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Abstract

The Steinberg tensor product theorem is a fundamental tool for studying irreducible representa-
tions of simple algebraic groups over fields of positive characteristic. This paper is concerned with
extending the result, replacing the target groupSL(V ) by an arbitrary simple algebraic group.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let K be an algebraically closed field of characteristicp > 0, and letX be a simple,
simply connected algebraic group overK. The Steinberg tensor product theorem [14] is
fundamental to the analysis of irreducible rational representations ofX. In this paper we es-
tablish similar results for morphisms fromX into simple algebraic groups of arbitrary type.

Steinberg’s theorem shows that ifφ :X → SL(V ) is an irreducible rational representa-
tion, then we can writeV = V

(q1)

1 ⊗ · · · ⊗ V
(qk)
k , where theVi are restrictedKX-modules

and theqi are distinct powers ofp. The result can be reformulated in terms of a factoriza-
tion of φ:

X→X× · · · ×X→ GL(V ),
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where the first map is a twisted diagonal mapx → (x(q1), . . . , x(qk)), wherex(qi) denotes
the image ofx under a standard Frobeniusqi -map, and the second map restricts to a
completely reducible representation on each simple factor, with restricted composition
factors. Under the assumptionq1 < · · · < qk , one has a uniqueness result as well. With
the above formulation the result extends to completely reducible representations.

Our goal is to generalize this result, replacing the target groupSL(V ) by an arbitrary
simple algebraic groupG, assumingp is a good prime forG. The extension to classical
groups is relatively minor. On the other hand, obtaining such a result for exceptional groups
is much deeper and the results rest on the analysis of subgroups of exceptional groups along
with results from [13].

The formulation requires two ingredients: a generalization of the usual notion of
complete reducibility and a suitable analog for the notion of a restricted representation.
We shall develop intrinsic versions of these concepts.

Throughout the paper,G denotes a connected simple algebraic group over an
algebraically closed fieldK of characteristicp which is assumed to be a good prime forG.
(Recall that this meansp > 2 for groups of typeBn (n� 2), Cn (n� 2), Dn (n� 4) and
p > 3 for exceptional groups, exceptE8, wherep > 5.)

The following notion was introduced by Serre.

Definition. A subgroupD < G is calledG-completely reducible(G-cr for short), if
wheneverD is contained in a parabolic subgroupP ofG, it is contained in a Levi subgroup
of P .

ForG= SL(V ) this notion agrees with the usual notion of complete reducibility. In fact,
if G is any of the classical groups then the notions coincide, although for symplectic and
orthogonal groups this requires our assumption thatp is a good prime forG.

Complete reducibility of representations and the notion ofG-cr subgroups have been the
focus of several recent articles. The following result provides conditions which guarantee
that certain subgroups satisfy theG-cr condition. In particular, the result shows that this is
quite often the case whenG is an exceptional group.

G-cr Theorem (McNinch [11], Liebeck–Seitz [7]).LetX be a connected simple subgroup
ofG. ThenX isG-cr if either of the following hold:

(i) G is classical with natural moduleV , andp � dimV/ rank(X).
(ii) G is of exceptional type andp > 7.

In particular, if p � h(G), the Coxeter number ofG, then all closed, connected simple
subgroups ofG areG-cr.

We remark that [7] establishes results stronger than what is asserted in (ii) above. The
characteristic requirements depend on the pair(G,X); for examplep > 7 is needed only
whenG=E7,E8 with X of rank 1 or 2.

We next aim at a suitable notion of a restricted morphism. A few preliminary remarks
are required. IfX is a simple, simply connected algebraic group andφ :X → G is
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a morphism, thenφ lifts to a morphismφ̂ :X → Ĝ, whereĜ is the simply connected
cover ofG.

Next, we extend the usual notion of irreducible restricted representation by defining a
(not necessarily irreducible) representationX→ GL(V ) to berestrictedif all composition
factors are restricted.

If G is of classical type, by thenatural Ĝ-module we mean the usual classical module
(of high weightλ1). We allow more than one natural module in a few cases. ForG= An,
we also allow the dual of the usual module and forG=D4 we define as natural each of the
three 8-dimensional modules of high weightsλ1, λ3, λ4. Also,B2 has two natural modules,
of dimensions 4 and 5, because of the isomorphismB2 ∼= C2; likewiseA3 ∼=D3 has two
natural modules of dimensions 4, 6.

Definition. LetX be simple and simply connected. A morphismφ :X→G is restrictedif
either of the following holds:

(i) X = SL2, and composingφ with the adjoint representation ofG, all weights of a
maximal torus ofX are at most 2p− 2.

(ii) X 
= SL2 andX
φ̂−→ Ĝ→ GL(V ) is a restricted representation, whereV is a natural

Ĝ-module ifG is of classical type andV = L(Ĝ) if G is of exceptional type.

Condition (i) says thatφ(X) is agoodA1 in the sense of [13]. For classical groups these
are justA1’s which have restricted action on the naturalĜ-module. The definition in (ii)
does not depend on the natural module chosen in those cases where there is more than one
natural module (see Lemma 5.1).

The next result provides a more uniform criterion for a restricted morphism.

Restricted Morphism Theorem. Let X be simple and simply connected, and let
φ :X →G be a morphism such that the imageφ(X) is G-cr. Thenφ is restricted if and
only ifCG(φ(X))0 = CG(dφ(L(X)))

0.

A connected simple subgroup ofG is calledrestrictedif it is the image of a restricted
morphism. (So with this definition, the goodA1’s of [13] are also called restrictedA1’s
ofG.) We extend this to semisimple groupsX and morphismsφ :X→G, by saying thatφ
is restrictedif its restriction to each simple factor is restricted.

We now state our generalization of the Steinberg tensor product theorem. In the
following we fixX with anFp-structure and corresponding Frobeniusp-power maps. The
morphismx → x(q) refers to the Frobeniusq-power map.

Theorem 1. LetG be a simple algebraic group overK in good characteristicp. AssumeX
is a simply connected, simple algebraic group overK and φ :X → G is a nontrivial
morphism with image groupG-cr. Then there is a unique integerk, unique powersqi

of p with q1 < · · · < qk, and unique morphismsψ and µ, such thatφ factorsX
ψ−→

X× · · · ×X
µ−→G, whereψ(x)= (x(q1), . . . , x(qk)) andµ is restricted with finite kernel.
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Theorem 1 can be formulated in terms of subgroups ofG, where there are significant
applications, especially for exceptional groups.

Corollary 1. If X is a connected simpleG-cr subgroup ofG, then there is a uniquely
determined commuting productE1 · · ·Ek with X � E1 · · ·Ek � G, such that eachEi
is a simple restricted subgroup of the same type asX, and each of the projections
X→Ei/Z(Ei) is nontrivial and involves a different field twist.

It will be shown in Lemma 7.2 and Proposition 9.2 that the commuting productE1 · · ·Ek
given by Corollary 1 and each of its simple factors areG-cr. We also remark that there is a
uniquei such thatL(X)= L(Ei). The other projections involve nontrivial and distinct field
twists. These projections may also involve twists by graph automorphisms and in the case
of B2, G2, F4 with p = 2,3,2, respectively, exceptional isogenies may also be present.

Steinberg’s theorem also applies to finite groups of Lie type,Y (q), whereq is a power
of p. Take Y (q) of universal type so thatY (q) = Yσ for a simply connected, simple
algebraic groupY , with σ a Frobenius morphism. Here the Steinberg theorem shows that
any irreducible representationY (q)→ SL(V ), for V finite-dimensional over the algebraic
closure ofFq , extends to an irreducible representation ofY .

Our next result extends this to arbitrary simple algebraic groups. However, to obtain
a result covering exceptional groups, we require an assumption on the underlying finite
field Fq defining the finite group.

Consider a homomorphismφ :Y (q) → G, whereG is a simple exceptional group in
(good) characteristicp. In [9, Theorem 1] it is shown that forq sufficiently large, there
is a connected subgroup ofG, containingφ(Y (q)), which stabilizes allφ(Y (q)) invariant
subspaces ofL(G). Usuallyq > 9 is sufficient, but a larger bound is required for the case
whereY (q) is a rank 1 group. This field restriction is required for our next theorem.

In order to formulate a uniqueness result, we need the following terminology. If
Y > Y(q) are as above, a morphismψ :Y →G is said to beq-restrictedif ψ(Y ) is G-cr
and in the factorization given by Theorem 1, each of the field twistsqi is less thanq .

In the special casesY (q)= 2B2(q),
2G2(q),

2F4(q), with p = 2,3,2, respectively, we
must modify the above definition slightly. We are assuming thatp is good, so these cases
only occur whenG is classical. IfV is the natural module forG, we say thatψ is (q, s)-
restrictedif ψ is q-restricted and the high weights of all composition factors ofY on V
have support on the short fundamental roots.

Theorem 2. With notation as above, letφ :Y (q) → G be a homomorphism with image
groupG-cr. If G is of exceptional type, suppose also thatq satisfies the lower bounds

in the hypothesis of[9, Theorem 1]. Thenφ factors uniquely asY (q) ↪→ Y
ψ−→ G,

where the first map is inclusion, andψ is a q-restricted morphism((q, s)-restricted if
Y (q)= 2B2(q),

2G2(q),
2F4(q)), with image groupG-cr.

Theorem 2 can also be formulated in terms of subgroups ofG along the lines of
Corollary 1. We define a connected, simple subgroup ofG to beq-restricted (respectively
(q, s)-restricted), if it is the image of aq-restricted (respectively(q, s)-restricted)
morphism.



M.W. Liebeck, G.M. Seitz / Journal of Algebra 260 (2003) 261–297 265

Corollary 2. LetY (q) be aG-cr subgroup ofG. If G is of exceptional type, suppose also
thatq satisfies the lower bounds in the hypothesis of[9, Theorem 1]. Then there is a unique
connected, simple subgroupY of G such thatY containsY (q), Y is of the same type as
Y (q), andY is q-restricted((q, s)-restricted ifY (q)= 2B2(q),

2G2(q),
2F4(q)).

When studying a subgroupX < G, it is important to have information on the action
of X on certain modules forG, in particular, the adjoint module and, forG of classical
type, the natural module. ForG classical andX aG-cr subgroup, this is relatively easy,
since one can obtain the precise action ofX on the classical module from knowledge of
high weights of composition factors. A result forG-cr subgroups of exceptional groups,
giving the precise action on the adjoint module is highly desirable, but has until now
proved elusive. Results exist (e.g., [5,7]) which determine the composition factors ofX

onL(G), but not the precise action. The difficulty is that even though the subgroupX is
G-cr, complicated indecomposable modules may occur withinL(G) ↓X. In the following
we establish results that resolve this problem.

We fix notation as follows to be used in Theorems 3 and 4 below. As before,X will
denote a connected simpleG-cr subgroup ofG, a simple algebraic group in good
characteristic. LetE1, . . . ,Ek and 1= q1 < · · ·< qk be the corresponding subgroups and
prime powers given by Corollary 1.

Theorem 3 is a tensor product theorem in the case whereX = A1 in its representation
on the adjoint module,L(G). Here tilting modules are the basic objects.

Recall that a tilting module is one which has filtrations both by Weyl modules and also
by dual Weyl modules. For each non-negative integerc, there is a unique indecomposable
tilting moduleT (c) for A1 of highest weightc, and every tilting module is a direct sum of
these. Some basic information on tiltingA1-modules can be found in [13, Section 2].

The results in [13] highlight the importance of tilting modules for restricted (i.e., good)
A1’s in G. It is shown in [13, Theorem 1.1(iii)] that with one exceptionL(G) ↓ A1 is a
tilting module for such anA1. The exception occurs only forG of typeAn with p | n+ 1
and even here we get a tilting module if we replaceG by GLn+1.

Theorem 3. LetG be a simple algebraic group in good characteristicp, except for the
case whereG is of typeAn with p | n + 1, in which case assume thatG = GLn+1. Let
X = A1 be a connected simple,G-cr subgroup ofG. ThenL(G) ↓ X is a direct sum of
modules of the formT (c1)

(q1) ⊗ · · · ⊗ T (ck)
(qk), where for1 � i � k, T (ci) is a tilting

module forEi of high weightci � 2p− 2.

The tilting decomposition of Theorem 3 does not extend to groups of rank greater than 1,
as can be easily seen by looking at classical groups. However, for exceptional groups it is
still possible to obtain a tensor product theorem with information on tensor factors. The
result is as follows.

