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SUMMARY

Protein tyrosine phosphatases (PTPs) play a critical
role in regulating cellular functions by selectively
dephosphorylating their substrates. Here we present
22 human PTP crystal structures that, together with
prior structural knowledge, enable a comprehensive
analysis of the classical PTP family. Despite their
largely conserved fold, surface properties of PTPs
are strikingly diverse. A potential secondary sub-
strate-binding pocket is frequently found in phospha-
tases, and this has implications for both substrate
recognition and development of selective inhibitors.
Structural comparison identified four diverse cata-
lytic loop (WPD) conformations and suggested
a mechanism for loop closure. Enzymatic assays re-
vealed vast differences in PTP catalytic activity and
identified PTPD1, PTPD2, and HDPTP as catalytically
inert protein phosphatases. We propose a ‘‘head-to-
toe’’ dimerization model for RPTPg/z that is distinct
from the ‘‘inhibitory wedge’’ model and that provides
a molecular basis for inhibitory regulation. This phos-
phatome resource gives an expanded insight into
intrafamily PTP diversity, catalytic activity, substrate
recognition, and autoregulatory self-association.

INTRODUCTION

Protein tyrosine phosphorylation is a dynamic process governed

by the balanced action of tyrosine kinases and protein tyrosine

phosphatases (PTPs) and is a critical event in the regulation of

numerous physiological processes (Pao et al., 2007; Tonks,

2006) . Dysregulation of PTPs is associated with a multitude of

diseases, and many members of the PTP family have been

recognized as potential therapeutic targets (Tautz et al., 2006).

The human genome contains 107 PTPs, with the class I

cysteine-based PTPs constituting the largest group. This group

can be further subdivided into 61 dual-specificity phosphatases
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and 38 tyrosine-specific PTP genes, the ‘‘classical PTPome,’’

which are the focus of this study. Classical PTPs have been

further subdivided into receptor (R1–R8) and nontransmem-

brane (NT1–NT9) subgroups (Alonso et al., 2004; Andersen

et al., 2001). Twelve receptor PTPs have two catalytic domains

(tandem domains), while the remaining PTPs all have a single

catalytic phosphatase domain. In tandem-domain receptor

protein tyrosine phosphatases (RPTPs), it is the PTP (D1) domain

adjacent to the plasma membrane that displays catalytic activity

while the PTP (D2) domain is either inactive or has negligible

catalytic activity (Andersen et al., 2001). The functional role of

the D2 domain has not yet been defined although possible roles

in regulating RPTP stability, specificity, and dimerization have

been suggested. Furthermore, all RPTPs, with the exception of

RPTPa and RPTP3, contain large and diverse extracellular

regions that regulate cell contacts and adhesion (Aricescu

et al., 2007).

The �280 residue PTP catalytic domain consists of an a/b

structure, and biochemical and structural studies have led to

a detailed understanding of the catalytic mechanism (Barford

et al., 1994; Zhang, 2002). Key features of the domain include

the PTP signature motif, the mobile Trp-Pro-Asp ‘‘WPD’’ loop

that in the closed conformation positions the conserved and

catalytically important aspartate residue, and the phosphotyro-

sine recognition loop.

PTPs exhibit exceptional substrate specificity in vivo, which is

conveyed both by the catalytic domain and other regulatory

mechanisms including restricted subcellular localization, post-

translational modification events (e.g., phosphorylation), specific

tissue distribution, and accessory or regulatory domains (e.g.,

KIM motifs or SH2 domains) (Tiganis and Bennett, 2007). Within

the catalytic domain, the phosphotyrosine recognition loop

(between a1–b1) contributes to the selective recognition of

phosphotyrosine over phosphoserine/threonine, and two non-

conserved residues following the conserved tyrosine in this

loop are important in substrate interactions. A secondary phos-

photyrosine (pY) binding site, proximal to the active site, has

been identified in PTP1B. The secondary site is accessed from

the active site via a channel referred to as the ‘‘gateway’’ region

(Peters et al., 2000; Puius et al., 1997; Salmeen et al., 2000). The

secondary pY-binding pocket has enabled the development of
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high-affinity inhibitors that target both pY-binding sites (Tautz

et al., 2006).

A variety of mechanisms for regulation of PTP function have

been reported, including inactivation of receptor PTPs by dimer-

ization, reversible oxidation, and regulation via extracellular

ligands and phosphorylation (Tonks, 2006). Dimerization as

a control mechanism was first suggested based on structural

studies on the membrane-proximal D1 domain of RPTPa and

EGF receptor/CD45 chimeras (Bilwes et al., 1996; Desai et al.,

1993). The structure revealed a dimeric assembly in which an

inhibitory N-terminal helix-turn-helix wedge motif occluded the

active site of the interacting catalytic domain. Subsequently,

RPTPa and a number of other PTP domains have been shown

to homodimerize at the cell surface resulting in inactivation

(Jiang et al., 2000).

Here we report the crystal structures of 22 PTP domains,

including two tandem-domain RPTP structures and a detailed

structural comparison of this protein family. The generated struc-

tures include at least one member of each PTP subgroup and

thereby provide a comprehensive coverage of the classical

phosphotyrosine-specific PTPome. This phosphatome resource

gives an expanded insight into intrafamily PTP diversity, catalytic

activity, substrate recognition, and autoregulatory self-associa-

tion and supports a ‘‘head-to-toe’’ dimerization model for

RPTPg/z that provides a molecular basis for inhibitory regulation

of this subgroup.

