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It is well known that the sum of negative (positive) eigenvalues of some finite
Hermitian matrix V is concave (convex) with respect to V. Using the theory of the
spectral shift function we generalize this property to self-adjoint operators on a
separable Hilbert space with an arbitrary spectrum. More precisely, we prove that
the spectral shift function integrated with respect to the spectral parameter from
&� to * (from * to +�) is concave (convex) with respect to trace class perturba-
tions. The case of relative trace class perturbations is also considered. � 2000
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1. INTRODUCTION AND MAIN RESULTS

Consider an arbitrary Hermitian matrix V. Let *j (V ), j # N denote its
eigenvalues enumerated in the increasing order and repeated according to
their multiplicity. Consider the eigenvalue sums

S (&)
* (V )= :

j : *j (V )�*

(*j (V)&*), S (+)
* (V)= :

j : *j (V )�*

(* j (V )&*),

which equivalently can be written in the form

S (&)
* (V )=&|

*

&�
N (&)(*$; V ) d*$, S (+)

* (V )=|
�

*
N (+)(*$; V ) d*$,

with N (\) being the counting functions, i.e. N (\)(*; V )=*[ j : \* j (V )�
\*]. By means of the min-max principle it can be easily proved (see, e.g.,
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[17, 26]) that S (&)(V ) is concave and S (+)(V ) is convex with respect to V,
i.e., for any Hermitian matrices V1 and V2 and any : # [0, 1]

\S (\)
* (:V1+(1&:)V2)�\(:S*

(\)(V1)+(1&:) S (\)
* (V2)). (1)

These inequalities play an important role in several problems of quantum
and statistical physics (see, e.g., references cited in [17]).

In the present note we show that for a wide class of self-adjoint operators
on a separable Hilbert space H, which need not have purely discrete spec-
trum, the properties (1) are valid for properly regularized S (\)

* . More
precisely, instead of V compared to the zero operator we consider pairs
(A0+V, A0). For an arbitrary self-adjoint operator A0 and any self-adjoint
trace class operator V we define

`(&)(*; A0+V, A0) :=|
*

&�
!(*$; A0+V, A0) d*$ (2)

and

`(+)(*; A0+V, A0) :=|
�

*
!(*$; A0+V, A0) d*$, (3)

where !(*; A0+V, A0) is the spectral shift function for the pair of operators
(A0+V, A0). Recall that for an arbitrary self-adjoint operator A0 and any
self-adjoint trace class operator V the spectral shift function !(*; A0+V, A0)
exists such that !( } ; A0+V, A0) # L1(R). Let F # C 1

loc (R) be such that its
derivative F $ belongs to the Wiener class W(R), i.e. F $(*) is representable in
the form

F $(*)=|
R

e&i*t d_(t),

where _( } ) is a finite complex-valued Borel measure on R, |_(R)|<�.
Then

tr(F(A0+V)&F(A0))=|
R

F $(*) !(*; A0+V, A0) d*. (4)

This last equation may be used as a definition of the spectral shift function.
A wider class of functions for which the trace formula (4) remains valid is
discussed in [2]. A review on the spectral shift function is the paper by
Birman and Yafaev [3] (see also the book [27] and [5�7, 19] for recent
results).
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In the sequel we use the notation Jp , p�1 for the von Neumann�
Schatten ideals of compact operators such that in particular J1 denotes the
set of the trace class operators (see, e.g., [9]). spec(A) denotes the spec-
trum of the operator A. Q(A) is the domain of the quadratic form
associated with the self-adjoint operator A.

If in some open interval (a, b) the spectrum of A0 is purely discrete then
!(b&0; A0+V, A0)&!(a+0; A0+V, A0) equals the difference of the total
multiplicities of the spectra of A0 and A0+V lying in (a, b). Thus if we take
A0=*+I with some *+>sup spec(V ), then `(&) (*; A0+V, A0)=S*

(&)(V )
for all *<*+ . Similarly A0=*&I with some *&<inf spec(V) leads to
`(+)(*; A0+V, A0)=S*

(+)(V) for all *>*& .