Theorem 4. LetG be a simple exceptional group in good characteristicp and letX be
a connected simpleG-cr subgroup of rank at least2. ThenL(G) ↓ X is a direct sum of
modules of the formV (q1)

1 ⊗ · · · ⊗ V
(qk)
k , where eachVi is a restricted module forEi .

Moreover, one of the following holds:



266 M.W. Liebeck, G.M. Seitz / Journal of Algebra 260 (2003) 261–297

(i) eachVi is a Weyl module, a dual Weyl module, or a tilting module;
(ii) p = 7,X = G2 and eitherX is maximal in anF4 subgroup ofG, or X < F4G2 <

E8 =G withX projecting to a maximal subgroup of theF4 factor.

We remark that (ii) is a real exception. Indeed, ifp = 7 andG2 < F4 is maximal, then
L(F4) ↓G2 is a direct sum of two irreduciblesVG2(01)⊕VG2(11), while the Weyl module
WG2(11) is reducible with irreducible maximal submodule of high weight 20 (see [12]).

Corollary 3. AssumeG is an exceptional group andp > 7. If X is a connected simple
subgroup ofG of rank at least2, thenL(G) ↓ X is completely reducible with each
irreducible summand a twisted tensor product of(irreducible) Weyl modules.

Corollary 3 combines with Theorem 1 to yield a tensor product theorem with respect
to the adjoint representation ofG. This tensor product theorem contains much more
information than what is provided by the Steinberg tensor product theorem for the
representationX→G→ GL(V ), with V = L(G). Indeed, the latter shows that the image
ofX is contained in a certain product of subgroups ofGL(V ). Theorem 1 implies that these
subgroups are actually contained in the image ofG.

Corollary 1 reduces the problem of determining connected simpleG-cr subgroups ofG
to the problem of determining commuting products of restricted subgroups. In the last
section of the paper we establish results which should be useful in determining all such
commuting products (see, for example, Corollary 9.5).

The paper is organized as follows. In Section 2 we discuss material on subgroups
of algebraic groups which will be required for work on exceptional groups. Theorem 1
is proved in Sections 3 and 4, the former for the uniqueness assertion and the latter
establishing existence of the factorization. The Restricted Morphism Theorem is deduced
in Section 5, and Theorems 2–4 are proved in Sections 6–8, respectively. The paper
concludes with a section containing applications of the results of this paper to the analysis
of subgroups of exceptional algebraic groups.

Notation. We shall use the following notation for representations: ifX is a reductive
algebraic group andλ a dominant weight, thenVX(λ), WX(λ), TX(λ) denote the
corresponding irreducible module, Weyl module, or indecomposable tilting module of
high weightλ, respectively. Ifλ1, . . . , λk are dominant weights, thenλ1/λ2/ · · ·/λk will
denote a module having the same composition factors asWX(λ1)⊕· · · ⊕WX(λk). Finally,
λ1|λ2| · · · |λk denotes a module having composition factorsVX(λ1), . . . , VX(λk).

2. G-cr and restricted subgroups of exceptional groups

WhenG is of exceptional type, the results of this paper ultimately rely on a major
analysis of the subgroup structure of exceptional algebraic groups. Indeed the results of [7]
are key to finding the commuting product required for Theorem 1. In this section we derive
results from this analysis which will be required later. The main result of the section is
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Proposition 2.3, which is not only used in the proof of Theorem 1, but is also fundamental
to the proof of the Restricted Morphism Theorem.

The maximal connected reductive subgroups of exceptional algebraic groups were
determined in [12], under certain mild assumptions on the characteristicp of the
underlying field. These assumptions are slightly stronger than the assumption thatp is a
good prime. Then in [7] the authors analyzed arbitrary reductive subgroups under roughly
the same characteristic restrictions. More recently, in [10] the authors have extended the
results of [12], removing all characteristic restrictions. Parts of this work together with the
results and arguments of [7] will be needed in what follows.

The following theorem is the final result on maximal subgroups. It is considerably
stronger than what we need here, as we are assumingp is a good prime forG.

Theorem 2.1 [10,12].LetG be an exceptional algebraic group in arbitrary characteristic
p > 0, and letM be a maximal connected subgroup ofG. Then eitherM is parabolic,
reductive of maximal rank, orG, M are as in Table1. Maximal subgroups of each type
indicated in the table exist, subject to the indicated restrictions onp, and are unique up to
Aut(G)-conjugacy.

Remarks. 1. ForG= E7,E8, Table 1 has repetitions for groups of typeA1. This is done
to indicate distinct conjugacy classes of subgroups of this type.

2. We shall be using Theorem 2.1 only in the case wherep is a good prime forG; in
this case Theorem 2.1 is already proved in [12], except whenX = A1, p � 7, or when
(X,G,p) = (A2,E7,5). For these cases it is proved in [10] that onlyX = A2 occurs as
a maximal subgroup.

With a description of the maximal subgroups in hand, the next step is to try to understand
the embedding of semisimple subgroups in the maximal subgroups. Under the hypothesis
that the subgroup in question isG-cr, this ultimately comes down to embeddings in certain
reductive subgroups. For this we need the notion ofessential embedding.

Let Y be a semisimple algebraic group, and letX be a semisimple subgroup ofY . For
a subgroupA of Y writeA=AZ(Y )/Z(Y ), and for a simple factorS of Y , letπS :X→ �S
be the projection map. The connected preimage ofπS(X ) in S is called theprojectionofX
in S. We say thatX is essentially embeddedin Y if, for each exceptional simple factorY0
of Y , the projection ofX in Y0 is eitherY0 or maximal connected but not of maximal rank
in Y0, and for each classical factorY1 of Y , the projection ofX in Y1 is either irreducible
on the naturalY1-module, orY1 =Dn and the natural module splits underX into a sum of
two non-isomorphic irreducible summands of odd dimension.

Table 1

G M

G2 A1 (p� 7)
F4 A1 (p� 13),G2 (p= 7), A1G2 (p � 3)
E6 A2 (p� 5),G2 (p 
= 7), F4,C4 (p � 3), A2G2
E7 A1 (p� 17), A1 (p� 19), A2 (p� 5), A1A1 (p � 5), A1G2 (p� 3), A1F4,G2C3
E8 A1 (p � 23), A1 (p� 29), A1 (p� 31), B2 (p � 5), A1A2 (p� 5),G2F4
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Recall also from [7] that asubsystemsubgroup ofG is a connected semisimple subgroup
which is normalized by a maximal torus ofG.

Proposition 2.2. LetG be an exceptional algebraic group overK in good characteristicp,
and letX be a connected semisimple subgroup ofG. Assume thatX is G-cr. Choose a
subsystem subgroupY ofG, minimal subject to containingX (possiblyY =G). Then one
of the following holds:

(i) X is essentially embedded inY ;
(ii) X has a factorG2, p = 7, Y = E6 or E8, andX < F4 < E6 or X < G2F4 < E8,

respectively, withX projecting to a maximal subgroupG2 of theF4 factor;
(iii) X has a factorA1, and there is a subgroupY0 = F4,E6,E7 or E8 of G, a maximal

connected subgroupZ of Y0 not containing a maximal torus, and a semisimple
subgroupY1 of CG(Y0), such that eitherX is essentially embedded inZY1, or
X = Y0Y1.

Proof. This follows from the proofs of [7, Theorems 5, 7, pp. 53–55], where the result is
proved under the assumption thatp >N(X,G), whereN(X,G) is as defined on [7, p. 2]
(this excludes a few good characteristics in some cases). The only points to note are that the
use of [7, Theorem 1] is replaced by our hypothesis thatX isG-cr; use of [12] is replaced
by use of Theorem 2.1; and extra subgroupsX <G2F4 <E8 (p = 7) show up under (ii),
which do not appear in [7, Theorem 5], because of the stronger characteristic assumption
there. ✷
Remark. In Proposition 2.2(iii), the possibilities forZ are given by Theorem 2.1, and the
possibilities forCG(Y0) are as follows:

Y0 CG(Y0) (G=E8,E7,E6,F4)

F4 G2,A1,1,1 (respectively)
E6 A2, T1,1,–
E7 A1,1,–,–
E8 1,–,–,–

Let E be a simple algebraic group. We introduce the following notation to deal with
cases whereL(E) has nontrivial ideals. LetL(E)+ denote the subalgebra ofL(E)
generated by all nilpotent elements. We note thatL(E)= L(E)+ if E is simply connected,
and, of course, this also holds ifL(E) is simple. With the exception of some orthogonal
groups in characteristic 2,L(E)+ has codimension at most 1 inL(E).

The next proposition is the main result of the section.

Proposition 2.3. LetG be an exceptional algebraic group overK in good characteristicp,
and letE be a connected simple subgroup ofG.

(i) If E is a restrictedA1, thenE isG-cr.
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(ii) If rank(E)� 2, thenE isG-cr, except possibly whenE =G2, p = 7 andG= E7 or
E8.

(iii) Suppose thatE is restricted, and also that eitherE is G-cr or CG(E) contains
a connected simple subgroup of the same type asE. ThenCG(E)0 is reductive,
CG(E)

0 = CG(L(E)
+)0, andCL(G)(E)= CL(G)(L(E)

+).

Proof. (i) This follows from [13, Theorem 1.1(iv)].
(ii) Assume rank(E) > 1. Theorem 1 of [7] shows thatE isG-cr provided the primep

satisfiesp > N(E,G), whereN(E,G) is defined in the table in [7, p. 2]. The only
cases where this inequality is stronger thanp being a good prime are(E,G,p) =
(A2,E7,5), (G2,E7,5), (G2,E7,7), and (G2,E8,7). The last two possibilities appear
in the conclusion of (ii), so we must show that in the first two casesE isG-cr.

For this we follow the proof of [7, Theorem 1]. LetP =QL be a parabolic subgroup
of G, minimal subject to containingE, with unipotent radicalQ and Levi subgroupL.
Using Theorem 2.1 and arguing as in [7, 3.2], we see that eitherL′ is a commuting product
of classical groups, orL′ =E6 andE projects to a maximal subgroup ofL′ or is diagonal
in a subsystem of typeA2A2A2. Now we see as in the proof of [7, 3.3, 3.4] that the possible
high weights forE acting on composition factors ofQ are as listed on p. 36 of [7]. In our
cases,p = 5, and the rest of the proof of [7, 3.4] gives the conclusion.

(iii) Here we are assuming thatE is a restricted subgroup. IfE =A1 then the hypothesis
implies thatE is a goodA1 in G. The first equality follows from [13, Theorem 1.2]. For
the second equality, first use [13, Theorem 1.1] to see thatL(G) ↓ E is a tilting module
and then apply [13, Lemma 2.3(d)] to get the equality on fixed points.

Suppose now that rank(E) � 2. Assume first thatE is G-cr. LettingY be a minimal
subsystem subgroup ofG containingX, the embedding ofX in Y is given by (i) or (ii) of
Proposition 2.2.

In case of Proposition 2.2(ii) we havep = 7 and eitherE = G2 < F4 < E6 � G or
E = G2 < G2F4 < E8 = G. In either caseL(E) = L(E)+. In the first case, we have,
using [12],

L(F4) ↓E = VE(01)⊕ VE(11), VF4(λ4) ↓E = VE(20).

Moreover,L(G) ↓ F4 is the sum of an adjoint module, a fixed space of dimension
dimCG(F4), and a number of copies ofVF4(λ4). It follows thatCG(E)0 = CG(F4)

0 = 1,
A1, G2 for G = E6,E7,E8 (see [12]). Further, sinceE is restricted, only trivial
composition factors ofL(G) ↓ E can be centralized byL(E)+, and so it follows that
CG(L(E)

+)0 = CG(E)
0 andCL(G)(E)= CL(G)(L(E)

+), as required.
In the second case above,E =G2 <G2F4 <E8, we have

L(E8) ↓E = VE(01)2 ⊕ VE(11)⊕ (
VE(10)⊗ VE(20)

)
.

