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Abstract

By imposingtwistedboundary conditions on quark fieldsit is possibleto access components ofmomentaotherthan integer
multiplesof 2π/L on a lattice with spatialvolumeL3. We use chiral perturbationtheory tostudyfinite-volume effectswith
twisted boundary conditions for quantitieswithoutfinal-state interactions,suchasmesonmasses, decay constants and semi
tonic form factors,and confirm that they remainexponentiallysmall with the volume.We show that this is also the case f
partially twistedboundary conditions,in which (some of) thevalencequarkssatisfytwisted boundary conditionsbut the sea
quarkssatisfyperiodic boundary conditions.This observationimplies that it isnot necessary to generate new gluon confi
rations foreverychoice of thetwist angle, making themethodmuch more practicable.For K → ππ decayswe showthat the
breaking ofisospinsymmetry bythetwisted boundary conditions impliesthat theamplitudes cannot be determined in gene
(on this point we disagree with a recent claim).
 2005 Elsevier B.V.

1. Introduction

In latticesimulationsof QCD on a cubicvolume(V = L3) with periodic boundary conditions imposed on t
fields, the hadronicmomenta(p) are quantized according topi = 2π/L × ni , wherei = 1,2,3 and theni are
integers.For currentlyavailablelattices this means that the lowest non-zeromomentumis large(typically about
500 MeV orso)and there are biggapsbetween neighbouringmomenta.This limits the phenomenological reac
of thesimulations. InRef. [1] Bedaque proposed the use of non-periodic boundary conditions whichwould allow
hadrons with arbitrarily smallmomentato be simulated(see also thereferencescited in [1] for earlier related
ideas).We refer to these boundary conditions astwistedboundary conditions.1 This technique has subsequen

E-mail address:cts@hep.phys.soton.ac.uk(C.T. Sachrajda).
1 An analogous methodwasalreadyintroduced many yearsagoin thecontextof extra-dimensions[2] and is still widely used forbreaking

spontaneously some of the action symmetries. Thebreakingis spontaneous since it is causedby a non-local effect.
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been used in a quenched study of the energy–momentum dispersion relations of pseudoscalar mesons[3] and the
finite-volume corrections for two-particle states with twisted boundary conditions have been calculated[4].

In this Letter we use chiral perturbation theory (χPT ) to analyse some of the properties of twisted bound
conditions and show that:

(1) For physical quantities without final state interactions, such as masses or matrix elements of local o
between states consisting of the vacuum or a single hadron, the flavour symmetry breaking induced by
only affects the finite-volume corrections, which nevertheless remain exponentially small;

(2) For amplitudes which involve final-state interactions, such as those forK → ππ decays, in general it is no
possible to extract the physical matrix elements using twisted boundary conditions (see Section4). On this point
we disagree with Ref.[4];

(3) Forpartially twistedboundary conditions, in which (some of) the valence quarks satisfy twisted bou
conditions but the sea quarks satisfy periodic ones, one also obtains the physical quantities described in
with exponential precision in the volume. This implies that in unquenched simulations it is not necessary to g
new gluon configurations for every choice of boundary condition, thus making the method much more prac

In Ref.[5] Kim and Christ proposeH - andG-parity boundary conditions in which the minimum non-zero hadro
momenta are reduced from 2π/L → π/L (see also Ref.[6]). These authors imposeH -parity boundary condition
for K → ππ decays in which the two-pions are in anI = 2 state. This is a particular case of twisted boundary c
ditions, corresponding to the specific choice ofπ for the twisting angle (as stated in item (2) above and expla
in Section4 below, it is not possible to studyK → ππ decays with a general choice of twisting angle). Kim a
Christ also show thatG-parity boundary conditions, which exploit the discrete charge conjugation transforma
can be used for anI = 0 two-pion state (in unquenched simulations), but the formalism will have to be exte
to incorporate the kaon. Although we do comment below onH - andG-parity boundary conditions in order t
illustrate our discussion, the main focus of this Letter is on boundary conditions based on continuous sym

When consideringK → ππ decays, throughout this Letter we restrict our discussion to the centre-of
frame for the two pions. For this case and with periodic boundary conditions, the finite-volume corrections
decrease as powers of the volume have been derived for the two-pion spectrum[7] and matrix elements[8,9].
At present the theory of finite-volume corrections in a moving frame has not been developed for matrix e
(but for a discussion of finite-volume corrections to the two-pion spectrum in a moving frame see Ref.[10]). We
therefore do not generalise our discussion to the moving frame at this stage.