RESULTS

In this study we used a large-scale structural comparison to

identify shared as well as target-specific structural features of

members of the classical PTP family. A prerequisite for a conclu-

sive structural intrafamily comparison is a comprehensive

coverage of the analyzed protein family. To this end, we deter-

mined 22 catalytic domain structures of the human PTP family

including 16 not published previously (Supplemental Data avail-

able online). Combined with other structure determination efforts

(see http://ptp.cshl.edu/ and Almo et al., 2007), the available

structures now provide high-resolution information for at least

one member of each of the main receptor and nontransmem-

brane subgroups across the classical PTPome. The catalytic

domains of the remaining PTPs of unknown structure are more

than 49% identical in sequence to their closest structure-deter-

mined family member allowing the construction of reliable

homology models. The structural coverage of the PTP family is

outlined in the phylogenetic tree shown in Figure 1A. We also

report here structures of two tandem-domain RPTPs, RPTP3

and RPTPg, revealing the domain organization for the PTP

subgroups R4 and R5. The novel structures discussed here

were refined at high resolution (average resolution of 2.0 Å and

satisfactory stereochemistry; Supplemental Data).

Examination of the constructed phylogenetic tree (Figure 1A)

revealed that the D2 domains from the R2A and R4 subgroups

are most closely related to their respective D1 domains, sug-

gesting a gene duplication event, while the D2 domains from

RPTPg, RPTPz, RPTPm, RPTPk, RPTPr, and RPTPl cluster

independently of their D1 domains and appear to have a distinct

evolutionary root.
Superimposition of all known individual PTP D1 and D2

domain structures showed that PTPs fold into a single domain

of b sheets flanked by a helices and have a highly conserved

topology. The key structural features are highlighted in Figure 1B.

Superimposition of all five tandem-domain RPTP structures

(CD45, LAR, RPTPs, RPTPg, and RPTP3) showed that the orien-

tation of the D1 and D2 domains is highly conserved and root

mean square deviation (rmsd) values of less than 4.4 Å were ob-

tained, for each pairwise comparison, considering Ca positions

of both domains (Supplemental Data).

PTPs Have Very Diverse Surface Properties
In contrast to the conserved ternary structure, the surfaces of

PTPs are surprisingly diverse. A structure-based alignment of

all experimental structures for nontransmembrane and receptor

PTPs was used to map conserved residues onto the surface of

PTP1B and the D1 domain of RPTPm, respectively (Figures 1C

and 1D). This mapping of surface residues identified only a few

conserved surface patches comprising loop regions surrounding

the active site (Figure 1C, labels A and C). Conserved surfaces

are formed by the phosphotyrosine recognition loop (KNRY

motif) and by conserved glutamine residues of the Q loop.

Conserved WPD loop residues are largely buried (Figure 1C,

label D). Highly diverse regions including the two residues

following the KNRY motif (Figure 1C, label B) and the topology

of the secondary substrate-binding pocket present in a number

of PTPs (Figure 1C, label F) contribute to defining substrate

specificity. A conserved tyrosine residue (Tyr1019 in RPTPm)

flanking the active site is characteristic for RPTPs (Figure 1D,

label A), and the face opposing the active site contains only

one conserved cleft as already noted (Andersen et al., 2001).

The diverse PTP surface gives rise to significant differences in

surface electrostatic potential, a property that is likely to influ-

ence substrate recognition, association with regulatory proteins,

and regulatory mechanisms such as dimerization (Figure 2). This

diversity, which was first noted by Alonso et al. based on

homology models (Alonso et al., 2004), is apparent not only

between different PTP family members but also within individual

subgroups. However, some diversity in surface potential is intro-

duced by differences in the open or closed states of the active

site (e.g., compare PTP1B open/closed conformations; Figure 2),

but such changes are localized only to a small surface area.

Particularly notable within the RPTP group is the significantly

different electrostatic potentials of CD45 and either LAR or

RPTPg. The active site and proximal surface in most PTPNs

are largely electropositive, whereas in most RPTPs areas of posi-

tive electrostatic potential are mainly localized to the active sites.

Catalytic Loop (WPD) Movement
The dynamics of the opening/closing transition of the WPD loop

has implications for PTP substrate recognition and catalytic effi-

ciency and is also of paramount importance for the development

of selective PTP inhibitors that may recognize a certain loop

conformation. Structural comparisons of all available PTP struc-

tures identified four main WPD loop conformations: a closed

state, an intermediate state, an open state, and an atypically

open state present in STEP, LYP, and GLEPP1 (Figure 3A). The

atypically open state is associated in STEP with a stabilizing
Cell 136, 352–363, January 23, 2009 ª2009 Elsevier Inc. 353
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Figure 1. Structural Coverage of the PTPome and Surface Diversity

(A) Phylogenetic tree of human PTP D1 and D2 domains indicating crystal structures determined (SGC Oxford structures are highlighted in yellow). Details of other

PTP structures can be found at http://www.sgc.ox.ac.uk/research/phosphatases. PTPs are grouped into receptor PTPs (groups R1–R8) and nontransmembrane

PTPs (groups NT1–NT9). The abbreviated Human Genome Organisation (HUGO: http://www.genenames.org/) gene symbol nomenclature is used in the tree, and

the corresponding common names and PDB codes are provided in Supplemental Data.