To understand the last summand we first considerVE(10) ⊗ TE(20), where the second
factor is the indecomposable tilting module of high weight 20, which has shape 00/20/00.
The tensor product of tilting modules is again a tilting module and using this we find
thatVE(10)⊗ VE(20) = VE(30)⊕ VE(01)⊕ TE(11), whereTE(11) has socle length 3
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with layers 20,11⊕ 00,20. It follows thatCG(E)0 = CG(L(E))
0 = 1 andCL(G)(E) =

CL(G)(L(E))= 0.
Next consider the situation of Proposition 2.2(i). HereE is essentially embedded in the

subsystem subgroupY . The possibilities forY ,E, andL(G) ↓E are worked out explicitly
in [7, pp. 56–68 and Tables 8.1–8.4], under the assumption thatp > N(E,G). In this
situation we have

CG(E)� CG
(
L(E)

)
� CG

(
L(E)+

)
,

CL(G)(E)� CL(G)
(
L(E)

)
�CL(G)

(
L(E)+

)
,

dimCG
(
L(E)+

)
� dimCL(G)

(
L(E)+

)
, and

dimCG(E)= dimL
(
CG(E)

)
� dimCL(G)(E)� dimCL(G)

(
L(E)+

)
.

Hence to prove thatCG(E)0 = CG(L(E)
+)0 andCL(G)(E)= CL(G)(L(E)

+), it suffices
to show that dimCG(E)= dimCL(G)(L(E)

+).
As noted above, only trivial composition factors ofL(G) ↓ E can be centralized by

L(E)+.
Assumep > N(E,G). As observed in [7, p. 90], Tables 8.1–8.4 of [7] show that in

all but three cases, the number of trivial composition factors inL(G) ↓ E is equal to
dimCG(E), hence dimCG(E)) = dimCL(G)(L(E)

+); in the exceptional casesE = A4
(p = 5) or A6 (p = 7), and the same conclusion holds, by an argument in [7, p. 90].
Finally,CG(E)0 is reductive by [7, Theorem 2].

Now assumep � N(E,G). As p is good, this means that(E,G,p) = (A2,E7,5),
(G2,E7,5 or 7) or (G2,E8,7). In each caseL(E) is simple, and, in particular,L(E) =
L(E)+. The possibilities forY ,E andL(G) ↓E can be worked out exactly as in [7] (p. 62
forG2, pp. 64–67 forA2), and are just as in Tables 8.1–8.4 of [7]. In particular the maximal
A2 in E7 satisfiesL(E7) ↓A2 = L(A2)⊕ VA2(44), so there are no fixed points. In all but
one case we find that the number of trivial composition factors inL(G) ↓ E is equal to
dimCG(E), andCG(E)0 is reductive, giving the conclusion as above. The exceptional
case occurs whenE =G2, Y =A6, andp = 7; here

L(E7) ↓E = 01/105/203/003, L(E8) ↓E = 015/1013/203/006,

where (as in [7]) the notationabn indicates the presence of the composition factors ofn

copies of the Weyl moduleWE(ab). NowWE(20) has a trivial one-dimensional submodule
whenp = 7; this means that the number of trivial composition factors inL(G) ↓ E is 6
or 9, forG=E7 orE8, respectively. The restrictionsL(G) ↓E can be calculated precisely
by first restricting toA6T1 = GL7, where we see that the action is a direct sum of modules
of the formV,

∧2
V,

∧3
V , duals of these modules, trivial modules, andV ⊗ V ∗, where

V denotes a usual 7-dimensional module. It follows thatL(G) ↓E is a tilting module.
In particular, for each occurrence of the composition factor 20, there is a direct summand

which is an indecomposable tilting module of shape 00/20/00. Hence the dimension of the
fixed point space ofE (orL(E)) onL(G) is 3 or 6, according asG=E7 orE8. If G=E7
thenCG(E)=A1, as shown in [12, pp. 34–35]. And ifG=E8 thenE <A6 <E7, so that
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CG(E)� CE7(A1)CG(E7)=A1A1, and by consideration of dimensionCG(E)0 = A1A1.
This gives the assertion here.

We have now proved part (iii) of the proposition under the assumption thatE isG-cr. It
remains to prove it under the assumption that rank(E)� 2,E is restricted, notG-cr, and
CG(E) contains a connected simple subgroup of the same type asE.

By part (ii), the assumption thatE is notG-cr forcesE = G2, p = 7, andG = E7
or E8. Moreover, the proof of [7, Theorem 1] shows thatE must lie in a parabolic
subgroupP = QL of G, such that the unipotent radicalQ, when restricted toE, has a
composition factorVE(λ) such that the Weyl moduleWE(λ) has a trivial composition
factor. ChooseP minimal for this. From [7, p. 36], we see that the only possibilities are
L= A6 orE6, with λ= 20. As in [7] we calculate the composition factors ofL(G) ↓E in
these cases; it turns out that the number of trivial composition factors is less than dimE,
except whenL = E6 andG = E8, in which case this number is precisely 14= dimE.
Hence by our hypothesis, this case must occur, and we must haveCG(E)

0 ∼= E =G2 and
dimCL(G)(L(E))= CL(G)(L(E)

+)= 14= dimCG(E) also. (Such a configuration exists
asE8 � F4G2 �G2G2.) This completes the proof.✷
3. Theorem 1: uniqueness

In this section we prove the uniqueness part of Theorem 1. Suppose then thatG is
a simple algebraic group in characteristicp, a good prime, and thatX is a simple, simply
connected group andφ :X→G is a morphism whose image isG-cr. Letk, q1, . . . , qk,ψ

andµ be as in Theorem 1. Now letk′, q ′
1, . . . , q

′
k′,ψ ′, and µ′ correspond to another

factorization ofφ.
If dφ = 0, thenφ can be factored through a Frobenius morphism ofX which induces the

p-power map on a maximal torus (see [7, Lemma 1.2]). Repeating this we see that there is
a unique powerq of p such thatφ = µ ◦ F , whereF is a Frobenius morphism inducing
theq-power map on a maximal torus and dµ 
= 0.

The assumption dφ = 0 implies bothq1 > 1 andq ′
1> 1. Moreover, the uniqueness ofq

forcesq = q1 = q ′
1. We can then factor off aq-power map and assumeq1 = q ′

1 = 1.
For 1� i � k, let µi be the restriction ofµ to the ith simple factor ofX × · · · × X

(k factors). Thusφ(x)= ∏k
1µi(x

(qi)) for x ∈X. Similarly,φ(x)= ∏k′
1 µ

′
j (x

(q ′
j )).

We aim to show thatk = k′, qi = q ′
i , andµi = µ′

i for all i. For convenience we
may assumek � k′ and proceed by induction onk. The base casek = k′ = 1 is trivial.
Assumek � 2. WriteEi = µi(X) andFj = µ′

j (X); these are connected, simple, restricted
subgroups ofG. We haveφ(X) � E1 · · ·Ek with a qi-field twist in the projection to
Ei/Z(Ei), and likewiseφ(X) � F1 · · ·Fk′ with a q ′

j -twist in the j th projection. Since
q1 = q ′

1 = 1 and recalling the notation given just before Proposition 2.3, we have

L
(
φ(X)

)+ = L(E1)
+ = L(F1)

+.

The following is a key result for the uniqueness proof.

Lemma 3.1. (i) CG(E1)
0 = CG(L(E1)

+)0.
(ii) CG(E1)

0 is reductive.
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Proof. Assume first thatG is of exceptional type. Sincek � 2, the hypothesis of
Proposition 2.3(iii) is satisfied byE1, so both (i) and (ii) follow from that result.

Suppose now thatG is of classical type. We first claim that for purposes of proving (i)
we may work with the actual classical group (i.e. withG = SL,Sp, or SO). To see this
let Ĝ be the simply connected cover ofG, π : Ĝ→G the natural surjection, and̂E1 the
connected preimage ofE1 in Ĝ. ThenZ = ker(π) is finite andS = ker(dπ) is of dimension
at most one and consists of semisimple elements. Indeed, sincep is goodS = 0 unless
Ĝ= SLn andp | n.

Set Ĉ = CĜ(Ê1)
0 and C = CG(E1)

0. Similarly, set D̂ = CĜ(L(Ê1))
0 and D =

CG(L(E1))
0. To prove the claim it will suffice to show thatC =D if and only if Ĉ = D̂.

Now Ê1 andE1 are generated by unipotent elements whileL(Ê1)
+ andL(E1)

+ are
generated by nilpotent elements. Thereforeπ : Ê1 → E1 and dπ :L(Ê1)

+ → L(E1)
+ are

surjective. Foru ∈ Ĝ a unipotent element andn ∈ L(Ĝ) a nilpotent element it follows from
the Jordan decomposition thatCĜ(uZ)= CĜ(u) andCĜ(n+ S)= CĜ(n).

It follows from the previous paragraph thatπ−1(C)= Ĉ ·Z andπ−1(D)= D̂ ·Z. We
get the claim by taking connected components.

Thus to prove (i), we may work with any image of̂G and we choose the actual classical
group. Indeed it will suffice to establish the result forG = SL(V ). By hypothesisX
is completely reducible in its action onV . Let Y be the direct factor mapping under
the morphismµ of the theorem toE1. ThenY acts homogeneously on each irreducible
summand ofV ↓X. HenceV ↓ Y is completely reducible with all irreducibles restricted.
It follows that Y and L(Y ) leave invariant precisely the same subspaces ofV . Also,
µ(Y )=E1 and sinceL(Y )= L(Y )+ we have dµ(L(Y ))= dµ(L(Y )+)� L(E1)

+.
Now consider centralizers. ClearlyCG(E1) � CG(L(E1)

+), so we must establish the
reverse containment. We first observe thatE1 and L(E1)

+ leave invariant the same
subspaces ofV . Surely any subspace invariant underE1 is invariant underL(E1) and hence
L(E1)

+. Conversely, supposeL(E1)
+ leavesW invariant. By the above dµ(L(Y )) also

leavesW invariant and we have seen thatY andL(Y ) leave invariant the same subspaces.
HenceW is Y -invariant, and henceE1-invariant, asµ(Y )=E1.

DecomposeV into homogeneous components with respect toL(E1)
+. Each is invariant

under the action ofE1 as well asCG(L(E1)
+), so we may assume thatV is homogeneous

under the action ofL(E1)
+. Now [8, Lemma 2.3] shows that there is a decomposition

V = V1 ⊗ V2 such thatCGL(V )(L(E1)
+)= 1 ⊗ GL(V2) andCGL(V )(CGL(V )(L(E1))

+)=
GL(V1) ⊗ 1. HenceE1 � NGL(V )(GL(V1) ⊗ GL(V2))

0 = GL(V1) ⊗ GL(V2). Now
L(E1)

+ � L(GL(V1)) andE1 is restricted, so this forcesE1 � GL(V1). But thenE1
centralizes the second factor, establishing (i).

It follows from the above thatCGL(V )(E1) is a product of smallerGL’s. This implies (ii)
for G= SL(V ). If G is a symplectic or orthogonal group we must take fixed points of this
centralizer with respect to an involution. Asp > 2 here (p is good), this centralizer is
reductive, giving (ii). ✷

We are now in position to complete the uniqueness argument. SetD = CG(E1)
0, so

that by Lemma 3.1(i) we haveD = CG(L(E1)
+)0 = CG(L(F1)

+)0. Applying Lemma 3.1
again, this time to the second factorization,φ(X) � F1 · · ·Fk′ yields CG(F1)

0 =
CG(L(F1)

+)0 =D. NowE2 · · ·Ek andF2 · · ·Fk′ are contained inD, so thatE1 · · ·Ek =
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φ(X)(E2 · · ·Ek) andF1 · · ·Fk′ = φ(X)(F2 · · ·Fk′) are contained inφ(X)D = E1 ◦D =
F1 ◦D. It follows thatE1 = F1.

Now for x ∈X we have
∏
µi(x

(qi))= φ(x)= ∏
µ′
j (x

(q ′
j )), and hence

(
µ′

1

(
x(q

′
1)
))−1

µ1
(
x(q1)

) = z(x) ∈E1 ∩D.
SinceE1 ∩ D � Z(E1), the mapx → z(x) is a group homomorphismX → Z(E1).
However,X = X′ so this map must be trivial; in other words,z(x) = 1 for all x ∈ X,
whenceµ1 = µ′

1.

We now have
∏
i>1µi(x

(qi))= ∏
j>1µ

′
j (x

(q ′
j )). View this as an equality between two

factorizations of another morphism fromX to G, where the intermediate direct product
has one less factor in each case. The inductive hypothesis now yields the result.

4. Theorem 1: existence

Let G be a simple algebraic group over an algebraically closed fieldK of good
characteristicp.