Theorem 1. Let A0 and V be self-adjoint operators on a separable
Hilbert space H, V # J1 . For an arbitrary real-valued nonincreasing f of
bounded total variation the functional

g(V)=|
R

f (*) !(*; A0+V, A0) d* (5)

is concave with respect to the perturbation V, i.e., for arbitrary V1 , V2 # J1

the inequality

g(:V1+(1&:) V2)�:g(V1)+(1&:) g(V2) (6)

holds for all : # [0, 1].

In particular we can take f (*)=/(&�, *0](*), the characteristic function
of (&�, *0] with arbitrary *0 # R, such that g(V )=`(&)(*0 ; A0+V, A0),
the integrated spectral shift function (2). From Theorem 1 it follows that
`(&)(*; A0+V, A0) is concave with respect to V.

It is known that

|
R

!(*; A0+V, A0) d*=tr V,

which is obviously linear in V. Since an arbitrary nondecreasing function
f� of bounded total variation can be represented as a difference of a constant
and a nonincreasing f of bounded total variation we obtain

Corollary 1. Let A0 and V be as in Theorem 1. For an arbitrary
real-valued nondecreasing f� of bounded total variation the functional

g~ (V)=|
R

f� (*) !(*; A0+V, A0) d*
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is convex with respect to the perturbation V, i.e. for arbitrary V1 , V2 # J1 the
inequality

g~ (:V1+(1&:) V2)�:g~ (V1)+(1&:) g~ (V2)

holds for all : # [0, 1].

In particular f� (*)=/[*0 , +�)(*) satisfies the conditions of the corollary
and thus `(+)(*; A0+V, A0) defined by (3) is convex with respect to V.

Corollary 2. Let the function f satisfy the conditions of Theorem 1.
Let V(:) be a J1 -valued operator family concave (in the operator sense) with
respect to :. Then the real-valued function : [ g(V(:)) is concave. Similarly,
if f satisfies the conditions of Corollary 1 and V(:) is convex, then
: [ g~ (V(:)) is also convex.

Theorem 1 and Corollary 2 will be proved in Section 2 below.
We note that a special case of this result was proved recently by Gesztesy

et al. [8, Corollary 1.9] by different methods.
In the article [4] written by the present author in collaboration with

R. Geisler and R. Schrader we have proven that the integrated spectral shift
function for the pair of Schro� dinger operators is concave with respect to
the perturbation potential. Here we will prove that this property holds for
an arbitrary pair (A, A0) of self-adjoint semibounded operators on a
separable Hilbert space H provided that their difference is a relative trace
class perturbation of A0 .

More precisely, we suppose that A0 is a self-adjoint operator, semi-
bounded from below, and V is also self-adjoint and A0-compact in the
form sense, i.e. for all a>&inf spec(A0) the operator (A0+a)&1�2

V(A0+a)&1�2 is compact. Then the operator AV=A0+V, defined in the
form sense, is self-adjoint with Q(AV)=Q(A0) and also semibounded from
below. Suppose that for some p�1 and for all sufficiently large a

(AV+a)&p&(A0+a)&p # J1 . (7)

If I is an interval of the real axis such that I#spec(AV) _ spec(A0) and
for some real-valued strictly monotone . # C 2

loc(I) the difference
.(AV)&.(A0) is trace class then the spectral shift function !(*; AV , A0) for
the pair of operators (AV , A0) can be defined by means of the relation

!(*; AV , A0) :==!(.(*); .(AV), .(A0)), ==sign .$(*), (8)

which turns out to be independent of .. Obviously, !(*; AV , A0) satisfies
the trace formula (4) for some class of admissible functions F. This con-
struction is known in the literature as the ``invariance principle'' for the
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spectral shift function (see e.g. [3, 27]). Setting in (8) .(*)=(*+a)&p we
obtain

!(*; AV , A0)=&!((*+a)&p; (AV+a)&p, (A0+a)&p). (9)

It vanishes for all *<inf[spec(AV), spec(A0)].
In the special case A0=&2 in L2(R&) and V being the multiplication

operator by a real-valued measurable function V(x) the conditions above
are satisfied with any p>(&&1)�2 for &�4 and with p=1 for &�3
provided that

V # L&�2(R&) & l1(L2(R&)) for &�5,

V # Lr(R&) & l1(L2(R&)) for &=4 and some r>2,

V # L2(R&) & L1(R&) for &=2, 3,

V # L1(R) for &=1.