(B) Ribbon diagram of PTP1B with labeling of key secondary structural elements. The Ca of the catalytic cysteine residue is shown as a space-filling CPK model.

(C) Conserved residues from a structure-based alignment of nonreceptor PTPs mapped onto the surface of PTP1B. Green: highly conserved, light brown:

conserved residue properties only, and gray: nonconserved.

(D) Conserved residues from a structure-based alignment of receptor PTPs mapped onto the surface of RPTPm.
310 helix C-terminal to the WPD loop (Eswaran et al., 2006) and in

LYP and GLEPP1 an extra turn of helix a3 following the WPD

loop. The presence of an atypically open state, catalytically non-

active conformation, in three PTPs from different subgroups

suggests that this conformation may have significance for the

family as a whole.

On cocrystallization of a substrate-trapping mutant of STEP

(Cys472Ser) with pY bound to the active site, the WPD loop

was also present in the atypical open state (Figure 3B), indicating

that this conformation is stable and that substrate binding alone

is not sufficient to induce loop closure as initially suggested

based on apo structures and substrate complexes of PTP1B

(Barford et al., 1998). The observation of an open substrate

complex and closed apo structures (Pedersen et al., 2004) raises

the question of the mechanism that triggers loop closure. Struc-

tural comparison revealed that all closed structures share

a tightly bound ‘‘catalytic water’’ molecule coordinated by two

conserved glutamine residues (Gln262 and 266 in PTP1B)

(Figure 3C). In PTP1B this conserved water molecule has been
354 Cell 136, 352–363, January 23, 2009 ª2009 Elsevier Inc.
noted previously in a closed apo-structure, in addition to three

water molecules that mimic the presence of oxygen atoms of

a substrate phosphotyrosine (Pedersen et al., 2004). In contrast,

in structures with an open or atypical WPD loop conformation

this water molecule was not observed or was significantly dis-

placed, suggesting that it is a key part of the closure mechanism.

A Secondary Substrate-Binding Pocket Is Present
in Many PTPs
In order to determine whether other PTPs have a secondary

substrate-binding pocket analogous to that found in PTP1B,

we analyzed the structural topology and residue characteristics

of this region. The presence of a secondary substrate-binding

site cannot easily be predicted by sequence comparisons alone

since it depends not only on the characteristics of the residues in

this region but also on the conformation of the loop connecting

helix a20 and helix a1, which we term the ‘‘second-site loop.’’

The great diversity in conformations of this loop is shown

(Figure 4). On the basis of these structural comparisons the

http://www.sgc.ox.ac.uk/research/phosphatases
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Figure 2. Diversity in Surface Electrostatic Potential across the PTPome
Surface representations showing the calculated electrostatic potential (rendered in ICM) of PTP family members from crystal structures (black) and homology

models (red). The colors of surface elements were capped at ±3 kcal/electron units (+3 = blue; �3 = red) when the calculated potentials were transferred to

the surface. The WPD loop conformation is indicated under each structure.
PTPs can be grouped into five categories. In the first category

are TCPTP, SHP1, SHP2, BDP1, LYP, PEST, PTPBAS, DEP1,

MEG2, and GLEPP1, which have a ‘‘PTP1B-like’’ accessible

pocket that harbors a basic residue corresponding to Arg24 of

PTP1B (Figure 4 and Supplemental Data). This pocket has the

potential to accommodate pY at the +1 position as in PTP1B

or potentially other acidic or phosphorylated residues in posi-

tions N-terminal to the substrate pY. Also within this category

are RPTPg and RPTPb, which have the secondary pocket with

a basic residue albeit with bulky residues in the gateway region.

In the second category are PTPs in which both the gateway and

the second-site loop are open and accessible as found in the R8

pseudophosphatase group (IA2, IA2b) but a cysteine residue

occupies the position of Arg24. The third category is exemplified
by the R2A group (LAR, RPTPs, and RPTPd) in which the gateway

region contains bulky residues that block access to an open

secondary pocket, with an aspartate residue in the position cor-

responding to Arg24. In the fourth category, both the gateway

and secondary pocket are blocked and the inaccessible binding

cavity harbors an aromatic residue or a proline in position of

Arg24. The second-site loop assumes a twisted conformation

in these phosphatases. This architecture is present in the

subgroups NT5 (PTPH1, MEG1), NT6 (PTPD1, PTPD2), R1

(CD45), R2B (RPTPm, RPTPk, RPTPr), and R4 (RPTPa, RPTP3).

In the fifth category, the gateway is open and accessible while

the secondary site is blocked by an aromatic or proline residue

located in the closed secondary site loop. This scenario is present

in the R7 group phosphatases (PCPTP, STEP, and HEPTP).
Cell 136, 352–363, January 23, 2009 ª2009 Elsevier Inc. 355



Activity of PTPs toward Peptide Substrates
To assess enzymatic activity and substrate selectivity of PTP

catalytic domains, we selected a panel of diverse phosphopep-

tides derived from known regulatory phosphorylation sites and

assayed them against 28 highly purified PTPs (Figure 5). The

peptides were grouped into acidic substrates, mixed acidic-

basic substrates, and basic substrates based on the character-

istics of residues in N- and C-terminal flanking regions of the

phosphorylated site. Specific activity toward the general PTP

substrate DiFMUP was measured and used to standardize the

amount of protein for phosphopeptide assays. PTPs with parti-

A

B

C

Figure 3. Novel Conformations and Movement of the Catalytic

(WPD) Loop

(A) WPD loop conformations are shown by a PTP representative of each state:

closed (blue, PTP1B, PDB: 1SUG); open (yellow, PTP1B, PDB: 2HNP); and

atypical (magenta, GLEPP1, PDB: 2GJT; STEP, PDB: 2BIJ; Lyp, PDB:

2P6X). The intermediate WPD loop conformation of PCPTP1 (PDB: 2A8B) is

not shown for clarity. Other PTP structures are shown with a thin transparent

line tracing the backbone and are colored according to conformation.