To establish the existence part of Theorem 1, we may replaceX by its image inG, so we
takeX �G, a connected simple subgroup which isG-cr. We need to prove the existence
of a commuting productE1 · · ·Er of restricted subgroups of the same type asX, such that
X � E1 · · ·Er and the projectionsX →Ei/Z(Ei) are nontrivial and involve distinct field
twists.

The case whereG is of classical type is fairly easy due to Steinberg’s theorem. This is
settled in the following lemma.

Lemma 4.1. Theorem1 holds ifG is a classical group.

Proof. We may assumeX �G � SL(V ). If G is a symplectic or orthogonal group, then
we are assumingp 
= 2, so thatG = SL(V )τ for a suitable involutory automorphismτ
of G. Moreover,X is completely reducible in its action onV .

First assumeG = SL(V ). Here the Steinberg tensor product theorem provides the
required (twisted diagonal) embeddingX < E1 · · ·Er , corresponding to field twists 1=
q1< · · ·< qr .

Now supposeG= SL(V )τ . From the uniqueness result we see thatτ normalizes each
Ei while centralizing the projection ofX. However, for eachi, Ei andX are of the same
type, so it follows thatτ centralizesEi and the commuting product is contained inG. ✷

From now on we assume thatG is an exceptional group. Here the most complicated case
is that in whichX = A1 (i.e.X = SL2 or PSL2), and we settle this case in the following
subsection. The higher rank cases will be settled in Section 4.2.

4.1. The caseX =A1

AssumeX = SL2 or PSL2. We must find suitable restricted groupsEi . These restricted
A1’s are goodA1’s of G, in the sense of [13]. Theorem 1.2 of [13] provides a strong
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connection between goodA1’s and unipotent classes. We will use this result to show that
restrictedA1’s of certain subgroups ofG are also restricted forG. Combining this with
Proposition 2.2 we are in position to carry out an inductive proof of Theorem 1.

We begin with a general result on reductive subgroups ofG of maximal rank (i.e.
containing a maximal torus).

Proposition 4.2. Let G be a simple algebraic group in characteristicp, a good prime
for G, and letM be a proper connected reductive subgroup ofG of maximal rank. Then
Z(M) 
= 1 andM = CG(Z(M))0.

Proof. As p is good, an inspection of subsystem groups (using the Borel–de Siebenthal
algorithm) shows thatZ(M) 
= 1. LetD = CG(Z(M))0, soM � D andZ(M) � Z(D).
Choose a maximal torusT of M containingZ(M). ThenZ(D) � CG(M) � CG(T ) =
T �M, and henceZ(D)= Z(M)= Z, say. IfM <D thenM/Z <D/Z. ButM/Z is a
maximal rank subgroup ofD/Z, so must have a nontrivial center, whereasZ(M/Z)= 1,
a contradiction. ThereforeM =D = CG(Z(M))0. ✷

Recall that ifX is anA1 subgroup of a connected reductive groupM, we will sayX is
restricted in M provided all weights ofX onL(M) are at most 2p − 2. If X � M � G

and if X is G-restricted, then clearlyX is alsoM-restricted. The following result is
a remarkable converse for certain particularly nice subgroupsM of G.

Proposition 4.3. (i) LetM be a connected reductive subgroup ofG of maximal rank. Then
restrictedA1’s in M are also restricted inG.

(ii) Let τ be a semisimple automorphism ofG. Then restrictedA1’s in CG(τ) are also
restricted inG.

Proof. (i) SupposeX is a restrictedA1 in M. Let u be a non-identity unipotent element
of X. Theorem 1.2 of [13] implies thatCG(u) = QCG(A), whereQ is normal and
unipotent andA is a restrictedA1 in G containingu. As u ∈ M we haveZ = Z(M) �
CG(u).

We claim that there existsx ∈Q such thatZ � CG(A)
x . CertainlyZ0 lies in a maximal

torus ofQCG(A), henceZ0 � CG(A)
y for somey ∈Q. WriteC = CG(u), soCC(Z0)=

Q0R0 whereQ0 = CQ(Z
0) andR0 = CCG(Ay)(Z

0). Now Z = Z0 × Z1 with Z1 a finite
abelianp′-group. ThenZ1 � Rz0 for somez ∈Q0, and henceZ � CG(A)

yz, proving the
claim.

ReplacingA by Ax (which still containsu), we haveCG(u) = QCG(A), u ∈ A, and
Z � CG(A). Thenu ∈A� CG(Z)

0, and so by the previous proposition,u ∈M. By [13],
u lies in a uniqueCM(u)-class of restrictedA1’s in M, and henceX is CM(u)-conjugate
toA. In particular,X is restricted inG, proving (i).

(ii) Let X be a restrictedA1 in CG(τ) andu ∈ X a non-identity unipotent element.
Let A be a restrictedA1 of G containingu. ThenAτ is another such, and so by [13, 1.1]
there existsx ∈Q = Ru(CG(u)) with Aτx = A. Now, τ normalizesCG(u) so it follows
thatτx ∈Qτ and so the semisimple part ofτx is conjugate toτ by an element ofQ. As
τx normalizesA, so does its semisimple part. Hence, we may assumeτ normalizesA,
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while centralizingu. But thenτ induces a unipotent automorphism ofA, whereasτ is
semisimple. It follows thatτ centralizesA and soX andA are goodA1’s of CG(τ)
containingu. From the conjugacy result in [13, 1.1], we conclude thatX is restricted
in G. ✷

Notice that parts of the above result can be combined. For example, ifG=E8 andD is
a group of typeF4 or C4 contained in a subsystem subgroupE6 of G, then it follows that
restrictedA1’s in D are also restricted inG.

We proceed with the existence part of Theorem 1 by induction. So we assume that the re-
sult holds forA1 subgroups of simple algebraic groups of dimension smaller than that ofG.

Lemma 4.4. Theorem1 holds ifX is contained in a proper connected reductive subgroup
of maximal rank inG, or in a proper parabolic subgroup ofG, or in CG(τ) for τ
a nontrivial semisimple automorphism ofG.

Proof. SupposeX is contained in one of these types of subgroups. AsX is G-cr, we
then haveX �M <G, with M connected reductive of maximal rank orM = CG(τ). By
induction the theorem holds for the projection ofX in each simple factor ofM. So for each
simple factor there is a commuting product ofA1’s which are restricted for that factor, such
that the projection ofX is a diagonal subgroup of this product, with distinct field twists.

Fix a particular field twist and consider the correspondingA1’s associated to this twist
in various simple factors ofM. It is obvious from a consideration of weights that a diagonal
A1 (no twists) in the product of theseA1’s is restricted forM, and so Proposition 4.3 shows
it is restricted forG as well. Finally,X is diagonal in a product of theseA1’s, with distinct
field twists, giving the conclusion.✷

Recall the assumption thatG is of exceptional type. Sincep is a good prime forG, it is
not 2 or 3 and also is not 5 whenG=E8.

If G=G2 then using Lemma 4.4 we may assume thatX is maximal inG, and hence
by [12], we havep � 7 andL(G) ↓ X has highest weight 10. ConsequentlyX is good
in G, giving the existence conclusion of Theorem 1. Thus we assume from now on that
G 
=G2.

At this point we combine Proposition 2.2 with Lemma 4.4 to obtain precise information
about the possible embeddings ofX in G.

Lemma 4.5. Theorem1 holds unless one of the following occurs:

(i) there is a subgroupY0 = F4 of G, a maximal connected subgroupZ of Y0 not
containing a maximal torus, and a semisimple subgroupY1 of CG(Y0), such thatX
is essentially embedded inZY1;

(ii) there is a maximal connected subgroupZ of G not containing a maximal torus, such
thatX is essentially embedded inZ.

The possibilities forZ in (i) and (ii) are as listed in Table2, and the possibilities for
CG(Y0) in (i) are given in the remark following Proposition2.2.
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Table 2

Case in Lemma 4.5 Possibilities forZ

(i) A1, G2 (p = 7), A1G2
(ii), G=E6 A2, G2 (p 
= 7), A2G2
(ii), G=E7 A2, A1A1, A1G2, A1F4,G2C3
(ii), G=E8 B2, A1A2,G2F4

Proof. This follows from Proposition 2.2 and Lemma 4.4, noting that in Table 2 we have
omitted the casesZ = F4,C4 whenG = E6, since these are involution centralizers, and
we have also omitted the maximalA1’s in E7, andE8, since these are restricted inG
(see [13]). ✷
Lemma 4.6. Theorem1 holds in the case of Lemma4.5(ii).

Proof. Assume that Lemma 4.5(ii) holds, so thatX is essentially embedded in a maximal
connected subgroupZ of G as in Table 2. Moreover,Z is a product of at most two simple
factors, and with one possible exception, the essentiality implies that the projection ofX

in each factor is either equal to, or maximal in the factor; the exception is for the factorC3
(of G2C3 in E7), when the projection ofX could be an irreducible but non-maximalA1
in C3 (lying in a subgroupA1A1 of C3 acting on the natural module as 1⊗ 2).

We have eitherX � Ak1, wherek � 2 is the number of simple factors ofZ, orX � A3
1

with Z = G2C3. There are possibly field twists in some projections. LetX1 denote a
diagonalA1 in this product without any field twists.

The composition factors ofL(G) ↓ Z are given in [7, Section 2]. We summarize the
information in Table 3. In the third column, we give the highest weight ofX1 onL(G).
If this highest weight is at most 2p − 2 thenX1 is restricted inG, from which it follows
that the conclusion of Theorem 1 holds; the remaining cases are listed in the last column
of the table. Note that the conditions onp given in the first column follow either from the

Table 3

Z <G (L(G)/L(Z))↓ Z Highest weight Open cases
of X1 onL(G)

B2 <E8 (p� 5) 06/32 18 p = 7
A1A2 <E8 (p � 5) 6⊗ 11/4⊗ 30/ 10

4⊗ 03/2⊗ 22
G2F4 <E8 (p� 13) 10⊗ 0001 22
A2 <E7 (p � 5) 44 16 p= 5,7
A1A1 <E7 (p � 5) 2⊗ 8/4⊗ 6/6⊗ 4/ 10 p = 5

2⊗ 4/4⊗ 2
A1G2 <E7 (p � 7) 4⊗ 10/2⊗ 20 14 p = 7
A1F4 <E7 (p� 13) 2⊗ 0001 18
G2C3 <E7 (p � 7) 10⊗ 010 14 p = 7
A2 <E6 (p � 5) 41/14 10 p = 5
G2 <E6 (p � 11) 11 16
A2G2 <E6 (p � 7) 11⊗ 10 10
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existence of maximalA1’s in the simple factors ofZ, or simply from the fact thatp is
good.

First assumeG = E8. The only open case isZ ∼= B2 with p = 7. Here X is
a maximalA1 of B2 and it follows from [12, p. 193] that the labeled diagram of a maximal
torus of X is 00020020. This yields all weights onL(G), and we calculate that the
composition factors ofX onL(G) are as follows:

L(G) ↓X = 182
∣∣16

∣∣143
∣∣126

∣∣104
∣∣85

∣∣65
∣∣44

∣∣26
∣∣03.

It is proved in [10] that a subgroupX ∼= A1 with these composition factors on
L(G) is G-conjugate to anA1 which lies in a maximal rank subgroupA8 of G, acting
indecomposably on the usual 9-dimensional module with composition factors 4|1 ⊗ 1(7).
But thenX is contained in a proper parabolic subgroup ofA8 and hence one ofG. So the
result follows from Lemma 4.4. (Actually thisA1 fails to beG-cr.)

Assume next thatG = E7, and consider first the case whereZ = A2 with p = 5 or 7.
Forp = 7, restrictingVA2(44) toX, we find that

L(E7) ↓X = 16
∣∣14

∣∣123
∣∣ . . . ∣∣03.

By [1], of the composition factors appearing, only 12= 5⊗1(7) extends the trivial module,
and ExtX(12,0) has dimension 1. SinceL(E7) is self-dual, it follows thatX fixes a nonzero
vectorv ∈ L(E7). By [12, 1.3], the stabilizer ofv in E7 lies in a proper subgroup ofE7
which is either parabolic or reductive of maximal rank. In either case the result follows
from Lemma 4.4. Whenp = 5, a similar argument applies: here we find

L(E7) ↓X = 16
∣∣14

∣∣123
∣∣102

∣∣85
∣∣ . . . ∣∣04,

and the only composition factor present which extends the trivial module is 8= 3 ⊗ 1(5).
From the extension theory ofSL2 we can writeL(E7) ↓ X = A ⊕ B, whereA contains
all the composition factors of high weight

∑
cip

i for which c0 = 0 orp − 2. HereA has
composition factors 102|85|04. It then follows from the proof of [10, 3.6(i)] thatX fixes
a nonzero vector inA. The conclusion follows as before.