For the definition of the Birman�Solomyak classes lp(Lq) see, e.g., [24].
Let C(A0 , a0 , p), a0 # R, p�1 denote a set of self-adjoint operators on

the separable Hilbert space H satisfying the following properties:

(i) every V # C(A0 , a0 , p) is A0 -compact in the form sense;

(ii) a0>&inf spec(AV) for all V # C(A0 , a0 , p) and the condition
[7] is satisfied for all V # C(A0 , a0 , p) and all a�a0 ;

(iii) the set C(A0 , a0 , p) is convex, i.e., V1 , V2 # C(A0 , a0 , p) implies
that :V1+(1&:) V2 # C(A0 , a0 , p) for all : # [0, 1].

We will say that a set possessing these properties for some a0 # R and p�1
is A0 -convex. Obviously C(A0 , a0 , p) is also A-convex for any operator A
such that A&A0 # C(A0 , a0 , p).

As an example consider two self-adjoint operators Vj which are A0 -compact
in the form sense and satisfy

(A0+a)&1�2 Vj (A0+a)&p&1�2 # J1 , j=1, 2

for some a>&inf spec(A0) and p�1. Any operator lying in the convex
hull [:V1+(1&:) V2 , : # [0, 1]] of [V1 , V2] is obviously also A0 -compact
in the form sense. Take a0>a such that

&(A0+a0)&1�2 Vj (A0+a0)&1�2&<1

for both j=1, 2. By [22, Theorem XI.12] we obtain that the condition (7)
is satisfied for all V=:V1+(1&:) V2 with : # [0, 1] and arbitrary a�a0 .
Thus, the convex hull of [V1 , V2] is A0-convex.
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Theorem 2. Let A0 be a self-adjoint operator semibounded from below
and C(A0 , a0 , p) be some A0 -convex set. Let q equal p if p=1 and the
smallest odd integer larger than p if p>1. Let AV with V # C(A0 , a0 , p)
denote the operator A0+V defined in the form sense. For an arbitrary
real-valued nonnegative nonincreasing f of bounded total variation on
[&a0 , +�) such that

sup
* # [&a0 , +�)

(1+|*| )q+1 | f (*)|<�

the functional

g(V )=|
R

f (*) !(*; AV , A0) d*

is concave on C(A0 , a0 , p), i.e., for arbitrary V1 , V2 # C(A0 , a0 , p) the
inequality

g(:V1+(1&:) V2)�:g(V1)+(1&:) g(V2) (10)

holds for all : # [0, 1].

The proof of this theorem will be given in Section 3 below.
As discussed in [4] (see also Proposition 3.1 below) the concavity (con-

vexity) of g(V ) (g~ (V ), respectively) implies that g(:V) is subadditive and
g~ (:V ) is superadditive with respect to : # R+ . Subadditivity and superad-
ditivity properties with respect to the perturbation (rather than with respect
to the coupling constant) do not hold generally. In the special case of the
Schro� dinger operators this was observed in [4, 14, 15]. Subadditivity and
superadditivity properties of the spectral shift function play an important
role in some problems related to random Schro� dinger operators [14, 15].
Also they allow one to study the strong coupling limit. In particular, in
Section 3 we will prove

Corollary 3. Let A0 be an arbitrary self-adjoint operator and V�0.
Assume that either

(i) V is trace class or

(ii) A0 is semibounded from below, V is A0 -compact in the form
sense and (A0+a)&1�2 V } (A0+a)&p&1�2 # J1 for some p�1 and some a>
&inf spec(A0).
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Then for any nonincreasing function f of bounded total variation, which in
the case (ii) satisfies additionally the conditions of Theorem 2, the limit

lim
: � �

1
: |

R

f (*) !(*; A0+:V, A0) d*

exists and is finite.

For other results related to the strong coupling limit we refer to [20, 21, 23].
Most of the results of the present note have appeared previously in [13]

in a slightly less general form.