(B) Superimposition of the structure of STEP-C/S in complex with pY (PDB:

2CJZ; gray) and the apo STEP (PDB: 2BIJ; light green) showing that the

WPD loop conformation does not change on substrate binding (pTyr, orange).

The catalytic water molecule (Wa) corresponding to that found in closed struc-

tures is shown.

(C) Superimposition of the structure of STEP-C/S in complex with pY (PDB:

2CJZ; green) and PTP1B with the insulin receptor peptide (PDB: 1G1H; red).

The conserved water molecule found in closed structures is shown: PTP1B

(1SUG, yellow); GLEPP1 (2G59, orange); HePTP (2A3K, black), DEP1 (2NZ6,

magenta). The arrow indicates the position of the displaced water molecule

in STEP-C/S structure.
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cularly high enzymatic activity against generic substrates were

RPTPs and PTP subgroups R5, R3, NT1, NT2, NT3, NT4, and

NT5. CD45 and members of subgroups R3 and R5 were

extremely promiscuous and dephosphorylated most phospho-

peptides with reasonable activity. The subgroups NT1, NT2,

NT3, and NT5 exhibited a pronounced preference for acidic resi-

dues N-terminal to the phosphorylation site. In PTP1B this selec-

tivity has been explained by substrate peptide interaction with

Arg47 of the pY-recognition loop (Zhang, 2002).

In contrast, RPTPs, the R7 group, and NT4 group PTPs were

quite selective and showed a preference for a sequence derived

from the phosphorylation site in N-cadherin (pY785), a reported

substrate of RPTPs (Siu et al., 2007). Surprisingly, the phospha-

tases PTPD1 and PTPD2 were inactive against the entire panel of

phosphopeptides despite displaying a similar level of activity as

CD45 toward DiFMUP. The phosphatase HDPTP was also inac-

tive toward the generic substrate DiFMUP and the entire panel of

phosphopeptides.

Self-Association of PTPs In Vitro
Dimerization of receptor PTPs has been proposed as a key

mechanism of regulation that leads to inhibition of enzymatic

activity. We have used analytical ultracentrifugation (AUC) to

examine the catalytic domain oligomerization of single- and

tandem-domain receptor PTPs from all of the major subgroups.

Surprisingly, sedimentation velocity measurements showed that

all single-domain RPTPs studied (IA2, IA2b, GLEPP1, DEP1, and

STEP) were entirely monomeric in solution (Figure 6A), as were

tandem-domain receptor PTPs (RPTPa, CD45, RPTP3, and

RPTPm) (Figure 6B). The determined molecular masses calcu-

lated from AUC velocity data ranged from 68.5 kDa to

74.2 kDa in agreement with the theoretical mass of monomeric

tandem domains.

In contrast RPTPg showed significant and concentration-

dependent dimerization (Figure 6B). Sedimentation equilibrium

confirmed that RPTPg formed a stable dimer in solution. The

experimental data fit well to a self-association model resulting

in determination of a dissociation constant (KD) of 3.5 ± 0.3 mM.

The correct masses for the monomeric and dimeric protein were

obtained using this analysis and the residuals showed low

systematic deviations (Figure 6C).

RPTPg Dimerizes in a Head-to-Toe Orientation
Analysis of the RPTPg tandem-domain structure revealed that

RPTPg associated with a symmetry-related molecule as

a ‘‘head-to-toe’’ dimer (i.e., with the D1 domain of one molecule

interacting with the D2 domain of a second molecule and vice

versa) (Figure 6D). The interaction between RPTPg monomers

involves extensive electrostatic interactions from the active site

D1 domain of one RPTPg molecule, visible as a highly electro-

positive pocket, interacting with an electronegative surface of

the D2 from the other molecule. The dimer interface covers

1200 Å2 (�5% of the total molecule surface area) and involves

residues from the phosphotyrosine recognition loop, the P loop

at the bottom of the active site cleft, and sheet b6, while the

D2 domain interface involves the loop connecting strands b10–

b11. Multiple hydrogen bonds and salt bridges are involved in

the interaction between the two molecules (Supplemental
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Figure 4. Secondary Substrate-Binding Pockets

(A) Two extreme conformations of the second-site loop are shown (orange) from RPTPg (extended helix) and HEPTP (closed in conformation). The catalytic

cysteine is shown in a space-filling CPK representation, and loops are colored as follows: WPD (magenta), b5/b6 loop (green), and gateway (red). The dually

pTyr phosphorylated insulin receptor peptide (from PDB: 1G1H) is shown superimposed (for reference only) to indicate the position of the secondary

substrate-binding pocket. The positions of Arg24 and gateway residues Met258 and Gly259 of PTP1B are shown in an enlarged view.

(B) Surface topology and electrostatic charge for the active site (pY), gateway region, and secondary pocket (2pY) are shown for each of the five categories with

the dually pTyr phosphorylated insulin receptor peptide superimposed.