The remaining cases forG= E7 each haveZ the product of two simple factors. From
the information in the table it is clear that Theorem 1 holds except for the case whereX

is diagonal inZ with no field twist in either factor. Consequently we now assume that
X =X1.

First considerZ =A1A1 with p = 5. LetT be a maximal torus ofX1. FromL(E7) ↓ Z
we calculate that the non-negative weights ofT on L(E7) are 103,86,65,44,211,03.
We check also that these weights agree with those of a one-dimensional torus lying in
a maximal rank subgroupA2A5 of E7, projecting to a torus of a regularA1 in each factor.
ThereforeT < A2A5. Now let V56 be the 56-dimensional irreducibleE7-moduleV (λ7).
By [7, 2.3] we have

V56 ↓A2A5 = λ1 ⊗ λ1/λ2 ⊗ λ5/0⊗ λ3.
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Hence the non-negative weights ofT onV56 are 9,73,56,39,19, and so the composition
factors ofL(E7) ↓ X are 9|72|53|36|12. Of these composition factors, only 7= 2 ⊗ 1(5)

extends 1. SinceL(E7) is self-dual, we conclude thatL(E7) ↓X has a submoduleW ∼= 1
(of dimension 2). The variety of all 2-spaces inV56 has dimension 108, and henceNE7(W)

is a closed subgroup ofE7 containingX1 and of dimension at least dimE7 − 108= 25.
LetM be a maximal connected subgroup ofE7 containingNE7(W)0. If M is parabolic or
reductive of maximal rank, we are done by Lemma 4.4. Otherwise, by [12],M =A1F4 or
G2C3. Neither of these fixes a 2-space inV56 (see [7, 2.5]), soNE7(W)0 is proper inM.

If X is contained in a proper parabolic ofM then it is also contained in one forG and
Lemma 4.4 yields the result. IfX is contained in a subgroup ofM of maximal rank, then
X < CM(s) <M for some semisimple elements ofM. But thenCG(s) has maximal rank
in G and containsX, and again Lemma 4.4 gives the result. Now the dimension restriction
and [12] imply that the only remaining possibility is thatM = A1F4 andX < F4. But this
is clearly impossible, sinceX has no fixed points onL(E7), whereasCM(F4)=A1.

Similar considerations apply to the casesZ =A1G2 orG2C3 with p = 7. By [7, 2.5],

V56 ↓A1G2 = 1⊗ 01/3⊗ 10, V56 ↓G2C3 = 10⊗ 100/00⊗ 001.

Hence, ifT denotes a maximal torus ofX, we calculate that the non-negative weights ofT

onV56 are 11,93,74,55,37,18 in both cases. It follows that the composition factors ofX

are

L(E7) ↓X= 11
∣∣92

∣∣7∣∣52
∣∣34

∣∣12.

By [1], only 11= 4 ⊗ 1(7) extends the module 1, and henceX fixes a 2-spaceW in V56.
Now we complete the argument as above.

Finally, letG= E6 with Z =A2 andp = 5. We consider the 27-dimensionalE6-mod-
uleV27 = VE6(λ1). Let T be a maximal torus inX. By [12, p. 65],T < A1A5 < E6, and
by [7, 2.3],V27 ↓A1A5 = 1⊗ λ5/0⊗ λ4. Hence we calculate theT -weights onV27, from
which it follows thatV27 ↓X = 8|6|42|2|02. Only the composition factor 8= 3⊗ 1(5) ex-
tends the trivial module, so we deduce thatX fixes a 1-space〈v〉 of V27. SoX < M =
NG(〈v〉), which has dimension at least dimE6 − 26 = 52. By Lemma 4.4 we may as-
sumeX lies in no parabolic or maximal rank subgroup ofE6, so we must haveM = F4
by [12]. NowV27 ↓ F4 = V26 ⊕ 0, whereV26 is the irreducibleF4-moduleVF4(λ4). As
V26 ↓ X = 8|6|42|2|0, X must also fix a 1-space〈w〉 of V26. It now follows using [12]
thatX lies in a parabolic or maximal rank subgroup ofF4, and again Lemma 4.4 yields the
result. ✷
Lemma 4.7. The conclusion of Theorem1 holds in the case of Lemma4.5(i).

Proof. HereX � F4C, whereC = CG(F4)=G2,A1,1 or 1, according asG=E8,E7,E6
orF4, respectively. Moreover, by [7, 2.4],(L(G)/L(F4C)) ↓ F4C = 0001⊗ 10, 0001⊗ 2
or 0001, according asG = E8,E7 or E6. Write V26 for the 26-dimensionalF4-module
VF4(0001).
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Denote byX1 the projection ofX in F4, and byX2 anA1 lying in F4C which projects
to a maximalA1 in each factor with no twists involved in any projection.

We record the possibilities forZ,L(F4) ↓Z, andV26 ↓Z, given by [12, p. 193] and [7,
2.5]:

Z (L(F4)/L(Z)) ↓Z V26 ↓ Z Highest weight ofX2
onL(F4),V26

A1 22/14/10 16/8/0 22,16
G2 (p= 7) 11 20 16,12
A1G2 (p � 7) 4⊗ 10 2⊗ 10/4⊗ 00 10,8

It follows from this that the conclusion holds, unless eitherZ =G2, p = 7 orZ = A1G2,
p = 7,G=E8 andX projects to a maximalA1 in C =G2.

SupposeZ = G2. By [12, p. 193], the labeling of a maximal torusT of X1 in F4
is 2022. Now consider anA1 lying in a maximal rank subgroupA1C3 of F4 via the
embedding 1(7),5 (i.e., the projection to the factorC3 is the irreducible representation
of high weight 5, and the projection to the factorA1 is a twist of the representation 1).
We calculate the weights of a maximal torusT1 of thisA1 using the restrictionL(F4) ↓
A1C3 = L(A1C3)/1⊗001, and conclude from these weights that the labeled diagram ofT1
is also 2022. Hence by [7, Theorem 6],X1 is F4-conjugate to thisA1 in A1C3. It follows
thatX centralizes an involution inF4 and hence an involution inG, so the result follows
from Lemma 4.4.

A similar argument settles the caseZ = A1G2, p = 7. This time we calculate
the weights ofT on L(F4), and find that they agree with the weights of a maximal
torus of anA1 lying in a maximal rank subgroupA1C3, embedded via the untwisted
representations 1, 5. Hence, again by [7, Theorem 6], we conclude thatX1 < A1C3 and
henceX centralizes an involution and again Lemma 4.4 yields the assertion.✷

This completes the existence proof of Theorem 1 forX= A1.

4.2. The case whererank(X)� 2

We continue with the proof of Theorem 1, where it remains to treat the case of a simple
groupX with rank(X)� 2. The information provided in [7] make this a much easier task
than for groups of typeA1. Indeed, except for a couple of situations in small characteristic,
the possibilities forX are described explicitly in [7].

Recall thatG is an exceptional group and we are trying to prove the existence of a
commuting productE1 · · ·Er of restricted subgroupsEi of the same type asX, such that
X � E1 · · ·Er and the projectionsX →Ei/Z(Ei) are nontrivial and involve distinct field
twists.

The embedding ofX in G is given by Proposition 2.2, (i) and (ii). First consider
the case of Proposition 2.2(ii): herep = 7, X = G2, and eitherX < F4 < E6 � G, or
X < G2F4 < E8 = G, with X projecting to a maximal subgroup of theF4 factor. Let
λ1, λ6 denote the fundamental dominant weights ofE6 corresponding to the restricted 27-
dimensional modules. From [12] we have
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L(E6) ↓G2 = 01/11/20, VE6(λ1) ↓G2 = 20/00, and

L(E8) ↓G2G2 = L(G2G2)/00⊗ 11/10⊗ 20,

where in the last case theG2G2 lies in G2F4, the second factorG2 being maximal
in F4. We note thatL(E8) ↓ E6 = L(E6)⊕ VE6(0)

8 ⊕ VE6(λ1)
3 ⊕ VE6(λ6)

3. It follows
that in the case whereX < E6, X is restricted; and in the caseX < G2F4, if neither
projection involves a twist thenX is restricted, and otherwiseX lies in the product of
two restrictedG2’s with distinct twists in the projections. Hence the result holds in the
case of Proposition 2.2(ii).

Now consider the case of Proposition 2.2(i). Here there is a subsystem subgroupY of G
such thatX is essentially embedded inY . Whenp > N(X,G) (as defined in [7, p. 2]),
the possibilities forY andL(G) ↓ X are given in [7, Tables 8.1–8.4]. And in the extra
cases wherep is good butp � N(X,G)—namely, the cases(X,G,p) = (A2,E7,5),
(G2,E7,5), (G2,E8,5 or 7)—the possibilities forY andL(G) ↓ Y can be calculated
exactly as in [7, pp. 62, 64] (using Theorem 2.1 for the case whereX is maximal inG).
The outcome is that the possibilities in these cases are exactly as in [7, Tables 8.1 and 8.2].

We first settle the case where the subsystem subgroupY has a simple factorY1 of
exceptional type. By Theorem 2.1 there are very few possibilities; they are as follows:

(Y1;X)= (E8;B2), (E7;A2), (E6;A2,G2,F4 orC4), (F4;G2) (p = 7).

First supposeX < Y1. ThenX is a maximal subgroup ofY1 and it is clear from Theorem 2.1
[7, 2.4] (together with the remark after Theorem 2.1) thatL(G) ↓X has all composition
factors restricted. HenceX is a restricted subgroup ofG and there is nothing to prove.
Now supposeX 
� Y1. ThenY has at least two simple factors, and as rank(X)� 2, the only
remaining possibility is thatY =E6A2,G=E8, andX =A2. HereX <A2A2, where the
firstA2 is a maximal subgroup ofE6 and the other is a subsystem group. If the embedding
does not involve a field twist in either factor, then we see from theA2E6 row of [7, p. 100]
that all composition factors ofX on L(G) are restricted. If a field twist is present, then
we need only show that each of theA2 factors is restricted and this information is also
immediate from [7, Table 8.1].

From now on assume thatY = Y1 · · ·Yk with eachYi a simple group of classical type.
LetXi be the projection ofX in Yi . Recall thatX is essentially embedded inY and hence
for eachi, eitherXi is irreducible on the natural module forYi or elseYi =Dk for some
k and the natural orthogonal module restricts toXi as the direct sum of two irreducible
nondegenerate subspaces.

We now inspect Tables 8.1–8.4 of [7], which give the possibilities for the composition
factors ofL(G) ↓X. If none of these composition factors involves aq-field twist then we
see from the tables that they are all restricted, soX is a restricted subgroup and there is
nothing to prove.

So suppose there is a composition factor present which involves aq-twist. This can
happen for a number of reasons.

First, there could be a projectionX → Yi which corresponds to an irreducible twisted
tensor product representation forX on the naturalYi -module. SinceX has rank at least 2,
this can only happen whenX =A2 <A2A2 <A8 = Y orX = C2 <C2C2 <D8 = Y , with
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G= E8 in both cases. In either case, we see from the tables that the twoA2 or C2 factors
are both restricted, and the result follows.

Second, there could be a projectionX → Yi which corresponds to a reducible
representation ofX on the naturalYi -module, with different twists for each summand.
This occurs only ifYi is of typeDn; for example,X = B2 →D5 = Yi via the embedding
10⊕10(q), orX =G2 →D7 = Yi via 10⊕10(q). In all such cases, inspection of the tables
shows that we can choose a suitable product of restricted copies ofX in Yi and the other
factors ofY to give the conclusion.

Finally, there could simply be distinct twists for the projectionsX→ Yi ; such a situation
is indicated by the notationY1Y

q

2 . . . in the tables. LetZ1,Z2, . . . be products of theYi ’s
corresponding to the same twist. Once again, inspection of the tables shows that we can
find restricted copies ofX in eachZi so thatX is contained in the product of these, with
different twists in each projection. This completes the proof.

The proof of Theorem 1 is now complete.

