We will denote by [x1, x2] = x1x2 − x2x1 the additive commutator of x1, x2 ∈ R and by
(x1, x2) = x1x2x

−1
1 x−1

2 the (multiplicative) commutator of x1, x2 ∈ U(R). Recursively, one de-
fines (x1, x2, . . . , xn) = ((x1, x2, . . . , xn−1), xn) where x1, . . . , xn ∈ U(R).

Theorem 2.2. Let A be a semisimple K-algebra where K is an infinite field with char(K) �= 2
and ϕ be an involution on A. Suppose one of the following conditions holds:

(1) K is uncountable,
(2) A has no simple components that are non-commutative division algebras other than quater-

nion algebras.

Then U+
ϕ (A) satisfies a GI if and only if A+

ϕ is central in A.



744 A. Dooms, M. Ruiz / Journal of Algebra 308 (2007) 742–750
Proof. Suppose that U+
ϕ (A) satisfies a GI, then by Theorem 2.1 symmetric idempotents of A are

central. Let ei be a primitive central idempotent of A.
If ϕ(ei) = ei , then ϕ induces an involution on Aei = Mni

(Di) where Di is a division algebra.
There are two types of involutions on a matrix ring over a division algebra [5, Lemma 3.1]. In
case ϕ induces an involution of transpose type, Ej,j is a symmetric idempotent, thus central, for
all 1 � j � ni . Hence ni = 1 and Aei

∼= Di , a division algebra. In case ϕ induces an involution
of symplectic type, then ni is even and Di is a field Ki . In this case E1,1 + Eni

2 +1,
ni
2 +1 is a

symmetric idempotent, thus central, for all 1 � j � ni . Hence ni = 2 and Aei
∼= M2(Ki).

If ϕ(ei) �= ei , then Aei and Aϕ(ei) are anti-isomorphic. Since ϕ(ei) is also a primitive central
idempotent, we get that Aei ⊕ Aϕ(ei) ∼= Mni

(Di) ⊕ Mni
(Di) with exchange involution given

by ϕ((a, b)) = (ϕ(b),ϕ(a)). Hence (Aei ⊕Aϕ(ei))
+
ϕ

∼= {(a,ϕ(a)) | a ∈ Mni
(Di)}. Since U+

ϕ (A)

satisfies a GI, also GLni
(Di) = U(Mni

(Di)) satisfies a GI. Since K is an infinite field, we have
by [4, Corollary 1.4(2)] that GLni

(Di) has to be commutative, thus ni = 1 and Di is a field Ki .
Hence we have proved that A ∼= D1 ⊕ · · · ⊕ Dk ⊕ M2(K1) ⊕ · · · ⊕ M2(Kl), a direct sum of

division algebras (some of which are fields) and 2 × 2-matrices over a field, where ϕ induces the
symplectic involution in the latter case and hence all symmetric elements of

⊕l
j=1 M2(Kj ) are

central.
Assume that condition (1) holds. Let Di be a non-commutative simple component, then

(Di \ {0})+ϕ satisfies a GI. Suppose first that ϕ induces an involution of the first kind. Since K

is uncountable with char(K) �= 2 [5, Corollary 5.5] gives symmetric units in Di that gener-
ate a free group (which contradicts GI) unless Di is a quaternion algebra with anti-symmetric
basis {1, i, j, k}. This means that ϕ(i) = −i, ϕ(j) = −j,ϕ(k) = −k and hence ϕ induces the
quaternion conjugation on Di . Therefore the symmetric elements of Di are in the center. Finally,
suppose ϕ induces an involution of the second kind. Since K is uncountable with char(K) �= 2
[5, Theorem 6.1] also gives symmetric units in Di that generate a free group (which contra-
dicts GI) unless all symmetric elements of Di are central or Di is a quaternion algebra with
anti-symmetric basis. Since the involution is of the second kind, the latter case cannot occur as
[5, Lemma 2.6] again gives symmetric units that generate a free group.