(C) Representative second-site loop conformations are shown for each category (see also Supplemental Data). Category I: SHP2, BDP1, LYP; Category II: IA2,

IA2b; Category III: LAR, RPTPs; Category IV: PTPH1, MEG1, PTPD2, CD45; Category V: STEP, HEPTP, PCPTP1.
Data). In this dimeric form, the active site of RPTPg is occluded

by the D2 domain of the interacting molecule, suggesting that

dimerization in this conformation would prevent substrate

access leading to suppression of enzymatic activity.

In order to determine whether the molecular mechanism of

dimerization in solution correlates with that observed in the

crystal structure, we mutated residues of the dimer interface

from either the D1 or D2 domains (Figure 6E). In RPTPg mutant

‘‘RKEE’’ residues, Arg958 and Lys960 of the D1 domain were

mutated to glutamic acid, and in mutant ‘‘DDKK’’ residues,

Asp1305 and Asp1306 of the D2 domain were mutated

to lysine. Both the RKEE and DDKK mutants were entirely

monomeric in solution, as assessed by velocity and equilibrium

AUC analysis validating the head-to-toe dimerization model

(Figure 6F).
DISCUSSION

This study provides structural information for more than 22

human PTP catalytic domains, thereby completing structural

coverage for all major subgroups of the classical PTP family

and enabling a comprehensive large-scale structural compar-

ison. This resource provides a family-wide insight into catalytic

(WPD) loop dynamics, self-association, and catalytic domain

substrate specificity.

Structural comparisons identified an atypically open WPD

loop conformation in LYP, GLEPP1, and STEP (Eswaran et al.,

2006), suggesting a regulatory role in diverse family members.

This conformation represents an inactive conformation in which

the WPD aspartate is moved far out of the active site. Low crys-

tallographic temperature factors observed in this loop region
Cell 136, 352–363, January 23, 2009 ª2009 Elsevier Inc. 357
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Figure 5. Analysis of PTP In Vitro Substrate Specificity

Phosphatase activity of PTP catalytic domains against a panel of phosphopeptides derived from potential physiological substrates. Calculated reactions rates

(Abs360/s) measured over control (a pSer-containing peptide and no peptide) have been color-coded with higher rates represented by darker shades of blue.

Initial linear reaction rates were measured using the EnzCheck coupled continuous spectrophotometric assay over �5 min. Phosphopeptide names are derived

from the SwissProt human gene name and the number of the pY residue. Sequences have been grouped based on sequence characteristics relative to the

position of the pTyr: (A) N-terminal acidic; (B) N-terminal acidic and C-terminal basic; (C) mixed; (D) N-terminal basic and C-terminal acidic; (E) mixed basic;

and (F) controls.
suggest that the atypically open conformation is stable, and

multiple crystal forms ruled out that the WPD loop assumed

this conformation as a result of crystal contacts. In protein

kinases, inactive conformations and active site dynamics are

crucial for the regulation of catalytic activity (Huse and Kuriyan,

2002). By analogy this conformation may represent a regulatory

mechanism for PTPs and may find applications in the develop-

ment of selective and potent inhibitors that target PTP inactive

states.

Secondary Substrate-Binding Pockets
The new structural data and analysis presented here suggest

that a secondary substrate-binding pocket, similar to that found

in PTP1B, is present also in SHP2, BDP1, LYP, SHP1, TCPTP,

MEG2, PTPBAS, DEP1, and GLEPP1. Previous structural

studies of PTPBAS also provided evidence of a secondary phos-

photyrosine pocket (Villa et al., 2005). The basic pocket is also

found in the phosphatases RPTPg and RPTPb; however, the

topology of the region differs in these phosphatases in that the
358 Cell 136, 352–363, January 23, 2009 ª2009 Elsevier Inc.
gateway region is inaccessible. The hypothesis that SHP1 and

LYP have the potential to interact with phosphoproteins contain-

ing adjacent phosphotyrosines is consistent with reports that

Zap-70 is a substrate of these PTPs (Pao et al., 2007). However,

given that a relatively small number of proteins contain two adja-

cent phosphotyrosines, this pocket in other PTPs may interact

with phosphothreonine, serine, or an acidic residue in a position

N-terminal to the substrate pY. The secondary pocket of PTP1B,

and more recently LYP, has been successfully exploited in the

design of selective bidentate inhibitors (Yu et al., 2007). A similar

inhibitor design strategy may also be used in the design of inhib-

itors of SHP2 for cancer (Chan et al., 2008) and may now be

applied to a much wider subset of PTPs.

Catalytic Activity
Our analysis of phosphatase activity using both a generic

substrate and a panel of phosphopeptides represents a large

set of comparable data across representative PTPs. The specific

activity and phosphopeptide selectivity profile of each PTP
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Figure 6. Self-Association of PTPs and

Dimerization of RPTPg

(A) Sedimentation velocity AUC measurements of

single-domain PTPs: IA2 (red); GLEPP1 (dark

blue); DEP1 (green); IA2b (black); STEP (light

blue). Differential sedimentation coefficient distri-

bution, c(s), is plotted versus the apparent sedi-

mentation coefficient corrected to water at 20�C,

s20,w, together with the differential molecular

weight distribution, c(M), versus molecular weight,

M (inset). Experiments were conducted with

a protein concentration of 0.8 mg/ml (�24 mM).