5. Proof of the Restricted Morphism Theorem

In this section we prove the Restricted Morphism theorem, using Theorem 1. LetX be a
simple simply connected group and letφ :X→G be a morphism with image groupG-cr,
whereG is a simple algebraic group in good characteristicp. We begin with two lemmas.

The first lemma shows that in part (ii) of the definition of a restricted morphism (see
Section 1), in the cases whereG is classical and has more than one natural module it does
not matter which natural module is chosen.

Lemma 5.1. Let X be simple and simply connected of rank at least2, and letG=An,
B2,A3 or D4 (with p a good prime forG). If φ :X → G is a representation which is
restricted on some natural module forG, thenφ is restricted on all natural modules forG.

Proof. The result is trivial ifX andG are of the same type, so assume this is not the
case. IfG=An, the result is immediate using duals. ForG= B2 there are no possibilities
with X proper. ForA3 the 6-dimensional module is the wedge square of the 4-dimensional
natural module. The only possibilities withX proper areX = A2 or B2, and considering
possible actions on the 4-dimensional module immediately yields the assertion.

Now letG=D4. We may as well takeφ to be restricted on the natural 8-dimensional
moduleV = VG(λ1). The possibilities forX and the high weights of the composition
factors ofV ↓ φ(X) are as follows:

X =A2, V ↓ φ(X)= 11 or 10/01/002,

X =A3, V ↓ φ(X)= 100/001 or 010/002,

X = B2, V ↓ φ(X)= 012 or 10/003,

X = B3, V ↓ φ(X)= 100/000 or 001.
X =G2, V ↓ φ(X)= 10/00.
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In the irreducibleA2 case, the image centralizes a triality morphism ofG which permutes
the 3 modules in question. Excluding this case, we see that in each case

∧2
V is also

restricted forX. But this wedge is the same for any of the 3 modules, so they must also be
restricted. ✷

The second lemma shows that centralizer condition in the Restricted Morphism
Theorem is independent of the isogeny type ofG. The proof is very similar to an argument
in the proof of Lemma 3.1, but we give details for completeness. LetĜ be the simply
connected group of the same type asG, and letπ : Ĝ → G be the canonical surjection.
AsX is simply connected we can find̂φ :X→ Ĝ such thatφ = π ◦ φ̂.

Lemma 5.2. With notation as above,CG(φ(X))0 = CG(dφ(L(X)))0 if and only if
CĜ(φ̂(X))

0 = CĜ(dφ̂(L(X)))
0.

Proof. LetC = CG(φ(X))
0 andĈ = CĜ(φ̂(X))

0. Similarly we setD = CG(dφ(L(X)))0

andD̂ = CĜ(dφ̂(L(X)))
0.

Now X is generated by unipotent elements and, asX is simply connected,L(X) is
generated by nilpotent elements. Similarly for the images ofX underφ andφ̂ and for the
images ofL(X) under dφ and dφ̂.

For u ∈ Ĝ a unipotent element andn ∈ L(Ĝ) a nilpotent element it follows from the
Jordan decomposition thatCĜ(uZ)= CĜ(u) andCĜ(n+ S)= CĜ(n), whereZ = ker(π)
andS = ker(dπ). It follows thatπ−1(C)= Ĉ ·Z andπ−1(D)= D̂ ·Z, so the result follows
by taking connected components.✷

We can now prove the Restricted Morphism Theorem. Letφ :X→G be as above, with
φ(X) aG-cr subgroup ofG.

Suppose first thatCG(φ(X))0 = CG(dφ(L(X)))0. By Theorem 1,φ factors as

X
ψ−→X× · · · ×X

µ−→G,

whereψ(x) = (x(q1), . . . , x(qk)), q1 < · · ·< qk , andµ is restricted with finite kernel. Let
E1 · · ·Ek be the image ofµ. If q1 > 1 then dφ(L(X)) = 0, contradicting the supposition
thatCG(φ(X))0 = CG(dφ(L(X)))0. Henceq1 = 1. If k > 1 then dφ(L(X)) � L(E1), so
dφ(L(X)) is centralized byEi for i > 1. However,φ(X) does not centralize anyEi . Hence
k = 1, and soφ = µ is restricted, as required.

Conversely, suppose thatφ :X →G is restricted. We need to show thatCG(φ(X))0 =
CG(dφ(L(X)))0. SetE = φ(X), a restricted subgroup ofG.

First assumeG is of exceptional type. Then asp is good forG the only proper ideals
of L(X) consist of semisimple elements (this could fail ifX had typeBn, Cn, F4, G2
with p = 2,2,2,3, respectively). Hence dφ(L(X)) = L(E)+ and we must show that
CG(E)

0 = CG(L(E)
+)0. But this is immediate from Proposition 2.3(iii).

Now assumeG is of classical type. By Lemma 5.2 we may assume thatG = SL(V ),
Sp(V ) or SO(V ), a classical group with natural moduleV . It will suffice to establish the
result forG= SL(V ). The fact thatφ is restricted simply means thatφ(X) has restricted
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composition factors onV . Sinceφ(X) isG-cr andp is good,V is completely reducible and
restricted forX. It follows thatX andL(X) have precisely the same irreducible subspaces
onV under the representationsφ and dφ, respectively. Now [8, 2.3] shows thatφ(X) and
dφ(L(X)) have the same centralizer inGL(V ).

This completes the proof of the Restricted Morphism Theorem.

6. Proof of Theorem 2

Assume the hypotheses of Theorem 2 where we aim for a tensor product theorem
covering finite groups,Y (q), of Lie type. The main difficulty is for exceptional groupsG,
where the argument is based on results in [9] showing that forq suitably large there is a
connected subgroup̃Y of G such that̃Y andY (q) stabilize precisely the same subspaces
of L(G).

Throughout this section assume thatG is a simple algebraic group in good characteristic
and thatY (q) is a finite group of Lie type overFq , with Y (q) = Yσ , whereY is a
simple, simply connected algebraic group andσ is a Frobenius morphism. Also we fix
φ :Y (q)→G a nontrivial homomorphism with image groupG-cr.

We first establish the result for classical groups where it follows readily from the
Steinberg tensor product theorem. Suppose thatG= SL(V ),Sp(V ) or SO(V ) is classical,
with natural moduleV . TheG-cr subgroupφ(Y (q)) acts completely reducibly onV .
Steinberg’s theorem implies that each irreducible summand ofV ↓ Y (q) extends to an
irreducibleq-restricted representationY → SL(V ) ((q, s)-restricted ifY (q) = 2B2(q),
2G2(q), 2F4(q)). This establishes the existence of the required factorizationY (q) ↪→
Y

ψ−→ G of φ, in the case whereG = SL(V ). Also,ψ(Y ) is completely reducible onV
and stabilizes precisely the same subspaces asφ(Y (q)). It follows that the images ofY (q)
andY have the same centralizer inSL(V ).

If µ :Y → SL(V ) is another suchq-restricted morphism ((q, s)-restricted ifY (q) =
2B2(q), 2G2(q), 2F4(q)) factorizingφ, thenψ andµ are representations ofY with the
same restriction toY (q) and so it follows that there existsg ∈ SL(V ) such that fory ∈ Y ,
we haveµ(y)=ψ(y)g . Theng centralizes the image ofY (q) and hence centralizesψ(Y ),
as well. Therefore,ψ = µ and uniqueness is established forG= SL(V ).

If G is symplectic or orthogonal, thenp 
= 2 andG = SL(V )τ for an appropriate
involutory automorphismτ of SL(V ). With ψ as above, the morphismτ ◦ ψ is another
q-restricted representation such thatψ andτ ◦ψ agree onY (q). It follows from the above
that these two morphisms are equal. Thenψ(Y ) � G giving existence. Uniqueness is a
consequence of unicity forG= SL(V ).

Now supposeG is exceptional. The casesY (q)= 2B2(q), 2G2(q), 2F4(q) do not occur
here asp is good. DefineY0 = φ(Y (q)). By [9, Corollary 5], there is a proper connected
subgroup̃Y of G containingY0 and fixing the same subspaces ofL(G) asY0. ChoosẽY
minimal subject to these conditions. The proof of [9, 9.4] shows thatỸ is reductive, and
now the proof of [9, 9.5] and the ensuing argument shows thatỸ is simple and of the same
type asY .

We claimỸ is G-cr. SupposẽY < P =QR, a parabolic with unipotent radicalQ and
Levi subgroupR. As Y0 isG-cr, we may assume thatY0 <R. ThenY0 fixesL(R), hence
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so does̃Y . However,NP (L(R))0 =R, as shown in the proof of [9, 9.4], so this means that
Ỹ �R, showing that̃Y isG-cr.

From Corollary 1, we havẽY � E1 · · ·Ek , a commuting product of connected simple
restricted subgroupsEi of the same type, with distinctqi -field twists in the projections.
Consequently, we can find a morphismµ :Y →G with imageỸ and which factors as in
Theorem 1 withp-powers,q1, . . . , qk. Adjustingµ by a morphism of̃Y we can assume
thatµ ↓ Y (q)= φ.

At this point µ restricts toY (q) as φ, but it is possible thatµ is not q-restricted.
For eachi, let ri denote the reduction ofqi moduloq . Using the factorization ofµ we
can obtain a morphismψ :Y → E1 · · ·Ek, where the field twists arer1, . . . , rk and the
restriction toY (q) is still φ.

Supposeri = rj for i 
= j . ThenY0 fixes the Lie algebra of a diagonal subgroup ofEiEj
which is not fixed bỹY , a contradiction. Hence theri are distinct.

Next we show that�Y =ψ(Y ) isG-cr. Suppose�Y < P =QR, a parabolic with unipotent
radicalQ and Levi subgroupR. AsY0 isG-cr we can takeY0 <R. NowY0 fixesL(Q) and

L(R), hence so does̃Y . ThereforẽY �NG(L(Q))= P , and hencẽY �NP (L(R))
0 = R.

Let Z = Z(R). ThenZ centralizes̃Y . By Lemma 9.3(ii) below,CG(Ỹ )= CG(E1 · · ·Er),
and henceE1 · · ·Er � CG(Z) = R. As E1 . . .Er contains�Y , it follows that �Y � R.
Consequently�Y isG-cr.

We have now established thatψ satisfies the conclusion of Theorem 2.
It remains to prove the uniqueness ofψ . Supposeψ ′ :Y →G is another such morphism.

Thenψ ′ determines a commuting productF1 · · ·Fl of restricted simple subgroupsFi with
distinct si -twists in the projections ofY0, wheresi < q . Also, Y0 fixes eachL(Fi), hence
so does̃Y .

Observe next that the hypothesis of Proposition 2.3(iii) holds for eachFi : this is clear if
l > 1, and is also true ifl = 1, since thenF1 =ψ ′(Y ) isG-cr. Then by Proposition 2.3(iii),
we haveCG(L(Fi))0 = CG(Fi)

0, and henceNG(L(Fi))0 = FiCG(Fi)
0. It follows that Ỹ

normalizesF1 · · ·Fl , hence lies inF1 · · ·FlD, whereD = CG(F1 · · ·Fl)0. SinceY0 <

F1 · · ·Fl , the projection fromỸ to D has kernel containingY0, and hence alsõY �
F1 · · ·Fl .

The projections of̃Y to the simple factorsFi involve distinct field twists, as this is
already the case forY0. It now follows from the uniqueness assertion in Theorem 1, that
k = l andE1 · · ·Ek = F1 · · ·Fl , and reordering we may assumeEi = Fi for eachi.

The mapsψ , ψ ′ factor in accordance with Theorem 1. We then have an equality∏
ψi(x

(ri)) = ∏
ψ ′
i (x

(si)) for all x ∈ Y (q). As in the uniqueness argument of Section 3
this implies

ψi
(
x(ri)

) =ψ ′
i

(
x(si)

)
(∗)

for eachi and allx ∈ Y (q). Fix i. There is an automorphismα of Y such thatψi =ψ ′
i ◦ α.

Taking ri � si and writing ti = si/ri , we then haveψ ′
i (α(x)) = ψi(x) = ψ ′

i (x
(ti)) for

all x ∈ Y (q), and henceα(x) = x(ti) for all x ∈ Y (q). It follows thatα(y) = y(tiq
r ) for

somer � 0 and ally ∈ Y . However, we know thatψi = ψ ′
i ◦ α andψi,ψ ′

i are restricted
morphisms. Hence it must be the case thatr = 0 andti = 1. In other words,ψi =ψ ′

i . This
establishes the uniqueness ofψ .
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7. Tilting decompositions

In this section we establish Theorem 3. LetG be as in the hypothesis of Theorem 3,
and letX be a connected, simple subgroup ofG of typeA1 which isG-cr. Our goal is to
show thatL(G) ↓X is a direct sum of modules, each of which is a twisted tensor product
of tilting modules forX where the tensor factors have (untwisted) high weights at most
2p− 2.