In case (2) holds, suppose that Di is a quaternion algebra. Then [5, Lemma 2.6] gives us
symmetric units that generate a free group unless Di is a quaternion algebra with anti-symmetric
basis and ϕ induces an involution of the first kind. As shown above, ϕ induces the quaternion
conjugation on Di . Hence we can conclude that A+

ϕ is central in A.
The other implication is trivial. �

Remark. By [7, Theorem 1], under the above assumptions, it follows that U+
ϕ (A) satisfies a GI

is equivalent to A+
ϕ is Lie nilpotent.

We state the following well-known fact which we will often make use of.

Lemma 2.3. Let A be a K-algebra and let ϕ be a K-linear involution on A. Suppose that I is
a nil ideal of A which is invariant under ϕ. Denote by a the image of a in A/I . Let ϕ be the
involution on A/I defined by ϕ(a) = ϕ(a) with a ∈ A. Then every ϕ-symmetric unit of A/I can
be lifted to a ϕ-symmetric unit of A.

Let R be a ring, then denote by J (R) the Jacobson radical of R. For a finite-dimensional
algebra over a non-absolute field with char(K) �= 2 we can, under certain assumptions, obtain a
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relation between group identities and the existence of free groups in the symmetric units. Recall
that a field K is non-absolute if it is not an algebraic extension of a finite field.

Proposition 2.4. Let K be a non-absolute field with char(K) �= 2. Let A be a finite-dimensional
K-algebra with involution ϕ. Suppose one of the following conditions holds:

(1) K is uncountable,
(2) A/J (A) has no simple components that are non-commutative division algebras other than

quaternion algebras.

Then U+
ϕ (A) does not contain a free group of rank 2 if and only if U+

ϕ (A) satisfies the group
identity (x1, x2, . . . , xm) = 1, for some positive integer m.

Proof. Suppose that U+
ϕ (A) does not contain a free group of rank 2 and let J = J (A) be

the Jacobson radical of A. Then ϕ(J ) = J and since A is finite dimensional we have that
Jm = 0 for some positive integer m. Denote by Ā = A/J . Now U+

ϕ (Ā) is a quotient of
U+

ϕ (A), hence it cannot contain free groups of rank 2. Since K is non-absolute, by [5, Propo-
sition 3.3] we get a free group in U(Mni

(Di))
+
ϕ unless ni = 2 and ϕ is the symplectic in-

volution. Hence we can follow the lines of the proof of Theorem 2.2 and we again get that
Ā ∼= D1 ⊕ · · ·⊕Dk ⊕M2(K1)⊕ · · ·⊕M2(Kl), where ϕ is the symplectic involution on M2(Ki)

for 1 � i � l. Therefore Ā+
ϕ is in the center of Ā and U+

ϕ (Ā) satisfies the group identity
(x1, x2) = 1 and hence (x1, x2, . . . , xm) = 1 is an identity for U+

ϕ (A).
The converse is obvious. �

3. Group algebras

Let K be a field of characteristic p � 0 and G be a group. Let ϕ : KG → KG denote the K-
linear extension of an involution ϕ defined on G. In [11] a characterization of the groups is given
of which the symmetric elements (KG)+ϕ of KG commute, that is, form a ring. It turns out that
the non-commutative groups satisfying this property when p �= 2 are precisely the groups with a
unique non-trivial commutator and that satisfy the lack of commutativity property (LC for short).
The latter means that for any pair of elements g,h ∈ G, it is the case that gh = hg if and only
if g ∈ Z(G) or h ∈ Z(G) or gh ∈ Z(G). By [10, Proposition III.3.6] such groups are precisely
those non-commutative groups with G/Z(G) ∼= C2 × C2, where C2 denotes the cyclic group of
order 2. Groups with the LC property and unique non-trivial commutator will be called LCUC.

Recall that a ring R (with identity) is regular if for each x ∈ R there is a y ∈ R such that
xyx = x. Let K be a field of characteristic p and G a group. By [3] we have that the group
algebra KG is regular if and only if G is locally finite and the order of each finite subgroup of G

is a unit in K . Note that in this case KG is semiprime and the set of p-elements P is trivial (in
case char(K) = 0, we agree that P = 1).

We now classify the groups with a regular group algebra over an infinite field K with
char(K) �= 2 for which the symmetric units satisfy a GI.