(B) Sedimentation velocity AUC measurements of

tandem-domain RPTPs: RPTPa (black); CD45

(red); RPTP3 (green); RPTPm (dark blue); RPTPg

(light blue). Plotted data are as in (A). Inset shows

experiments conducted with RPTPg at protein

concentrations of 0.2 (orange), 0.4 (magenta), and

0.8 (black) mg/ml. The dimer peak is indicated by

an asterisk (*).

(C) Sedimentation equilibrium analysis of RPTPg

employing a rotor speed of 7500 (black) and

10,000 rpm (red). The solid line denotes a fitted

curve resulting from global nonlinear regression

analysis with a self-association model. The resid-

uals for the fit are shown in the upper panel of the

graph. The determined dissociation constant for

the dimer was (KD) of 3.5 ± 0.3 mM.

(D) Dimer interface in the crystal structure of

RPTPg. The two molecules interact in a head-

to-toe orientation with the D1 domain (blue) of

one molecule interacting with the D2 domain (red)

of a second molecule. The catalytic cysteine

(magenta) of the D1 domain is shown in a space-

filling representation.

(E) Details of the RPTPg dimer interface. The back-

bone of the D1 domain from one molecule is

colored blue and the backbone of the D2 domain

from the interacting molecule is colored orange.

H-bonds (black) and salt-bridges (gray) are

depicted as dotted lines. See Supplemental Data

for further details.

(F) Disruption of the RPTPg dimer interface by

site-directed mutagenesis. The figure shows

sedimentation velocity data using wild-type RPTPg and RPTPg dimer interface mutants. RPTPg wild-type 0.8 mg/ml (green) and 0.4 mg/ml (black); RPTPg-

RKEE mutant 0.8 mg/ml (blue) and RPTPg-DDKK mutant 0.4 mg/ml (red) are shown. The dimer peak is indicated by an asterisk (*).
correlate closely within their respective subgroups. It is therefore

unlikely that the obtained data are influenced by the chosen

domain boundaries or the presence of epitope tags in some

proteins. In addition, all analyzed proteins had crystallization

grade purity. The finding that specific activity of PTPs varies

markedly across the PTP family implies that catalytic activity

provides a mechanism of regulation in itself. All members of

the R3 subgroup as well as RPTPg were highly active, and it

will be interesting to establish how this activity is regulated

in vivo. In the case of RPTPg, which had the highest enzymatic

activity in our panel, the observed head-to-toe dimerization

might provide such an inactivating mechanism. In contrast R1

group members (e.g., CD45) and R2B group had a more than

two orders of magnitude lower enzymatic activity, suggesting

that enhancement of activity by tight association with substrates

in signaling complexes may be important for efficient signaling.

RPTPa, RPTP3, and RPTPs displayed a more limited peptide
recognition capacity in vitro, which may be related to the pres-

ence of a bulky residue in the gateway region. RPTPs showed

a preference for a sequence derived from a phosphorylation

site in N-cadherin (pY785), consistent with the recent identifica-

tion of N-cadherin as an in vivo RPTPs substrate (Siu et al.,

2007).

Remarkably PTPD1, PTPD2, and HDPTP were completely

inactive against all peptides, even at high enzyme concentra-

tions. Mass spectrometry confirmed that the protein mass corre-

sponds to the expected mass, ruling out oxidation as an expla-

nation for the lack of activity. Also, analysis of multiple PTPD1,

PTPD2, and HDPTP constructs over a pH range (pH 5.5–8.2)

gave similar results and the crystal structure of PTPD2 (Barr

et al., 2006) confirmed correct folding of the PTP domain. Exam-

ination of the protein sequence indicates that these phospha-

tases contain one or more atypical residues in the conserved

phosphotyrosine recognition loop (KNRY), the WPD loop, and
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the phosphate-binding loop (Andersen et al., 2001). The lack of

PTPD2 activity toward phosphopeptides is likely due to the

absence of a tyrosine residue in the phosphotyrosine recognition

loop that has the function of stabilizing binding of the substrate

pY via a p-p stacking interaction. Both PTPD1 and HDPTP

have a variation in the highly conserved WPD loop sequence

where a glutamate replaces the conserved aspartate residue. It

is likely that this sequence change is critical since this mutation

has been shown to reduce enzymatic activity by three orders

of magnitude in PTP1B (Flint et al., 1997), and the WPE loop

sequence is found in several RPTP D2 domains with negligible

catalytic activity. HDPTP has a further sequence change

(alanine/serine) in the phosphate-binding loop that resembles

the inactive pseudophosphatases IA2/IA2b.

Several earlier publications agree with our in vitro findings

(Cao et al., 1998; Ogata et al., 1999; Jui et al., 2000), but studies

demonstrating activity in vivo have also been reported. For

instance phosphatase activity of PTPD1 has been shown to

regulate EGFR and SRC signaling (Cardone et al., 2004) and

b-catenin has been reported as a substrate of PTPD2 in endothe-

lial cells (Wadham et al., 2003). These PTPs might therefore be

activated by a mechanism that remains to be elucidated.

Previously it was reported that the phosphatase PTPRQ

(PTPS31), which contains glutamate instead of aspartate in the

WPD loop, dephosphorylates phospholipids in preference to

phosphopeptides (Oganesian et al., 2003). Based on this report,

we assayed PTPD1, PTPD2, and HDPTP against a number of

phospholipid and inositol phosphates; however, none of

the three phosphatases exhibited activity toward these potential

substrates (data not shown). Thus, PTPD1, PTPD2, and HDPTP

are highly specific for certain phosphotyrosine peptide

substrates, act on so far unidentified substrates, or are intrinsi-

cally inactive phosphatases that function by noncatalytic means

as has been described for IA2b (Mziaut et al., 2006).