From Theorem 1 we haveX �R1 · · ·Rk , with eachRi a restrictedA1 (i.e. a goodA1),
andX is embedded with distinct field twists in each factor. Consequently, it will suffice to
show thatL(G) ↓ (R1 · · ·Rk) is a direct sum with each summand being a tensor product
of indecomposable tilting modules for the factorsRi with appropriate high weights.

We know from [13, Theorem 1(iii)] thatL(G) ↓ Ri is a tilting module for eachi.
However, unlike the situation for completely reducible modules, this does not in general
imply a tilting decomposition forR1 · · ·Rk . For classical groups it is easy to get the result,
but for exceptional groups we will have to work harder.

Note that by the above, we can assume thatk � 2. The first lemma relates Weyl modules
and tilting modules forR1 · · ·Rk to those of the individualRi . If λ is a dominant weight
for a semisimple groupE, let WE(λ),TE(λ) denote the corresponding Weyl module and
indecomposable tilting module.

Lemma 7.1. Let λ = λ1 + · · · + λk be a dominant weight ofR1 · · ·Rk , whereλi is
a dominant weight forRi . Then

(i) WR1···Rk (λ)=WR1(λ1)⊗ · · · ⊗WRk (λk).
(ii) TR1···Rk (λ)= TR1(λ1)⊗ · · · ⊗ TRk (λk).

Proof. (i) Let V = WR1(λ1) ⊗ · · · ⊗ WRk (λk). Then V has the same character as
WR1···Rk (λ). Fix i and considerV ↓ Ri . This restriction is the direct sum of copies of
WRi (λi) and hence all semisimple quotients are homogeneous of typeVRi (λi). Now letting
i vary we see that any simple quotient ofV has high weightλ. As λ has multiplicity 1 we
conclude thatV is indecomposable. The universal property of Weyl modules [3, p. 209]
implies thatV is the image ofWR1···Rk (λ), and these modules have the same dimension.
Part (i) follows.

(ii) As eachTRi (λi) has a filtration by Weyl modules, (i) implies that the same holds for
S = TR1(λ1)⊗· · ·⊗TRk (λk). Similarly, we see thatS has a filtration by dual Weyl modules.
It follows thatTR1(λ1)⊗· · ·⊗TRk (λk) is a tilting module with high weightλ. Consequently
we can writeTR1(λ1)⊗· · ·⊗TRk (λk)= TR1···Rk (λ)⊕TR1···Rk (δ)⊕TR1···Rk (µ)⊕· · · , where
λ > δ � µ . . . .

SupposeTR1···Rk (δ) 
= 0. Inductively, (ii) holds forδ so thatTR1···Rk (δ) = TR1(δ1) ⊗
· · · ⊗ TRk (δk). Fix i. ThenS ↓ Ri is the direct sum of copies ofTRi (λi) and hence is
a tilting module. Direct summands of tilting modules are again tilting modules, so that
TR1···Rk (δ) ↓ Ri is a tilting module and is thus the direct sum of copies ofTRi (λi). But
from (ii) for δ we obtainδi = λi . Letting i vary this givesδ = λ, a contradiction. The result
follows. ✷
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The next lemma is presented in a more general form than is required for this section.

Lemma 7.2. LetX be a connected simple subgroup ofG which isG-cr andR1 · · ·Rk the
commuting product given by Corollary1. ThenR1 · · ·Rk isG-cr.

Proof. Suppose thatR1 · · ·Rk < P , with P a parabolic subgroup ofG. ThenX <P . AsX
isG-cr there is a Levi subgroupL of P containingX. LetZ be the connected center ofL,
a nontrivial torus.

The uniqueness assertion in Theorem 1 (or Corollary 1) implies thatZ normalizes
R1 · · ·Rk and connectedness ofZ implies thatZ < NG(Ri) for eachi. As Z � CG(X)

andX projects onto eachRi , we conclude thatR1 · · ·Rk � CG(Z) = L, proving the
lemma. ✷
Lemma 7.3. Theorem3 holds ifG is a classical group.

Proof. SupposeG is classical, with natural moduleV . Lemma 7.2 and our assumption
that p is a good prime imply thatV ↓ (R1 · · ·Rk) is completely reducible, with each
composition factor a tensor product of restricted modules for the various factorsRi . Thus
V ↓ (R1 · · ·Rk) is a tilting module. Now tensor products of tilting modules and direct
summands of tilting modules are again tilting modules. SinceL(G) is a direct summand
of V ⊗ V ∗, we have the result. ✷

For the remainder of the proof of Theorem 3 assumeG is of exceptional type. Asp is
a good prime forG this impliesp > 3.

Lemma 7.4. Theorem3 holds ifL(G) ↓R1 · · ·Rk = ⊕
j Vj , where for eachj , at most one

Ri fails to be completely reducible onVj . In particular, the result holds ifL(G) ↓R1 · · ·Rk
is completely reducible.

Proof. AssumeL(G) ↓ R1 · · ·Rk is completely reducible. Since we know that eachRi is
a goodA1, this implies that eachVj is restricted and then the result is immediate. So now
assume that for some fixedj oneRi , sayRk , is not completely reducible onVj .

Consider the action ofR1 · · ·Rk on Vj . Each ofR1, . . . ,Rk−1 is completely reducible
onVj . It follows (see [8, 2.3] and argue by induction) thatA=R1 · · ·Rk−1 acts completely
reducibly onVj , and by restricting to a homogeneous component we may assume thatVj
is homogeneous in this action. LetC = CGL(Vj )(A). Another application of [8, 2.3] shows
that we can writeVj = Y ⊗W for some spacesY , W , so thatA induces a subgroup of
GL(Y )⊗ 1 andC = 1⊗ GL(W); in particular,Vj ↓ C is homogeneous of typeW . On the
other hand,Rk � C andVj ↓ Rk is known to be a tilting module. As direct summands of
tilting modules are tilting,W ↓Rk is tilting, hence is a direct sum of indecomposable tilting
modules. Moreover,A is completely reducible onY , with each irreducible restricted and
hence tilting. It follows thatVj ↓ R1 · · ·Rk is a direct sum of submodules, each of which is
a tensor product of restricted irreducibles forR1, . . . ,Rk−1, and an indecomposable tilting
module forRk of high weight at most 2p− 2. The result follows. ✷
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In the ensuing argument we shall make use of Proposition 2.2, which shows that
eitherR1 · · ·Rk is essentially embedded in a subsystem subgroup ofG, or the situation
of Proposition 2.2(iii) holds. With this in mind, we first establish the following.

Lemma 7.5. LetY be a semisimple subsystem subgroup ofG.

(i) If Y has no factorAp−1 thenL(G) ↓ Y is completely reducible.
(ii) If Y has a factorS =Ap−1, thenL(G) ↓ Y =A⊕B, withB completely reducible. In

addition,S is the only factor ofY acting nontrivially onA andS = SLp acts onA as
onglp .

Proof. (i) Write Y = Y1 · · ·Yr , a commuting product of simple subsystem groupsYi . It is
well known and easy to prove (for example, use [8, 2.3] and induction) thatL(G) ↓ Y is
completely reducible if and only ifL(G) ↓ Yi is completely reducible for eachi. So we
may assume thatY is simple. Now the high weights,λ, of composition factors forY on
L(G) are given by [7, Tables 8.1–8.5]: we list below the possible nonzero high weights
other than that of the adjoint module ofY :

(a) Y =An: λ= λj or λn−j (j = 1,2,3,4), 2λ1, 2λn, 3λ1.
(Note: 2λ1,2λn occur only forG = F4 with n � 2, and 3λ1 only for G = G2 with
n= 1.)

(b) Y =Dn: λ= λ1, λn−1, λn.
(c) Y =E6 (respectivelyE7): λ1 or λ6 (respectivelyλ7).
(d) Y = Bn, Cn (G= F4, n� 4, n� 3, respectively):λ1, λn.

For each of these high weights we claim that the corresponding Weyl moduleWY (λ) is
irreducible. This follows from [7, 1.11] except when(Y,λ) = (An,λ4) or (C3, λ3); in the
first caseWY (λ4) is the fourth wedge of the naturalAn-module, which is irreducible, and
in the second the claim follows from [2]. Moreover, it is well known—see, for example,
[9, 1.10]—that the adjoint moduleL(Y ) is irreducible except for the special cases of the
lemma, where(Y,p)= (A4,5) or (A6,7). This establishes (i).

Now assumeY has a factorS = Ap−1. If G = E8, only the casep = 7 occurs since
we are assumingp to be a good prime. A consideration of subsystems implies that
Y � S · T1 ·R, whereR is semisimple. There is a subsystem group of typeDp containing
S · T1 as a Levi factor. ThenL(S · T1) ∼= glp as anS-module. This yields the spaceA,
which is nondegenerate. Taking perpendicular spaces we proceed as above to get (ii).✷
Lemma 7.6. Theorem3 holds if R1 · · ·Rk is essentially embedded in a subsystem
subgroupY ofG such that each simple factor ofY is of classical type.

Proof. We first argue that it suffices to consider the case whereY is simple. The previous
lemma shows that eitherY is completely reducible onL(G) or this is true with the
exception of just one summand where a singleAp−1 factor acts nontrivially. In reducing to
the caseY simple we consider one summand at a time. So we may ignore the exceptional
cases for now. Consider an irreducible summand, which is the tensor product of irreducible
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representations for the various simple factors ofY . This yields a corresponding tensor
product for the action ofR1 · · ·Rk . The tensor product of tilting modules is again a tilting
module, so we may replaceR1 · · ·Rk by its projection in a simple factor ofY . In this way,
we reduce to the caseY simple.

Consider first the case whereY = An. Here the embedding ofR1 · · ·Rk in Y

corresponds to an irreducible representation. Moreover, eachRi is a goodA1 of G and
hence ofY . Hence, the natural module, sayV , for Y (or an appropriate cover) affords an
irreducible restricted module for the corresponding cover ofR1 · · ·Rk . ThusV affords a
tilting module forR1 · · ·Rk . Lemma 7.5 shows thatY is completely reducible onL(G),
except for the casesY = A4,A6, with p = 5,7, respectively. In the exceptional cases the
action is completely reducible except for a summand of typeglp ∼= V ⊗ V ∗. As tensor
products of tilting modules are again tilting, this case causes no difficulty. The other direct
summands ofL(G) ↓ Y have high weights of irreducibles listed under case (a) in the proof
of Lemma 7.5. Asp is a good prime, each of these summands is a direct summand of an
appropriate tensor power of the natural module. The family of tilting modules is closed
under tensor products and direct summands, so the assertion follows in this case.

Next assumeY = Dn. HereR1 · · ·Rk � Y essential means that under the action of
R1 · · ·Rk , the natural orthogonalDn-module is either irreducible or decomposes as an
orthogonal sum of two irreducibles of odd degree. Since each irreducible summand ofDn

is completely reducible under the action ofBk × Bn−k−1 another reduction allows us to
assume thatR1 · · ·Rk < Y0 = Br orDr , wherer � 7 or 8, respectively, and the embedding
corresponds to an irreducible restricted representation. From the information in (b) of the
proof of Lemma 7.5 we see thatL(G) ↓ Y0 is a direct sum of an adjoint module, natural
modules, and spin modules. The only issue is the action ofR1 · · ·Rk on the corresponding
spin modules.

Recall the assumption thatk � 2. The possibilities for the embeddingR1 · · ·Rk < Y0
and the corresponding composition factors of the spin modules forY0 restricted toR1 · · ·Rk
can be read off from the table of [7, p. 29]. If each composition factor for eachRi is
restricted, thenR1 · · ·Rk acts completely reducibly on the spin module and there is nothing
to prove. In the remaining cases we havek = 2. We list the cases, indicating the possible
pairs(i ⊗ j,Y0), wherei ⊗ j is the irreducible tensor product representation ofR1R2 on
the naturalY0-module:

(5⊗ 1,D6), (4⊗ 2,B7), (7⊗ 1,D8), (3⊗ 3,D8).