Theorem 3.1. Let K be an infinite field with char(K) = p �= 2 and let G be a non-abelian group
such that KG is regular. Let ϕ be an involution on G. Suppose one of the following conditions
holds:
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(1) K is uncountable,
(2) all finite non-abelian subgroups of G which are invariant under ϕ have no simple compo-

nents in their group algebra over K that are non-commutative division algebras other than
quaternion algebras.

Then U+
ϕ (KG) satisfies a GI if and only if G has the lack of commutativity property and a unique

non-trivial commutator s and the involution ϕ :G → G is given by

ϕ(g) =
{

g if g ∈Z(G),

sg if g /∈Z(G).

Moreover, in this case (KG)+ϕ is a ring contained in Z(KG).

Proof. Suppose that U+
ϕ (KG) satisfies a GI. Let g,h ∈ G be such that gh �= hg. Write G =⋃

i Hi , where Hi runs through all finite (non-abelian) subgroups of G which are invariant under
ϕ and that contain g and h. Since KG is regular, we have that for all i, KHi is semisimple and
U+

ϕ (KHi) satisfies a GI. Because of Theorem 2.2 we have that (KHi)
+
ϕ is central in KHi . By

[11, Theorem 2.4] the latter is equivalent with Hi having the LC property, a unique non-trivial
commutator s = ghg−1h−1 and the involution ϕ :Hi → Hi is as given in the statement.

It follows that G has a unique non-trivial commutator, namely s. Indeed, assume the contrary,
then there exist x, y ∈ G with xyx−1y−1 �= s. Now x and y are contained in some Hi , for
example,

Hi = 〈
x, y, g,h,ϕ(x),ϕ(y),ϕ(g),ϕ(h)

〉
.

Therefore xyx−1y−1 = ghg−1h−1 = s, a contradiction.
As for all i we have that Z(Hi) = (Hi)

+
ϕ , we have that G+

ϕ = ⋃
i (Hi)

+
ϕ = ⋃

i Z(Hi). If
x ∈ Z(G), then it is clear that x ∈ G+

ϕ . When x ∈ G+
ϕ , x is contained in the center of some Hi

and hence x commutes with g. As g is an arbitrary non-central element, we have that x ∈ Z(G).
Therefore we have that G is LCUC with involution as stated and (KG)+ϕ is a ring contained in
Z(KG). Moreover, s = gϕ(g)−1 for all g ∈ G \Z(G).

The converse is obvious, because (KG)+ϕ is a ring contained in Z(KG). �
Remark. For example, condition (2) is fulfilled when char(K) = 0 and G is a locally finite group
such that all finite non-abelian subgroups H which are invariant under ϕ are such that the order
of every root of unity in each K(χi) = K{χi(h) | h ∈ H }, where χi is an irreducible character
of H , is at most 2. Indeed, then every simple component that is a non-commutative division
algebra is a quaternion algebra [1,2].

Another case in which condition (2) holds is when K = Q and the subgroups H mentioned
above do not have non-abelian homomorphic images that are fixed-point free, because then by
[16] it follows that the rational group algebra of such finite groups has no non-commutative
division algebras as simple components. Recall that a group H is said to be fixed-point free if it
has a complex irreducible representation ρ such that for every non-identity element h of H , ρ(h)

has all eigenvalues different from one.
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To deal with groups for which the group algebra is not regular we need some extra machinery.
The following lemma shows that there are a lot of symmetric elements contained in the Jacobson
radical. This will lead to information on the p-elements.

Lemma 3.2. Let A be a finite-dimensional K-algebra with K an infinite field with char(K) �= 2.
Let ϕ be a K-linear involution on A and suppose that U+

ϕ (A) satisfies a GI. Then if x ∈ A is such
that xn ∈ J (A), then xϕ(x), x + ϕ(x) ∈ J (A).