Regulation by Dimerization
Our structural analysis of single- and tandem-domain RPTPs

together with biophysical studies and prior structural information

from CD45 and LAR (Nam et al., 1999, 2005) reveal that PTP

catalytic domains do not dimerize in solution under physiological

buffer conditions and provide strong evidence against the long-

held inhibitory wedge model. The inhibited dimeric state

involving the N-terminal wedge, as defined in the RPTPa crystal

structure, is not present in any other PTP structure. Moreover,

analysis of tandem-domain structures showed that the orienta-

tion of D1 and D2 domains is highly conserved and is incompat-

ible with the inhibitory wedge model due to a steric clash of D2

domains (Supplemental Data). In the present study we showed

that this is also true for RPTP3, which is in the R4 subgroup

together with RPTPa, the prototype of the inhibitory wedge

model. All constructs used encompass the sequence corre-

sponding to the N-terminal helix-turn-helix, i.e., the ‘‘N-terminal

wedge,’’ of RPTPa D1. The secondary structure of this region

(i.e., helix-turn-helix) is conserved in all classical PTPs, including

RPTPg, although amino acid residue conservation is low. The

protein concentration (�1 mg/ml, 15–30 mM) used in our studies

corresponds to an estimate of the RPTP concentration in

a membrane (�10 mM). Although we conclude that PTP catalytic
360 Cell 136, 352–363, January 23, 2009 ª2009 Elsevier Inc.
domains do not dimerize in solution, regulation of RPTPs by

dimerization may occur in vivo through other means involving

transmembrane domains, juxtamembrane regions (Gross et al.,

2002), or extracellular ligands (Lee et al., 2007), proteolysis of

the D1-D2 linker (Sonnenburg et al., 2003), or upon oxidation

(Blanchetot et al., 2002; Groen et al., 2008; Tonks, 2005). In

support of these data we observed dimerization of RPTPa under

oxidizing conditions (Supplemental Data).

In contrast to other RPTPs, RPTPg did self-associate strongly in

solutionand a dimeric head-to-toe arrangement of molecules was

observed in the crystal structure. Mutation of residues from both

the D1 and the D2 dimer interfaces abolished dimerization con-

firming that the molecular basis for the dimerization observed in

solution correlates with the dimer model suggested by the crystal

structure (Figure 6). Our model predicts that RPTPg mutants

would have greater catalytic activity than the wild-type at concen-

trations that promote dimerization; however direct comparison at

high concentration was not feasible due to assay limitations. A

head-to-toe dimerization model involving RPTPd and RPTPs

has also been suggested based on yeast two-hybrid studies

with individual D1 and D2 domains (Wallace et al., 1998). We did

not analyze heterodimerization in this study; however, analysis

of surface electrostatics suggests that the molecular interaction

we observe for RPTPg is not directly applicable to other RPTPs.

For RPTPz, extracellular ligands have been identified including

the heparin-binding growth factors, pleiotrophin, and the cyto-

toxin VacA secreted by Helicobacter pylori (Fujikawa et al.,

2003; Maeda et al., 1999), and it has been reported that ligand

binding induces dimerization and inactivation of RPTPz resulting

in an increase in tyrosine phosphorylation of its substrate proteins

such as b-catenin, Fyn, and GIT1 (Fukada et al., 2006; Nakamura

et al., 2003; Perez-Pinera et al., 2007). Given the high sequence

identity between RPTPz and RPTPg it is likely that both molecules

are regulated in a similar manner and key residues of the dimer

interaction are conserved between these two phosphatases

(Supplemental Data). In our AUC studies, the dual-domain of

RPTPg dimerizes with a dissociation constant (KD) of 3.5 ±

0.3 mM, which is within the estimated plasma membrane concen-

tration of 10 mM based on an estimate of 10,000 RPTPg mole-

cules in a cell. It is likely that an equilibrium exists between the

monomeric and dimeric states in the membrane, and ligand

binding to extracellular regions would shift the equilibrium to

the dimeric inactive state in which the active site is inaccessible.

Our proposed regulatory model (Figure 7) does not involve reor-

ganization of the D1-D2 domain interaction but requires flexibility

in the linker between the transmembrane domain and the first D1

phosphatase domain. The 86 residue linker between the plasma

membrane and start of the D1 domain is sufficiently long to allow

for the required flex/turn to accommodate this model. However,

future studies are necessary to establish this molecular mecha-

nism in vivo as a form of inhibitory regulation.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Expression constructs were amplified and subcloned into pGEX-6P2 vector

(Amersham Biosciences), which incorporates a PreScission protease cleavage

site, for expression as glutathione-S-transferase fusions or into modified pET



vectors (Supplemental Data). The modified pET vectors with a LIC cloning site

incorporate an N-terminal 63 His tag (pLIC-SG1, pNIC28-Bsa4) with a TEV

cleavage site (MHHHHHHSSGVDLGTENLYFQ*SM) or a C-terminal 63 His

tag (pNIC-CH) without a cleavage site (AHHHHHH). All constructs were verified

by sequencing. Expression constructs were transformed into E. coli BL21(DE3)

and proteins were purified according to previously described procedures

(Eswaran et al., 2006; see also Supplemental Data). Mass spectrometry on

an LC-ESI-MS-tof was used to confirm the identity of the purified protein. Infor-

mation on individual proteins is compiled in the Supplemental Data.