2. TRACE CLASS PERTURBATIONS

The proof of Theorem 1 relies on the following result of Birman and
Solomyak [2]:

Lemma 2.1. Let f �0 be a nonincreasing function with bounded total
variation. Then for any self-adjoint operators A0 and V on H, V # J1

(i) the real-valued function : [ tr[ f (A0+:V) V] is nonincreasing,
i.e., for :1�:2 the inequality

tr[ f (A0+:1V ) V]�tr[ f (A0+:2 V) V]

holds,

(ii)

|
R

f (*) !(*; A0+:V, A0) d*=|
:

0
tr[ f (A0+sV ) V] ds.

Remark 2.1. The proof in [2] of part (i) relies on the theory of the
double Stieltjes operator integral. An alternative proof not using this
formalism is given by Gesztesy et al. [8]. Part (ii) of the lemma is proven
in [2] for the case f (*)=/(&�, *0](*). The present extension is immediate.
Alternative proofs of (ii) have appeared in [5, 25]. An operator-valued
version of this formula for sign-definite perturbations is given in [5].

From Lemma 2.1 (i) it follows that

G : : [ |
:

0
tr[ f (A0+sV ) V] ds
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is concave. Indeed a necessary and sufficient condition for G( } ) to be
concave is

2G(:)&G(:+h)&G(:&h)�0 (2.1)

for all : # R, h�0. Since : [ tr[ f (A0+:V ) V] is nonincreasing we have

|
:+h

:
tr[ f (A0+sV ) V] ds&|

:

:&h
tr[ f (A0+sV ) V] ds�0,

which is equivalent to (2.1). Now by the claim (ii) of Lemma 2.1 it follows
that the functional g(V ) (5) is concave with respect to the coupling
constant.

By the chain rule for the spectral shift function (see, e.g., [3])

!(*; A1+:V, A1)=!(*; A1+:V, A0)+!(*; A0 , A1),

we have that

|
R

f (*) !(*; A1+:V, A0) d*

is also concave with respect to : for arbitrary A0 and A1 such that
A1&A0 # J1 . Thus for arbitrary t1 , t2 # R and arbitrary V # J1 we have

|
R

f (*) !(*; A1+:t1V+(1&:) t2 V, A0) d*

�: |
R

f (*) !(*; A1+t1 V, A0) d*

+(1&:) |
R

f (*) !(*; A1+t2V, A0) d*

for all : # [0, 1]. Taking t1=0, t2=1, A1=A0+V1 , and V=V2&V1 we
obtain

g(:V1+(1&:) V2)�:g(V1)+(1&:) g(V2),

thus proving the claim of Theorem 1, however, under the additional
requirement that f �0. To eliminate this requirement let us consider the
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function f1 , which differs from f �0 by a negative constant c. Since tr V is
linear in V, the induced functional

g1(V )=|
R

f1(*) !(*; A0+V, A0) d*= g(V )+c tr V

is also concave in V. This completes the proof of Theorem 1.

Proof of Corollary 2. By Theorem 1

g(:V1+(1&:) V2)�:g(V1)+(1&:) g(V2) (2.2)

for all : # [0, 1]. By the monotonicity of the spectral shift function with
respect to the perturbation g(V ) is nondecreasing with respect to V, i.e.,
g(V1)� g(V2) for V1�V2 .

Let now V1=V(;1) and V2=V(;2). By the concavity of V(:), i.e., by

V(:;1+(1&:) ;2)�:V(;1)+(1&:) V(;2),

and by the monotonicity of g(V ), from (2.2) it follows that

g(V(:;1+(1&:) ;2))�:g(V(;1))+(1&:) g(V(;2)).

The second part of the claim can be proved similarly.

3. RELATIVE TRACE CLASS PERTURBATIONS

We turn to the case of relative trace class perturbations of A0 and prove
Theorem 2. The conditions of this theorem imply that

sup
* # [&a0 , +�)

(*+a0)q+1 | f (*)|<� (3.1)

with q being equal to p if p=1 and to the smallest odd integer larger than
p if p>1. Choose arbitrary V1 , V2 # C(A0 , a0 , p). Obviously, [(1&:)
(V2&V1), : # [0, 1]]�C(A0 , a0 , p)&V1 and the set C1(A0 , a0 , p) :=
C(A0 , a0 , p)&V1 is A0 -convex. Note that 0 # C1(A0 , a0 , p). Thus, as in the
case of trace class perturbations it suffices to prove that for any
V # C1(A0 , a0 , p) the function g(:V) is concave with respect to : # [0, 1].