The plan of the remainder of this Letter is as follows. In the following section we define twisted bou
conditions in QCD and briefly review their properties. In Section3 we impose twisted boundary conditions on t
chiral Lagrangian and demonstrate that their effect is to shift the momenta of internal propagators and
mesons by amounts corresponding to the twists. Section4 contains a discussion of finite-volume effects wh
twisted boundary conditions have been imposed. We discuss partially twisted boundary conditions in Secti5 and
present our conclusions in Section6. There are two appendices in which we derive the finite-volume correc
with twisted boundary conditions at one-loop order inχPT (Appendix A) and present the corresponding res
for meson masses and decay constants (Appendix B).

2. Twisted boundary conditions in QCD

In this section we will define the twisted boundary conditions and derive some of the constraints they
satisfy. Since the choice of boundary conditions is a non-local effect, we can present the discussion, with
loss of generality, within the framework of continuum quantum field theory. It should be noted however, t
discussion also applies to every lattice discretization. Although local discretization artefacts may affect the
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pre-factors, they do not affect the functional behaviour with the volume. For definiteness we present the dis
in Euclidean space with an infinite time dimension and a finite cubic spatial volume of sizeL3.

When formulating quantum field theory in a finite cubic volume, in order to avoid boundary terms, pe
boundary conditions are frequently imposed on the fields. This is equivalent to defining the theory on a to
the periodicity of the fields ensures that the fields are single valued. However requiring that the fields b
valued is not necessary; it is sufficient instead to require that the observables be single valued, which is e
to the condition that the action be single valued on the torus. This means that the generic fieldφ has to respect th
following boundary conditions:

(1)φ(xi + L) = Uiφ(xi), i = 1,2,3,

where the indexi is not summed andUi is a symmetry of the action. Imposing the condition in Eq.(1) is sufficient
to cancel the boundary terms.

Consider now the Dirac term in the (Euclidean) QCD Lagrangian,

(2)L= q̄(x)(/D + M)q(x),

where for our discussion it will be convenient to consider the quark fieldq(x) to be a vector in flavour space and t
quark mass matrixM to be a diagonal matrix. The possible boundary conditions depend on the symmetries
action, and in particular on the form ofM , i.e., on whether there is any degeneracy assumed for the quark m
Here we will consider the most general continuous symmetry, i.e., the flavour symmetry groupU(N)V and its
subgroups, and will not discuss the possible use of discrete symmetries (and charge conjugation in partic[5]).
An advantage of the use of continuous symmetries is that the minimum momentum can take any value
2π/L, whereas with discrete symmetries such asG-parity the lowest momentum isπ/L. Eq. (1)then implies that
Ui has to commute with the Dirac operator, and in particular with the quark mass matrix. For general va
the quark masses this implies thatUi is a diagonal matrix. In the isospin limit one could in principle, takeUi to
be non-diagonal in theu–d sector, however this choice breaks the conservation of electric charge, and will
considered explicitly here. We can therefore write the boundary condition for the quark fields in the form:

(3)q(xi + L) = Uiq(xi) = exp
(
iθa

i T a
)
q(xi) ≡ exp(iΘi)q(xi),

where theT a ’s are the generators in the Cartan subalgebra of the flavourU(N)V group commuting with the quar
mass matrix. It is convenient to redefine the quark fields by:

(4)q(x) ≡ V (x)q̃(x), whereV (x) ≡ exp

(
i
Θi

L
xi

)
.

The fieldsq̃(x) satisfy periodic boundary conditions,

(5)q̃(xi + L) = q̃(xi),

and the Lagrangian(2) is given in terms of these fields by:

(6)L= ¯̃q(x)
(
/D + (

V †(x)/∂V (x)
) + M

)
q̃(x) = ¯̃q(x)(/̃D + M)q̃(x),

where

(7)D̃µ = Dµ + iBµ, whereBi = Θi

L
for i = 1,2,3 and B4 = 0.

This is the Lagrangian of QCD with quark fields satisfying periodic boundary conditions interacting with a co
background vector field which couples to quarks with charges determined by the phases in the twisted b
conditions. The external field, in addition to breaking the cubic group symmetry, breaks also all the sym
which do not commute with it. For generic diagonalBi the broken symmetries are flavourSU(3) andI2, but notIz,
strangeness and the electric charge.
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To illustrate some of the above points and the kinematic nature of the symmetry breaking induced by the
boundary conditions, we end this section by exhibiting the propagator of a free quark using both theq and q̃

definitions. For compactness of notation we drop the flavour index and takeB = θ/L to be the twist correspondin
to the flavour represented byq with massM . The propagators are then

(8)S(x) ≡ 〈
q(x)q̄(0)

〉 = ∫
dk4

2π

1

L3

∑
�k

ei(k+B)·x

i(/k + /B) + M
= eiB·xS̃(x) and

(9)S̃(x) ≡ 〈
q̃(x) ¯̃q(0)

〉 = ∫
dk4

2π

1

L3

∑
�k

eik·x

i(/k + /B) + M

where in both cases the sum is over momenta�k = (2π/L)�n and�n is a vector of integers.S(x) satisfies the twisted
boundary condition (S(xi + L) = exp(iθi)S(x)) and (/∂ + M)S(x) = δ(x4)δ

(3)

�x,0 whereasS̃(x) satisfies periodic

boundary conditions (̃S(xi + L) = S̃(x)) and(/∂ + i/B + M)S̃(x) = δ(x4)δ
(3)

�x,0. The momentum in the denominato
is shifted (or boosted) byθ/L.