Enzymatic Assays

Phosphatase activity against phosphopeptides was measured using the Enz-

Check (Invitrogen) continuous spectrophotometric assay (Webb, 1992). Reac-

tions were measured in a 384 well plate in 80 ml containing 50 mM Tris-HCl,

pH 7.4, 1 mM MgCl2, 50 mM NaCl, 1 mM DTT, 200 mM MESG (2-amino-6-mer-

capto-7-methylpurine riboside), 1 U/ml PNP, 125 mM of the phosphopeptide

and PTP concentrations as shown in Figure 5. Absorbances were measured

continuously at 360 nm using a Spectramax plate reader at room temperature

and initial linear reaction rates were calculated over a 5 min reaction. Specific

activity toward 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) was

measured in 384 well plate format using a buffer containing 25 mM MOPS,

pH 7, 50 mM NaCl, and 1 mM DTT and excitation and emission wavelengths

of 355 nm and 460 nm, respectively (see Supplemental Data for further details).

Analytical Ultracentrifugation

Sedimentation velocity experiments were carried out on a Beckman XL-I

Analytical Ultracentrifuge. Protein samples were studied at concentrations of

0.2–0.8 mg/ml in 10 mM HEPES (pH 7.5), 150 mM NaCl, and 1 mM TCEP at

8�C, employing a rotor speed of 50,000 rpm. Absorbance data were analyzed

with SEDFIT version 9.4 (Schuck, 2000) calculating c(s) distributions. Equilib-

rium experiments were performed at three protein concentrations (0.2, 0.4,

and 0.8 mg/ml) and two centrifugation speeds (7500 rpm and 10,000 rpm),

and data were evaluated by using the software package Ultraspin (Dimitry

Veprintsev, MRC Centre for Protein Engineering).

Crystallization and Structure Determination

Individual proteins were crystallized in sitting drops at either 4�C or 20�C. Crys-

tals were cryoprotected and flash frozen, and X-ray diffraction data were

collected at 100 K on beam lines X10SA at the Swiss Light Source (SLS), on

beam line 14.1 at the Berliner Elektronenspeicherring-Gesellschaft für Syn-

chrotronstrahlung (BESSY), and at a Rigaku FRE Superbright home source.

Diffraction images were indexed and integrated using MOSFLM (Leslie,

1992) or DENZO in HKL2000 (Otwinowski and Minor, 1997) or XDS (Kabsch,

1993) and data were scaled using SCALA, SCALEPACK in HKL2000, or

XSCALE, respectively. Structures were solved by molecular replacement

using PHASER (McCoy et al., 2007) and were refined against maximum likeli-

hood targets using restrained refinement and TLS protocols implemented in

REFMAC (Murshudov et al., 1997). Iterative rounds of refinement were inter-

spersed with manual rebuilding in COOT (Emsley and Cowtan, 2004). Addi-

tional information is compiled in the Supplemental Data and is also available

at http://www.sgc.ox.ac.uk/research/phosphatases.

ACCESSION NUMBERS

The crystal structures reported in this paper have been deposited in the Protein

Data Bank with the following PDB codes: 2OC3 (PTPN18, BDP1); 2JJD

CA

FN
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Phosphatase

Inactive
Phosphatase

Ligand
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membrane

D2
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Figure 7. Schematic Model of RPTPg Dimerization-Induced Inactivation

The proposed transition of RPTPg from monomer to dimer on ligand binding is shown. The carbonic anhydrase (CA), fibronection (FN), and intracellular tandem

phosphatase (D1 and D2) domains are represented as low-resolution surfaces. Surface representations are based on PDB codes: 1JDO for the carbonic

anhydrase domain, 2GEE for the fibronectin domain, and 2NLK for the tandem-phosphatase domain. In the monomeric state, the active site of RPTPg (red)

is accessible and the phosphatase is active. Ligand binding to the extracellular part of RPTPg brings two molecules into close proximity and consequently

the phosphatase domains dimerize in a head-to-toe arrangement as in the RPTPg crystal structure with the D2 domain of one molecule blocking the active

site (D1) from a second molecule, leading to suppression of phosphatase activity.
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(PTPRE, RPTP3); 2PA5 (PTPN9, MEG2); 2B49 (PTPN3, PTPH1); 2I75 (PTPN4,

MEG1); 3B7O (PTPN11, SHP2 D1); 2A8B (PTPRR, PCPTP1); 2QEP (PTPRN2,

IA2b); 2P6X (PTPN22, LYP); 2BZL (PTPN14, PTPD2); 2BIJ (PTPN5, STEP);

2BV5 (PTPN5, STEP); 2CJZ (PTPN5, STEP-Cys/Ser mutant & pY); 2A3K

(PTPN7, HePTP); 2C7S (PTPRK, RPTPk); 2OOQ (PTPRT, RPTPr); 2NLK

(PTPRG, RPTPg D1-D2); 2H4V (PTPRG, RPTPg D1); 2AHS (PTPRB, RPTPb);

2GJT (PTPRO, GLEPP1); 2NZ6 (PTPRJ, DEP1-Cys/Ser mutant); 2CFV

(PTPRJ, DEP1-Trp/Ala mutant).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, five

figures, and five tables and can be found with this article online at http://

www.cell.com/supplemental/S0092-8674(08)01513-4.
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