Proof. Let x ∈ A be such that xn ∈ J (A), then x̄n = 0 in Ā = A/J (A). By Lemma 2.3, U+
ϕ (Ā)

satisfies a GI and thus by Theorem 2.2 Ā is isomorphic to a direct sum of division algebras and
2 × 2-matrices over a field. Hence we get that x̄2 = 0. By [9, Lemma 2] we have that there exists
a positive integer m such that (x̄ϕ(x̄))m = 0. Since Ā+

ϕ is central in the semisimple algebra Ā,
we have that x̄ϕ(x̄) = 0 and similarly we get that ϕ(x̄)x̄ = 0. Then x̄ + ϕ(x̄) is symmetric with
square zero and thus also x̄ + ϕ(x̄) = 0, which finishes the proof of the lemma. �
Lemma 3.3. Let K be an infinite field with char(K) = p �= 2 and let G be a locally finite group.
Let ϕ be an involution on G. If U+

ϕ (KG) satisfies a GI, then P is a normal subgroup of G.

Proof. Since G is locally finite, in order to show that P is a subgroup, we may assume that G is
finite. If p = 0, then P = 1. Suppose that p > 2, then because of [9, Lemma 5], we only need to
prove that for all g ∈ P , (g − 1)2 ∈ J (KG).

Take g ∈ P , then g − 1 is nilpotent. Hence there exists a positive integer n such that
(g − 1)n = 0. Then by Lemma 3.2

(g − 1) + (
ϕ(g) − 1

) = g + ϕ(g) − 2 ∈ J (KG). (1)

Hence multiplying by g we have that

g2 + gϕ(g) − 2g ∈ J (KG). (2)

On the other hand, again by Lemma 3.2,

(g − 1)
(
ϕ(g) − 1

) = gϕ(g) − g − ϕ(g) + 1 ∈ J (KG). (3)

Then by subtracting (2) from (3) and adding (1) we get that (g − 1)2 ∈ J (KG). Hence P is a
normal subgroup in G. �

When we work under the conditions of Lemma 3.3, we from now on implicitly use that P is
a (normal) subgroup of G. If N is a normal subgroup of G, we denote by Δ(G,N) the kernel of
the map KG → K(G/N) defined by

∑
g∈G

λgg →
∑
g∈G

λggN

and Δ(G,G) = Δ(G) is the augmentation ideal.
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Theorem 3.4. Let K be an infinite field with char(K) = p �= 2. Let G be a locally finite group
and ϕ an involution on G. Suppose that U+

ϕ (KG) satisfies a GI and that one of the following
conditions holds:

(1) K is uncountable,
(2) all finite non-abelian subgroups of G/P which are invariant under ϕ have no simple compo-

nents in their group algebra over K that are non-commutative division algebras other than
quaternion algebras,

then we have that

(1) G/P is abelian, or
(2) G/P has the LC property, a unique non-trivial commutator s and the involution ϕ :G/P →

G/P induced by ϕ is given by

ϕ(g) = ϕ(g) =
{

g if g ∈Z(G/P ),

sg if g /∈Z(G/P ).

Moreover, KG is PI.

Proof. By Lemma 3.3, we have that P is a (normal) subgroup of G.
Now K(G/P ) ∼= KG/Δ(G,P ) and Δ(G,P ) is nil. Hence we have by Lemma 2.3 that

U+
ϕ (K(G/P )) satisfies a GI. As K(G/P ) is regular, it follows by Theorem 3.1 that G/P is

abelian or G/P has the LC property and a unique non-trivial commutator s and the involution
ϕ : G/P → G/P is as in the statement.

Hence K(G/P ) is PI. Since Δ(G,P ) is a nil subring of KG invariant under ϕ, by [9, Re-
mark 2] we have that Δ(G,P ) is PI. As being PI is closed under ideal extensions we have that
KG is PI. �

Finally we can characterize under certain assumptions the locally finite groups for which the
symmetric units of the group algebra satisfy a GI. For the converse of Theorem 3.4 we need the
following lemma.

Lemma 3.5. Let K be a field with char(K) = p �= 2. Let G be a locally finite group and ϕ an
involution on G. If P is a subgroup of bounded exponent and G/P is abelian or LCUC with
involution as in Theorem 3.1, then U+

ϕ (KG) satisfies a GI.