3. The effective chiral Lagrangian

In this section we derive the low-energy effective Lagrangian for QCD in the presence of twisted bounda
ditions and study its properties. The derivation of the chiral Lagrangian could be performed directly by coup
Gasser–Leutwyler Lagrangian to the external vector fieldBµ introduced above. Here instead, we choose to fol
the steps of Section2 in order to show the equivalence with QCD explicitly. Imposing the boundary conditio
Eq.(1) on the fields, implies that:

(10)Σ(xi + L) = UiΣ(xi)U
†
i ,

whereΣ is the coset representative ofSU(3)L × SU(3)R/SU(3)V andUi is defined in Eq.(3). Note that this
relation is completely fixed once the quark boundary conditions are imposed, and the results below are
unambiguously by this relation. Following the presentation in Section2, we redefine the fields by:

(11)Σ(x) ≡ V (x)Σ̃(x)V †(x),

so thatΣ̃ satisfies periodic boundary conditions. Eq.(11) corresponds to a local symmetry transformation so
only the derivative terms are affected:

(12)∂µΣ = V (x)(∂µΣ̃)V †(x) + V (x)
(
V †(x)∂µV (x)

)
Σ̃V †(x) + V (x)Σ̃

((
∂µV †(x)

)
V (x)

)
V †(x)

(13)= V (x)
(
∂µΣ̃ + [

V †(x)∂µV (x), Σ̃
])

V †(x)

(14)= V (x)
(
∂µΣ̃ + [iBµ, Σ̃])V †(x).

In terms ofΣ̃ the chiral Lagrangian reads

(15)LχPT = f 2

8

{〈
D̃µΣ̃†D̃µΣ̃

〉 − 〈
Σ̃χ† + χΣ̃†〉}, where

(16)D̃µΣ̃ ≡ ∂µΣ̃ + i[Bµ, Σ̃],
and 〈 〉 represents the trace. The Lagrangian in Eq.(15) is the standardχPT Lagrangian with periodic field
coupled to the vector external fieldBµ. Note that the long-distant nature of the boundary conditions allowsχPT

to take their effects completely into account through the simple modification in Eqs.(15) and (16). The low energy
constants are not affected by the twist (analogously to the arguments in[11]).
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Fig. 1. Auxiliary one-loop diagram withn external mesons, used in the demonstration that the effect of twisting is to shift the intern
external momenta accordingly. The unprimed and primed variables represent the external and internal lines respectively.

The effects of the twist on the mesons can be obtained directly from Eq.(16). The neutral-meson fields commu
with Bµ (recall thatΘ is diagonal) and do not receive any boost. The charged-meson fields, on the other ha
boosted by an amount proportional to the difference of the twists of the two valence quarks (v1 andv2):

(17)
[
Bi,σ

±] =
[
θv1,i − θv2,i

2L
σ3, σ

±
]

= ±θv1,i − θv2,i

L
σ±

and the spectrum of allowed meson momenta is shifted accordingly, both in external states and in interna
gators.

From the chiral Lagrangian in Eq.(15), and its extensions to higher order in the momentum expansion, it fol
that the only effect of the twisted boundary conditions is to shift all the momenta consistently in order to reco
correct boost corresponding to the flavour of each propagator and external line. We illustrate this by consid
loop contribution represented inFig. 1, which may be a one-loop contribution to ann-body process or an insertio
in a higher-order diagram. The contribution from this diagram is of the form:

(18)

∫
dk4

2π

1

L3

∑
�k

(p1 + · · · + pr + Br ′ + k)µ · · ·
[(k + Bn′)2 + m2

n′ ][(p1 + B1′ + k)2 + m2
1′ ] · · · [(p1 + · · · + p(n−1) + B(n−1)′ + k)2 + m2

(n−1)′ ]
,

where the sum is over momentaki = (2π/L)ni and the{ni} are integers.2 The factor in the numerator represen
the derivative terms at vertices in the chiral Lagrangian andBl′ refers to the momentum shift due to the exter
field on the meson in thel′ propagator of the loop. We now perform the trivial change of variablesk → k′ = k+Bn′
to rewrite the sum in Eq.(18)as

(19)

∫
dk′

4

2π

1

L3

∑
�k′

(p1 + B1 + · · · + pr + Br + k′)µ · · ·
[k′2 + m2

n′ ][(p1 + B1 + k′)2 + m2
1′ ] · · · [(p1 + B1 + · · · + p(n−1) + B(n−1) + k′)2 + m2