We start with the simplest case p=1 in the condition (7). For all a�a0

the resolvents (A:V+a)&1 and (A0+a)&1 are bounded nonnegative
operators. By assumption their difference is trace class and therefore the
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spectral shift function !(*; A:V , A0) can be defined by means of the
invariance principle as given by (9). For all a�a0 it satisfies the inequality

|
R

|!(*; A:V , A0)|
(*+a)2 d*�&(A:V+a)&1&(A0+a)&1&J1

. (3.2)

Lemma 3.1. Let f (*)�0 be a nonincreasing function of bounded total
variation. Then for all a�a0

ga(:)=|
R

f (*)
(*+a)2 !(*; A:V , A0) d*

is concave with respect to :.

Proof. We change the integration variable * � t=(*+a)&1 and use the
invariance principle (9) to obtain

ga(:)=&|
�

0
f \1&at

t + !(t; (A:V+a)&1, (A0+a)&1) dt. (3.3)

It is easy to see that f ((1&at)�t) is nondecreasing with respect to t. It is
well known (see, e.g., [1, 16; 18 Proposition 1.3.11]) that the function
x [ x&1 is concave on the set of invertible positive operators; i.e., for
arbitrary invertible positive operators X and Y the inequality (;X+
(1&;) Y)&1�;X&1+(1&;) Y&1 holds in the operator sense for all
; # [0, 1]. Taking X=A:1V

+a and Y=A:2V+a with an arbitrary a�a0

and using the fact that ;X+(1&;) Y=A(;:1+(1&;) :2) V+a we obtain that

(A(;:1+(1&;) :2) V+a)&1�;(A:1V+a)&1+(1&;)(A:2V+a)&1

for all ; # [0, 1]; i.e., the operator (A:V+a)&1 is convex with respect to
: # R. Therefore by Corollary 2 the integral in (3.3) is convex with respect
to : and thus ga(:) is concave. K

From (3.1) it follows that the function f satisfies the condition

sup
* # [&a0 , +�)

(*+a0)2 | f (*)|<�.

Since !(*; A:V , A0)=0 for all *�&a0 we may suppose that *�&a0 . Thus
for all a�2a0 we have a2(a+*)&2�4. Obviously,

} a2

(*+a)2 f (*) !(*; A:V , A0)}�4
|!(*; A:V , A0)|

(*+a0)2 sup
* # [&a0 , +�)

(*+a0)2 | f (*)|.
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Therefore, by (3.2) and by the Lebesgue dominated convergence theorem
we have

lim
a � +�

a2ga(:)=|
R

f (*) !(*; A:V , A0) d*.

From Lemma 3.1 it follows now that the integral on the r.h.s. is concave
with respect to :. As noted above the concavity with respect to the
coupling constant implies the concavity with respect to the perturbation.
This remark completes the proof of Theorem 2 in the case p=1.

We turn to the case p>1 in the condition (7) and note that the operator
(A:V+a0)&p is neither convex nor concave with respect to : [1, 16]. To
treat this case we need the following

Lemma 3.2 ([12 Theorem 1]; [27 Theorem 8.10.4]). Assume that
Ap&A p

0 # J1 for some p>1. Then A&A0 # Jq for any q> p. Let [Pn]n # N

be a strictly monotone family of finite dimensional orthogonal projections
converging strongly to the identity operator I. Then

!(*; A, A0)= lim
n � �

!(*; A0+Pn(A&A0) Pn , A0)

in L1(R; *q&1 d*), where q is the smallest odd integer greater than p.

The following lemma generalizes Lemma 3.1 to the case p>1:

Lemma 3.3. Let f (*)�0 be a nonincreasing function of bounded total
variation. Then for all a�a0

ga(:)=|
R

f (*)
(*+a)q+1 !(*; A:V , A0) d*

is concave with respect to :.

Proof. By the invariance principle the spectral shift function !(*; AV , A0)
can be represented in the form

&!((*+a)&1; (AV+a)&1, (A0+a)&1).