Proof. Assume that P is a subgroup of bounded exponent and that G/P and ϕ are as in the
statement. Then by [11, Theorem 2.4], U+

ϕ (K(G/P )) is abelian. Hence (U+
ϕ (KG),U+

ϕ (KG)) ⊂
1 + Δ(G,P ). Now Δ(G,P ) is nil of bounded exponent and thus (U+

ϕ (KG),U+
ϕ (KG))p

n = 1 for
some n � 0. Hence U+

ϕ (KG) satisfies a GI. �
Remark. Note that, under the assumptions of Lemma 3.5, in case KG is PI and G/P is abelian,
we get that G′ ⊂ P is of bounded exponent. Hence by [15] even U(KG) satisfies a GI. Moreover,
if G/P is LCUC one easily deduces that also in this case G′ is of bounded exponent, but not
necessarily a p-group.
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Let CG(g) be the centralizer of g in G. Denote by φ(G) = {g ∈ G | [G : CG(g)] < ∞} the
finite conjugacy subgroup of G and φp(G) = 〈P ∩ φ(G)〉.

Theorem 3.6. Let K be an infinite field with char(K) = p �= 2. Let G be a locally finite group
and ϕ an involution on G. Suppose that the prime radical of KG is nilpotent and that one of the
following conditions holds:

(1) K is uncountable,
(2) all finite non-abelian subgroups of G/P which are invariant under ϕ have no simple compo-

nents in their group algebra over K that are non-commutative division algebras other than
quaternion algebras.

Then U+
ϕ (KG) satisfies a GI if and only if P is a finite normal subgroup and G/P is abelian

or LCUC with involution as in Theorem 3.1.

Proof. Suppose U+
ϕ (KG) satisfies a GI, then by Theorem 3.4 we have that P is a normal sub-

group, G/P is abelian or LCUC with involution as in Theorem 3.1 and KG is PI. Thus by [14,
Theorem 5.2.14] φ(G) is a normal subgroup of finite index in G (and φ(G)′ is finite). Since
the prime radical is nilpotent [14, Theorem 8.1.12] gives us that φp(G) = P ∩ φ(G) is a finite
normal p-subgroup. As Pφ(G)/φ(G) ∼= P/φp(G) is finite, we get that P is finite. The converse
follows from Lemma 3.5. �

We can now easily characterize the locally finite groups with semiprime group algebra for
which the symmetric units of the group algebra satisfy a GI. Since the only groups for which the
classical involution equals the involution from Theorem 3.1 are Hamiltonian 2-groups, we get
the same result as stated in [9, Theorem 5].

Corollary 3.7. Let K be an infinite field with char(K) = p �= 2 and let G be a locally finite group
such that KG is semiprime. Let ϕ be an involution on G. Suppose one of the following conditions
holds:

(1) K is uncountable,
(2) all finite non-abelian subgroups of G/P which are invariant under ϕ have no simple compo-

nents in their group algebra over K that are non-commutative division algebras other than
quaternion algebras.

Then U+
ϕ (KG) satisfies a GI if and only if G is abelian or LCUC with involution as in Theo-

rem 3.1.

Proof. Suppose U+
ϕ (KG) satisfies a GI, then KG is semiprime PI. Hence φp(G) = 1 and fol-

lowing the lines of the previous proof we get that P = 1 and thus KG is regular. The result now
follows from Theorem 3.1. �

In case of the classical involution we get in general the following result.

Theorem 3.8. Let K be an infinite field with char(K) �= 2 and let G be a locally finite group. Let
∗ denote the classical involution on G. Suppose one of the following conditions holds:
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(1) K is uncountable,
(2) all finite non-abelian subgroups of G/P have no simple components in their group algebra

over K that are non-commutative division algebras other than quaternion algebras.

Then U+∗ (KG) satisfies a GI if and only if P is a normal subgroup of bounded exponent and G/P

is abelian or an Hamiltonian 2-group.

Proof. Suppose U+∗ (KG) satisfies a GI, then by Theorem 3.4 we have that P is a normal sub-
group and G/P is abelian or an Hamiltonian 2-group. From the proof of [9, Theorem 7] it follows
that P is of bounded exponent. The argument uses Lemmas 6 and 9 from [9] which strongly rely
on the classical involution. The converse follows from Lemma 3.5. �
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