(n−1)′ ]
,

where now the sum is over momentak′
i = (2π/L)ni + Bn′i with integerni . Bi is the twist corresponding to th

flavour of the external linei and we have used the fact that at each vertex the sum of the twists is zero

2 Note that in general there could also be an even number of mesons attached to some vertices but this does not change the va
demonstration.
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B1′ − B2′ + B2 = 0). This condition is a consequence of the invariance of the action under the twist tra
mations. So far we have considered the theory on a single volume, where there are finite-volume artefa
in Section4 below we investigate the size of these corrections (which do depend on the boundary con
which have been imposed). In phenomenological applications we generally wish to eliminate FV corr
by taking, in principle at least, the infinite-volume limit, so that the sum in Eq.(18) goes over into the inte
gral

(20)

∫
d4k′

(2π)4

(p1 + B1 + · · · + pr + Br + k′)µ · · ·
[k′2 + m2

n′ ][(p1 + B1 + k′)2 + m2
1′ ] · · · [(p1 + B1 + · · · + p(n−1) + B(n−1) + k′)2 + m2

(n−1)′ ]
.

As required, this is precisely the expression for the contribution from this diagram with external momentapi +Bi .
For fixed external momenta (pi + Bi in the notation of Eq.(20)), the integral is independent of the bounda
conditions which have been used in the finite-volume calculations.

We conclude this section with some brief comments about the way that the infinite-volume limit mig
taken in principle. We start of course by studying a physical quantity in a finite volume. For illustration im
that the process depends on a component of momentumpi which is smaller than 2π/L for a particular lattice
simulation and so we introduce a twistθi for the corresponding flavour in directioni. Now we can envisage takin
the infinite-volume limit in a number of ways. For example, we may keepθi fixed so thatBi → 0 as the volume is
increased.pi is kept fixed in physical units, and sincepi = (2π/L)ni + θi/L for some integerni , as we increase
the volume we take higher excitation levelsni . The effect of the twist decreases as the volume increases, an
results approach those obtained with periodic boundary conditions. This is also true for momentum su
as that in Eq.(18), which are dominated by momenta of order of some physical scales and hence the releni

increase asL increases. Thus again we see that the effects of the twist decrease as the volume is increa
feature is generally true as long as the infinite-volume limit is takenkeeping the physics fixed.

4. Finite-volume effects with twisted boundary conditions

Finite-volume corrections in general, and those due to the choice of boundary conditions in particu
long-distance effects which can be studied usingχPT (for sufficiently light pseudo-Goldstone mesons and la
volumes). We start by considering processes without any final-state interactions, such as particle masses
elements of local operators with external states which consist of either the vacuum or a single hadron. F
quantities finite-volume corrections are known to be exponentially suppressed with the volume, due to the
in the absence of branch cuts (which is the case for these quantities), the Poisson formula allows us to
the sums over the discrete momenta in finite volume by infinite-volume integrals. Differences between
are exponentially small in the volume and this remains true in the presence of twisted boundary conditi
shown inAppendix A, the finite-volume correction can be calculated in terms of elliptic-ϑ functions, and decreas
exponentially at large volumes.

We now report the asymptotic finite-volume corrections (in the limitL → ∞) for pion masses and decay co
stants with twisted boundary conditions; the results demonstrate explicitly the isospin breaking at finite v
For each physical quantity we present the results in the form

(21)
�X

X
≡ X(L) − X(∞)

X(∞)
,

whereX(L) andX(∞) are the results in finite and infinite volume respectively. The full expressions for the fi
volume corrections (at NLO inχPT ) can be found inAppendix B, and their asymptotic behaviour asL → ∞ is as
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�m2
π±

m2
π±

→ 3
m2

π

f 2
π

e−mπL

(2πmπL)3/2
,

�m2
π0

m2
π0

→ 3
m2

π

f 2
π

e−mπL

(2πmπL)3/2

(
2

3

3∑
i=1

cosθi − 1

)
,

(22)
�fπ±

fπ±
→ −3

m2
π

f 2
π

e−mπL

(2πmπL)3/2

(
1

3

3∑
i=1

cosθi + 1

)
,

(23)
�fπ0

fπ0
→ −3

m2
π

f 2
π

e−mπL

(2πmπL)3/2

(
2

3

3∑
i=1

cosθi

)
.

For matrix elements involving two or more mesons in the final state the situation is more complicated
are both exponential and power finite-volume corrections. The latter are parametrically larger (and in mo
numerically larger). Two-particle energy shifts due to the finite volume, Lellouch–Lüscher factors relating
volume matrix elements to physical amplitudes and finite-volume corrections to the two-particle interp
operators at the sink which contain final state interactions, arise as power corrections in the volume. If
boundary conditions affect these terms, then they inevitably affect unitarity with obvious consequences
extraction of the matrix elements.