We introduce the operator W(:)=(A:V+a)&1&(A0+a)&1. Let [Pn]n # N

be a family of finite dimensional orthogonal projections as in Lemma 3.2.
Consider Wn(:)=Pn W(:) Pn # J1 and define
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g (n)
a (:)=&|

R

f (*)
(*+a)q+1 !((*+a)&1; (A0+a)&1+Wn(:), (A0+a)&1) d*

=&|
�

0
f \1&at

t + tq&1!(t; (A0+a)&1+Wn(:), (A0+a)&1) dt

with q being defined as in Theorem 2. Recall that W(:) is convex with
respect to : and therefore PnW(:) Pn is also convex. Thus by Corollary 2
the function g (n)

a (:) is concave for every n # N. To prove that

lim
n � �

g (n)
a (:)= ga(:) (3.4)

we estimate as

| ga(:)& g (n)
a (:)|� sup

* # [&a0 , +�)

| f (*)|

_|
�

0
tq&1 |!(t; (A0+a)&1+W(:), (A0+a)&1)

&!(t; (A0+a)&1+Wn(:), (A0+a)&1)| dt.

By Lemma 3.2 the r.h.s. tends to zero thus proving (3.4) and completing
the proof of the lemma. K

To complete the proof of Theorem 2 as in the case p=1 we consider the
limit a � +� of aq+1ga(:). By the inequality

|
R

|!(*; A:V , A0)|
(*+a)q+1 d*�|

R

|!(*; A:V , A0)|
(*+a) p+1 d*

�&(A:V+a)&p&(A0+a)&p&J1

valid for all a�a0+1 and again by the Lebesgue dominated convergence
theorem we obtain

lim
a � +�

aq+1ga(:)=|
R

f (*) !(*; A:V , A0) d*.

Now from Lemma 3.3 it follows that the integral on the r.h.s. is concave
with respect to :. This completes the proof of Theorem 2.

We turn to the proof of Corollary 3.
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Proposition 3.1. Under the assumptions of Corollary 3 (but without the
restriction V�0) the functional g(V) is subadditive in the coupling constant
in the sense that for arbitrary :1 , :2�0

g((:1+:2)V )� g(:1V )+ g(:2V ). (3.5)

Moreover, for arbitrary :1 , :2�0 the inequality

g((:1&:2)V )� g(:1V )+ g(&:2V ) (3.6)

holds.

Proof. The assumption (ii) of the Corollary 3 and the proof of Theorem
XI.12 in [22] imply that for an arbitrary finite interval [a, b]/R there is
finite a0 # R such that (A:V+a)&p&(A0+a)&p # J1 for all a�a0 . Thus
we may set C(A0 , a0 , p)=[:V, : # [a, b]]. By Theorem 2 we obtain that
g(:V ) is concave with respect to : # [a, b]. Since a and b are arbitrary the
function g(:V ) is concave on R. In the case of assumption (i) the concavity
of g(:V) for all : # R is guaranteed directly by Theorem 1.

Recall that the necessary and sufficient condition [11, Theorem 6.2.4]
for a measurable concave function ,(:) to be subadditive on R+ is that
,(+0)�0. This proves (3.5). To prove (3.6) we use the fact (see, e.g., [10,
Theorem 110]) that any continuous concave function ,(x) satisfies the
inequality

,(x&h$ )+,(x+h$ )�,(x&h)+,(x+h) (3.7)

provided that |h|�|h$|. We set x=(:1&:2)�2, h$=(:2&:1)�2, h=(:2+:1)�2
and apply the inequality (3.7) to the function g(:V ). Since g(0)=0 we arrive
at the claim (3.6).

Proof of Corollary 3. Let #=inf:>0 :&1,(:). Recall (see, e.g,. [11,
Theorem 6.6.1]) that if ,(:) is a measurable subadditive function, which is
finite for all finite :, then &��#<� and

lim
: � +�

,(:)
:

=#.

We take ,(:)= g(:V ). By Proposition 3.1 it is subadditive on R+ . By the
monotonicity propertiy of the spectral shift function the condition V�0
implies that ,(:)�0 for all : # R+ . Therefore #�0, thus proving the
corollary.
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