Consider, for instance, the case ofK → ππ decays, and imagine that only theu-quark is twisted, so that th
charged pions are boosted but not the neutral ones. In such a situationI2 is no longer a good quantum numb
so that the energy eigenstates are no longer states with a definite isospinI ; in particular they are no longer stat
with I = 0 or I = 2 as is the case when isospin is a symmetry. This can be seen even in the free-theory. S
require that the two-pion state is at rest, at tree-level the lowest energy state is|π0π0〉 with both pions at rest an
the first excited state is|π+π−〉 with the momenta of each of the two pions�pπ± = ±�θ/L, where�θ is the twist on
the up-quark. In the interacting theory the presence ofπ+π− ↔ π0π0 transitions complicates the analysis ve
significantly and, as explained in the next paragraph, it is not possible to determine physicalK → ππ amplitudes
from simulations on finite volumes using twisted boundary conditions with the power corrections in the v
kept under control. These issues were not considered in Ref.[4] and we therefore do not agree that the formu
for finite-volume corrections presented in that paper can be applied toK → ππ decays.

We now briefly demonstrate the difficulties in studying quantities involving two-pion states using bou
conditions which break isospin invariance. Consider, for example, the correlation functions

(24)〈0|π0(t)π0(t) σ (0)|0〉 and 〈0|π+(t)π−(t)σ (0)|0〉,
whereσ is some operator which can create two pions from the vacuum andπi is an interpolating operator for
pion with chargei. σ is placed at the origin and we have taken a Fourier transform at zero momentum of eac
πi fields so that only their time dependence is exhibited (of course the boundary conditions induce a mo
of O( �Θ/L) for charged pions). Fitting the measured behaviour to two exponentials we would find:

(25)〈0|π0(t)π0(t)σ (0)|0〉 =A00exp(−E0t) + B00exp(−E1t) + · · · ,
(26)〈0|π+(t)π−(t)σ (0)|0〉 =A+− exp(−E0t) + B+− exp(−E1t) + · · · ,

where, at tree-level in chiral perturbation theory,E0 = 2mπ andE1 = 2
√

m2
π + �p 2

π± . The ellipses represent term

with higher energies and we assume here these can be neglected. By fitting the correlation functions a
constantsA00,A+−,B00,B+− can, in principle at least, be determined numerically and we would then know w
combinations of the two-pion operators have no overlap with states with energiesE0 andE1 respectively (we cal
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these states|s0〉 and|s1〉 and denote byΠ2
0 andΠ2

1 the operators with no overlap with|s1〉 and|s0〉 respectively).
Note that in order to extractB00 andB+− it is necessary to include the non-leading exponential in the fit, w
eliminates a major potential advantage of using twisted boundary conditions forK → ππ decays. Combining th
results from these fits, together with those of four-pion correlation functions of the form〈0|π(t)π(t)π(0)π(0)|0〉,
we can determine the matrix elements〈0|Π2

0 |s0〉, 〈0|Π2
1 |s1〉, 〈0|σ |s0〉 and〈0|σ |s1〉. Unfortunately, even if we ar

able to carry out the procedure described above with reasonable accuracy, it is still not clear how to relate tfinite-
volumeeigenstates|s0〉 and|s1〉 (which have different energies) to theinfinite-volumeeigenstates|(ππ)I=0〉 and
|(ππ)I=2〉 since the known procedures for doing this[7–9] rely on isospin symmetry. In some respects this prob
resembles the one of extending the discussion of Refs.[7–9] above theKK̄ threshold. We conclude that new ide
would be necessary beforeK → ππ matrix elements could be determined with twisted boundary conditions.

In order to overcome the above difficulties one should introduce twisted boundary conditions which p
isospin symmetry and this is not possible in general. Christ and Kim[5] however, have pointed out that one c
make some progress for(ππ)I=2 states if one restricts the twist angle toπ (they call this caseH -parity). The
K+ → π+π0 matrix element can be related by the Wigner–Eckart theorem to a matrix element of a�Iz = 3/2 op-
erator into aπ+π+ final state. By choosing�θ = (π,0,0) for the down quark and�0 for the up quark and performin
the Fourier transforms over the positions of the two pions with weights 1 and exp{i(−2π/L)x} respectively, we
obtain aπ+π+ final state with the two pions having momentaπ/L and−π/L in thex direction (hence remainin
in the centre-of-mass frame). With this procedure we are restricted toθx = π but the need for extracting term
corresponding to non-leading exponentials is avoided. Note that this procedure is possible, because the
matrix element can be related to one in which the final state only containsπ+ mesons. ForI = 0 final states this
is not possible, although in Ref.[5] it is also shown that by introducing discrete (G-parity) boundary condition
one can treatI = 0 two-pion states with the two pions having momenta±π/L (but additional ideas will have to b
introduced to incorporate kaon states at rest into the formalism).

5. Partially twisted boundary conditions

Until now we have assumed that the twisted boundary conditions are applied consistently to both the
and sea quarks. In lattice simulations this implies that a new set of gauge configurations must be gene
each choice of the twist. In addition, if different twists are imposed on theu- andd-quark fields then one mus
use formulations of lattice fermions for which the light quark determinant is positive definite for each flav
would clearly be very welcome if one could avoid new simulations for every value of�Θ and in this section we
analyse the consequences of introducing different boundary conditions for sea and valence quarks. In p
we consider the case in which the valence quarks satisfy twisted boundary conditions and the sea quar
periodic boundary conditions. In this case the QCD Lagrangian can be conveniently written as:

(27)L= q̄v(x)(/̃Dv + Mv)qv(x) + q̄g(x)(/̃Dg + Mg)qg(x) + q̄s(x)(/̃Ds + Ms)qs(x),

where the subscriptsv,g, s stand for valence, ghost and sea andqg are commuting spinors. Moreover in order
have a cancellation of valence loops we require thatDg = Dv andMv = Mg . Eq. (27)can be rewritten in the form

(28)L= Q̄(x)(/D + M)Q(x), whereQ(x) = (
qv(x), qg(x), qs(x)

)
,

and now bothBµ andM take values in the graded algebra ofU(Nv + Ns |Nv)V .3

The derivation of the Feynman rules for both QCD andχPT is standard and we do not present it here. Hav
different twists for valence and sea quarks breaks the valence-sea symmetry. This is clearly a finite-volum
but the relevant question is whether the corrections induced by this asymmetry decrease like powers of th

3 Note that globally the structure of the graded symmetry group is more involved[12] but this is not relevant for our discussion.



C.T. Sachrajda, G. Villadoro / Physics Letters B 609 (2005) 73–85 81

QCD
states)
use sea

ponential

does not
xample,
tation

(a)
lly

e dif-

among
d exten-

lso
ts. Such

e have
ons.

oid
resting
valence

o
y
nt

both sea
y between
nable to

ns) it is
for each
s
nd sea

se with the
or exponentially.4 We find that the situation is analogous to the violation of unitarity in partially quenched
[14] and that for many physical quantities (including those with at most a single hadron in the initial and final
the use of partially twisted boundary conditions induces errors which are exponentially small. This is beca
quarks appear in loops and the sums over the loop-momenta can be approximated by integrals with ex
precision.

We start by considering processes with at most one hadron in the external states. As long as the shift
induce cuts in the correlation function, the correction is still exponentially suppressed in the volume. For e
if we consider an unquenched simulation with three flavours, in the asymptotic limit, we find (in the no
defined in Eq.(21)):

(29)
�fK±

fK±
→




−9
4

m2
π

f 2
π

e−mπ L

(2πmπL)3/2 , (a)

−m2
π

f 2
π

e−mπ L

(2πmπL)3/2

(1
2

∑3
i=1 cosθi + 3

4

)
, (b)

−m2
π

f 2
π

e−mπ L

(2πmπL)3/2

(∑3
i=1 cosθi − 3

4

)
, (c)

for the three cases in which thed- and s-quarks satisfy periodic boundary conditions but the up quark is
untwisted, (b) fully twisted (both valence and seau-quarks satisfy twisted boundary condition) and (c) partia
twisted (only the valenceu quark is twisted). This shows that, in general, finite-volume corrections could b
ferent for the three cases but they are always exponentially small.

In [15] Golterman and Pallante demonstrated that (partial) quenching can induce “unphysical” mixing
weak operators because of their different transformation properties under the flavour group and its grade
sion. These effects are proportional to the differenceMs − Mv and have to disappear in full QCD. One could a
ask whether imposing different boundary conditions for sea and valence quarks could lead to similar effec
effects are proportional toθv − θs and again appear as exponentially small finite-volume corrections.

Not surprisingly the case of amplitudes with multiparticle external states is much more complicated. W
seen in Section4 that it is not possible to isolateππ states with a given isospin using twisted boundary conditi
We therefore restrict our consideration here to theH - andG-parity cases forI = 2 andI = 0 two-pion states
respectively. Since now the twist angle is fixed to beπ , the practical advantage of using partial twisting to av
generating new gluon configurations for every value of the angle is much less compelling, but it is inte
nevertheless to consider the theoretical issues. The effects of different boundary conditions for sea and
quarks are analogous to those discussed in[14] for the partially quenched theory. ForI = 2 the sea quarks d
not enter the FSI directly and the difference between imposingH -parity boundary conditions fully or partiall
is exponentially small. (The power corrections in the volume withH -parity boundary conditions are differe
of course from those with periodic ones, but they are calculable[4,10].) For I = 0 and partialG-parity boundary
conditions on the other hand, the mesons in intermediate states in correlation functions necessarily include
and valence quarks, whereas the external states are made of valence quarks only. The lack of degenerac
external and internal states implies a breakdown of unitarity and Watson’s theorem and we are then u
extract the physical matrix elements.

In conclusion we have found that for a large class of processes (those without final state interactio
possible to neglect the twist of the determinant avoiding the need to generate new gauge configurations
twist. This is not true however, for all processes. In particular, forK → ππ matrix elements, with the two pion
in anI = 0 state, ifG-parity boundary conditions are used they must be implemented for both the valence a
quarks.

4 Again, low energy constants are not affected by the twist as can be seen combining the discussion made above for the full ca
one in Ref.[13].



82 C.T. Sachrajda, G. Villadoro / Physics Letters B 609 (2005) 73–85

For
ther form-
artially
nerate a
ful.
ses with
ould
ic range
tion of
logically

aarten

/00468
503369

order

s

6. Conclusions

In this Letter we have usedχPT to study the finite-volume corrections with twisted boundary conditions.
quantities without final-state interactions, such as meson masses, decay constants or semileptonic and o
factors, we confirm that these corrections remain exponentially small in the volume. This remains true with p
twisted boundary conditions for which only the valence quarks are twisted, thus eliminating the need to ge
new set of gluon configurations for each choice of twisting angle and makes the technique much more use

We have also demonstrated that twisted boundary conditions cannot be applied in general to proces
final-state interactions, such asK → ππ decays. This is disappointing since twisted boundary conditions w
have been particularly useful for lattice studies of these decays, extending very significantly the kinemat
accessible in a simulation. In spite of this particular disappointment, we look forward to the implementa
twisted boundary conditions to the wide range of processes for which they are applicable and phenomeno
useful.
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Appendix A. Finite-volume corrections in chiral perturbation theory

In this appendix we derive the finite-volume corrections with twisted boundary conditions at one-loop
in χPT . The generic expression for tadpole diagrams in finite volume is given by the left-hand side of

(A.1)
1

L3

∑
�q

1

[(�q + �θ
L
)2 + M2]s

=
√

4π(s + 1
2)

(s)

∫
d4q

(2π)4

1

(q2 + M2)s+ 1
2

+ ξθ
s (L,M).

The first term on the right-hand side of Eq.(A.1) is the corresponding infinite-volume integral andξθ
s (L,M)

contains the finite-volume corrections. We now generalise the procedure of Ref.[16] to twisted boundary condition
and demonstrate that these corrections are exponentially small in the volume.

ξθ
s (L,M) = 1

L3

∑
�q

1

[(�q + �θ
L
)2 + M2]s

−
√

4π(s + 1
2)

(s)

∫
d4q

(2π)4

1

(q2 + M2)s+ 1
2

= 1

(s)

∞∫
0

dτ τ s−1e−τM2 1

L3

∑
�q

e−τ(�q+�θ/L)2 − 1

(s)

∞∫
0

dτ τ s−1e−τM2
∫

d3q

(2π)3
e−τ �q2

(A.2)= 1

(s)

∞∫
0

dτ τ s−1e−τM2

[
1

L3

3∏
i=1

ϑ

(
4π2τ

L2
,

θi

2π

)
− 1

8(πτ)3/2

]

(A.3)= L2s−3

(2π)2s(s)

∞∫
dτ τ s−1e

−τ
(

ML
2π

)2
[

3∏
i=1

ϑ

(
τ,

θi

2π

)
−

(
π

τ

)3/2
]
,

0
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c-

gives a

n
the
where we have defined the ellipticϑ -functionϑ(τ,α) by

(A.4)ϑ(τ,α) ≡
∞∑

n=−∞
e−τ(n+α)2

.

ϑ(τ,α) satisfies the Poisson summation formula:

(A.5)ϑ(τ,α) =
√

π

τ
e−τ α2

ϑ

(
π2

τ
,−i

ατ

π

)

so that

(A.6)ξθ
s (L,M) = 1

(4π)3/2(s)

∞∫
0

dτ τ s−5/2e−τM2

[
3∏

i=1

ϑ

(
L2

4τ
,−i

2θiτ

L2

)
e−τθ2

i /L2 − 1

]
.

The leading finite-volume corrections are now readily obtained. Using

(A.7)ϑ

(
L2

4τ
,−i

2θiτ

L2

)
e−τθ2

i /L2 =
∞∑

m=−∞
e− L2

4τ
m2+iθim =

∞∑
m=−∞

e− L2
4τ

m2
cos(θim)

we see that for largeL

(A.8)ϑ

(
L2

4τ
,−i

2θiτ

L2

)
e−τθ2

i /L2 → 1+ 2e− L2
4τ cos(θi).

If cos(θi) = 0, then the leading finite-volume corrections are given by them = ±2 terms in Eq.(A.7) and hence
decrease with a larger exponent. For the generic case in which cos(θi) 
= 0 for i = 1,2,3 the behaviour of the
finite-volume corrections asL → ∞ is given by

(A.9)ξθ
s (L,M) →

√
π

(s)(2π)3/2

e−ML

(ML)2−s
(2M2)3/2−s(cosθ1 + cosθ2 + cosθ3)

(A.10)= ξ0
s (L → ∞,M) × cosθ1 + cosθ2 + cosθ3

3
,

whereξ0
s are the finite-volume corrections with(θ1, θ2, θ3) = �0. Eq.(A.9) demonstrates that finite-volume corre

tions are exponentially small with twisted boundary conditions.
The second diagram which appears at one loop level contains two propagators and in finite volume

contribution proportional to:

(A.11)
1

L3

∑
�k

∫
dk4

2π

N
[(k + A1)2 + m2

1][(q − k + A2)2 + m2
2]

,

where the numeratorN is a function of momenta and masses andq is the injected momentum. For illustratio
we consider the simplest case for whichN = 1 (terms in Ncontaining the loop momentum can be reduced to
tadpole integrals of the form in Eq.(A.1)) and �q = 0 (the finite-volume effects in integrals with non-zero�q can
readily be obtained from the expressions below by the substitution�A2 → �A2 + �q).

After introducing the Feynman parameterx and performing thek4 integration Eq.(A.11) reduces to:

(A.12)
1

4

1∫
0

dx
1

L3

∑
�k

[(�k + �A(x)
)2 + M2(x)

]−3/2
,
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y.
gral

s

t NLO in
where

�A(x) = �θ(x)

L
= x �A1 − (1− x) �A2,

M2(x) = (1− x)m2
2 + xm2

1 + x(1− x)
(
q2 + ( �A1 + �A2)

2)
= (1− x)m2

2 + xm2
1 − x(1− x)

(
E2 − ( �A1 + �A2)

2),
where in the last line we have made the replacementq4 → iE andE is the physical (Minkowski) injected energ
Eq. (A.12) has the same form as the left-hand side of Eq.(A.1), so we can proceed just as for the tadpole inte
to obtain the expression for the correspondingξθ -function:

(A.13)ξθ
3/2(L,m1,m2, q) = 2

(2π)3
√

π

1∫
0

dx

∞∫
0

dτ τ1/2e−τ(
M(x)L

2π
)2

[
3∏

i=1

ϑ

(
τ,

θi(x)

2π

)
−

(
π

τ

)3/2
]
,

which is exponentially small in the volume as long asM2(x) > 0, i.e., as long as no branch cuts appear.
In partially quenched chiral perturbation theory there are also contributions withdouble polesin which one or

both propagators in Eq.(A.11) are squared. These can be written in terms of derivatives of(A.11) w.r.t. the masse
and the finite-volume corrections therefore remain exponentially small.

Appendix B. Masses and decay constants

In this appendix we present the full finite-volume corrections for meson masses and decay constants a
χPT with twisted boundary conditions (using the notation of Eq.(21)):

�m2
π±

m2
π±

= 1

2f2
ξ1/2(L,mπ0) − 1

6f2
ξ1/2(L,mη),

�m2
π0

m2
π0

= 1

f 2
ξθ

1/2(L,mπ±) − 1

2f2
ξ1/2(L,mπ0) − 1

6f2
ξ1/2(L,mη),

�m2
K±

m2
K±

= 1

3f2
ξ1/2(L,mη),

�m2
K0

m2
K0

= 1

3f2
ξ1/2(L,mη),

�fπ±

fπ±
= − 1

2f2
ξθ

1/2(L,mπ±) − 1

2f2
ξ1/2(L,mπ0) − 1

4f2
ξθ

1/2(L,mK±) − 1

4f2
ξθ

1/2(L,mK0),

�fπ0

fπ0
= − 1

f 2
ξθ

1/2(L,mπ±) − 1

4f2
ξθ

1/2(L,mK±) − 1

4f2
ξθ

1/2(L,mK0),

�fK±

fK±
= − 1

4f2
ξθ

1/2(L,mπ±) − 1

8f2
ξ1/2(L,mπ0) − 3

8f2
ξ1/2(L,mη) − 1

2f2
ξθ

1/2(L,mK±)

− 1

4f2
ξθ

1/2(L,mK0),

�fK0

fK0
= − 1

4f2
ξθ

1/2(L,mπ±) − 1

8f2
ξ1/2(L,mπ0) − 3

8f2
ξ1/2(L,mη) − 1

4f2
ξθ

1/2(L,mK±)

− 1

2f2
ξθ

1/2(L,mK0),
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h
where theξθ
s (L,mf )-functions are defined inAppendix Aand the twist angleθ = θf is the one associated wit

the meson of flavourf (e.g.,θπ+ = θu − θd ).
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