In all but the last case it follows from [7, p. 29] and our assumption thatp is a good
prime forG, thatR2 is completely reducible on the spin modules. Since we also know that
R1 has a tilting decomposition onL(G) and hence on the spin modules, consideration of
homogeneous summands forR2 gives the conclusion.

In the last case we haveR1R2 < C2C2 <D8. If W1, W2 denote the two restricted spin
modules forD8, then from [7, p. 30] we have

W1 ↓ C2C2 = 10⊗ 11/11⊗ 10, W2 ↓ C2C2 = 20⊗ 01/01⊗ 20/02⊗ 00/00⊗ 02.

Sincep � 7 here (asp is good), it follows thatWi ↓ C2C2 is completely reducible for
i = 1,2.
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Fix i andRi < C2. We will consider restrictions of the above representations toRi .
First note that the modules 10 and 01 are both irreducible restricted representations
for Ri , hence irreducible tilting modules. Hence 01⊗ 01,10 ⊗ 10 and 10⊗ 01 are
all tilting modules upon restriction toRi . These tensor products decompose forC2 as
02⊕ 20⊕ 00,20⊕ 01⊕ 00,11⊕ 10, respectively. HenceRi acts on eachWj as a sum of
indecomposable tilting modules and the result follows.

Finally, consider the cases whereY = Bn, Cn < F4. HereR1 · · ·Rk is an irreducible
subgroup ofY , sok = 2 and we indicate the possibilities for(i ⊗ j,Y ), wherei ⊗ j is the
representation ofR1R2 on the naturalY -module:

(2⊗ 2,B4), (1⊗ 2,C3), (1⊗ 1,C2).

Now p � 5 and we claim in each case thatL(G) ↓ Ri is restricted. In the first case this
is shown in [7, 2.13]. In the other cases it follows from fact (d) given in the proof of
Lemma 7.5 that the composition factors ofCn to consider are those of high weightsλ1, λn.
These occur within the appropriate wedge of the natural module, so the claim is immediate.
The conclusion now follows from Lemma 7.4.✷
Lemma 7.7. Theorem3 holds ifR1 · · ·Rk is contained in no subsystem subgroup having
each factor of classical type.

Proof. Under the hypothesis, Proposition 2.2 shows that there is a subgroupY0 of
exceptional typeF4,E6,E7 or E8 in G, a maximal connected subgroupZ of Y0 not
containing a maximal torus, and a semisimple subgroupY1 of CG(Y0) such thatR1 · · ·Rk
is essentially embedded inZY1.

If Y1 is not simple, then in view of the possibilities forCG(Y0) (see the remark
after Proposition 2.2), we haveY0CG(Y0) = F4G2 < E8 = G andY1 = A1A1. But then
R1 · · ·Rk centralizes an involution and we can replaceY0CG(Y0) by the centralizerA1E7
of this involution. Hence we may assume thatY1 is simple. As a consequence we have that
the projection ofR1 · · ·Rk to Y1 is either trivial or a singleA1.

The groupY0CG(Y0) acts completely reducibly onL(G)with composition factors given
by [7, 2.1, 2.4]. Using this we see that the projection ofR1 · · ·Rk to Y1 acts completely
reducibly onL(G) with each composition factor restricted. Since tensor products of tilting
modules are tilting, it suffices to work with the projection toZ. That is we assume that
R � Z, essentially embedded.

Taking into account the fact thatk � 2, by Theorem 2.1 we have the following
configurations to consider:

Y0 = F4, Z =A1G2,

Y0 =E6, Z =A2G2,C4,

Y0 =E7, Z =A1A1,A1G2,A1F4,G2C3,

Y0 =E8, Z =A1A2,G2F4.

With the exception of the casesZ = C4, G2C3, which will be settled later in the proof,
the essentiality ofR1 · · ·Rk in Z implies thatk = 2, with oneRi in each simple factor ofZ.
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So writeZ = Z1Z2 with Ri � Zi , whereZ1 is the first factor in the list above. In view of
Lemma 7.4 we are done if we can show that eitherR1 orR2 has all composition factors on
L(G) being restricted.

Consider the cases where(Z,Y0)= (A1G2,F4), (A2G2,E6), (A1G2,E7), (A1F4,E7),
or (A1A2,E8). For theE8 case we havep � 7 asp is good; this also holds in the other
cases, because maximalA1’s in G2, F4 requirep � 7,13, respectively. Using [7, 2.4
and 2.5] we check thatR1 has all composition factors onL(G) being restricted, so we
have the result by Lemma 7.4.

A similar argument holds for the case whereZ = G2F4 < E8. Here,R1 < G2 is
irreducible and restricted on the usual 7-dimensionalG2-module, and the existence of a
maximalA1 in F4 implies thatp � 13. Then [7, 2.4] implies that all composition factors
of R1 onL(G) are restricted, giving the result by Lemma 7.4.

Next supposeZ = C4 < E6. Here,k = 3 and the naturalC4-moduleV8 restricts to
R1R2R3 as 1⊗ 1 ⊗ 1. By [7, 2.4], the possible composition factors ofC4 onL(G) have
high weights 2000, 0100, 0001. It follows that eachRi has only restricted composition
factors onL(G) and again the result follows from Lemma 7.4.

Now assumeZ = G2C3 < E7. We may supposeR1 projects nontrivially toG2 as a
maximalA1. This forcesp � 7. If the projection ofR1 · · ·Rk to C3 is an irreducibleA1,
thenk = 2, R1 has trivial projection toC3 and we are immediately done by Lemma 7.4.
So assume the projection ofR toC3 corresponds to an irreducible subgroup of typeA1A1

acting as 1⊗ 2 on the 6-dimensional symplectic module. Also,k = 2 or 3.
The composition factors ofZ onL(G) areL(Z), 10⊗ 010, 10⊗ 100, 00⊗ 001, where

the latter two occur only ifG = E8. This action is completely reducible so we can work
with the individual summands. NowR2, (R3) < C3 and from the tensor embedding on the
natural module we easily see that all composition factors ofR2 (andR3 if it occurs) on
L(G) are restricted (asp � 7). So once again Lemma 7.4 settles the issue.

The remaining case isZ =R1R2 =A1A1 <E7. Here, by [7, 2.4],

L(E7) ↓R1R2 = 2⊗ 0/0⊗ 2/2⊗ 8/4⊗ 6/6⊗ 4/2⊗ 4/4⊗ 2.

If G= E8 the restriction ofL(G) to E7 involvesL(E7) plus two copies ofV56 = V (λ7).
By [7, 2.5], we haveV56 ↓ R1R2 = 6 ⊗ 3/4 ⊗ 1/2 ⊗ 5. If p � 7, thenR1 has all factors
restricted, so the result follows from Lemma 7.4. The only difficulty occurs forG = E7

with p = 5. Here we must be a little more careful.
Notice that each ofR1 andR2 have composition factors of high weight 4. These extend

no other composition factors. Consequently, we may writeL(G) ↓R1R2 = V1 ⊕V2 ⊕ V3,
where fori = 1,2,Vi ↓Ri = 4k. We haveV3 ↓ R1R2 = 2⊗0/0⊗2/2⊗8. On each factor
eitherR1 or R2 is restricted, while the other restricts to a tilting module. Once again the
result follows from Lemma 7.4. ✷

At this point we have completed the proof of Theorem 3.
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8. Theorem 4

In this section we prove Theorem 4 and Corollary 3. Assume then thatG is of
exceptional type andX < G is a connected simpleG-cr subgroup of rank at least 2. Let
E1, . . . ,Er be the subgroups given in Corollary 1.

By Proposition 2.2, eitherX is essentially embedded in a subsystem subgroupY of G,
orX =G2,p = 7 and conclusion (ii) of Theorem 4 holds. In the latter case the restriction
L(G) ↓X can be worked out using the following restrictions:

L(F4) ↓G2 = L(G2)⊕ VG2(11), L(E8) ↓G2F4 = L(G2)⊕L(F4)⊕ (10⊗ 0001)

(see [12, p. 193]), from which we see that Theorem 4 holds in this case.
Assume now Theorem 4(ii) does not hold, so thatX is essentially embedded in a

subsystem subgroupY of G. As observed in the proof of Proposition 2.3, whenp >
N(X,G) (as defined in [7, p. 2]), the possibilities forY , X, and the composition factors
of L(G) ↓X are worked out explicitly in [7, Tables 8.1–8.4]; and whenp �N(X,G), we
have(X,G,p)= (A2,E7,5), (G2,E7,5 or 7), or (G2,E8,7), and the possibilities forY ,
X andL(G) ↓ X can be worked out as in [10], and are just as in Tables 8.1–8.4 again.
These tables give the composition factors ofL(G) ↓ X, and indicate those cases where
one of the corresponding Weyl modules is reducible. Moreover, the proof of Theorem 1
shows that the productE1 · · ·Er lies inY and can be read off from the tables.

If all the relevant Weyl modules are irreducible, thenL(G) ↓Ei is completely reducible
for each i, this shows thatL(G) ↓ E1 · · ·Er is completely reducible and that each
irreducible summand is a tensor product of (irreducible) Weyl modules for the factors.
Thus Theorem 4 holds. Moreover, we see from [7, Tables 8.1–8.4] that whenp > 7 all the
relevant Weyl modules are irreducible, so this establishes Corollary 3.

It remains to consider those cases where one of the Weyl modules corresponding to a
composition factor ofL(G) ↓ X is reducible. From the tables in [7], these cases are in
Table 4.

Table 4

X Y p Reducible Weyl module inL(G) ↓X
A6 A6 7 W(λ1 + λ6)= λ1 + λ6|0
A4 A4 5 W(λ1 + λ4)= λ1 + λ4|0
B3 A6 7 W(200)= 200|000
B3 A7 7 W(101)= 101|001
C3 D7 7 W(110)= 110|100
G2 A6 7 W(20)= 20|00
G2 D7 7 W(11)= 11|20
B2 D7 7 W(22)= 22|02,W(13)= 13|03
B2 D5 5 W(11)= 11|01
A2 A5 5 W(22)= 22|11
A2 A2A5 5 W(22)= 22|11,W(31)= 31|20
A2 E6 5 W(22)= 22|11
A2 E7 7 W(44)= 44|11
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In all cases except(X,Y )= (A2,A2A5), the fact thatX is essentially embedded inY
and there is a composition factor inL(G) ↓X as indicated in the last column, implies that
r = 1 and hence thatX is a restricted subgroup ofG. Consequently, it will suffice in these
cases to show thatL(G) ↓ X is a direct sum of Weyl modules, dual Weyl modules, and
tilting modules. In the exceptional case withY =A2A5, eitherr = 1 andX is a restricted
subgroup, orr = 2 and there is a field twist in one of the projections fromX to the factors
of Y .

Consider the first caseX = A6 < G with p = 7. HereG = E7 or E8. Let V7 be the
usual 7-dimensional module forX. It follows from [7] thatL(G) ↓ A6 = R ⊕ S, where
S is a sum of irreducible wedge modules

∧i
(V7) = V (λi) = W(λi) and their duals, and

R has a single adjoint composition factor and some trivial composition factors. NowX is
contained in a subgroupGL7 ∼= A6T1 < E7. Indeed, there is a Levi subgroupE = A6T1

which inducesGL7 on a 7-dimensional submodule ofL(E7). We haveL(E)∼= V7 ⊗ V ∗
7 ,

which is a tilting module forX. Also,R ↓A6 is the direct some ofL(E) and some trivial
modules, so this yields the result. The second case,X =A4, p = 5, is similar.

Now consider the third case,X = B3 < A6 < G with p = 7. As above,L(G) ↓ A6 =
R⊕S. Each of the wedge modules inS is a direct summand of a tensor power ofV , hence
is tilting for X. And takingE = GL7 as above,L(E) ∼= V ⊗ V ∗ is also a tilting module
for X, and the conclusion follows. The sixth caseX = G2 < B3 < A6 < G is entirely
similar.

Next consider the cases where(X,Y,p) = (B3,A7,7) or (A2,A5,5). Here the
embeddingX < Y is given by the irreducibleVX(001) or VX(20), respectively, both of
which are irreducible Weyl modules. From [7] we see thatL(G) ↓ Y is a direct sum of
L(Y ) with wedge modules

∧i
V ,

∧i
V ∗ and trivials, whereV is the usual module forY .

Moreover,L(Y ) is a direct summand ofV ⊗ V ∗, while
∧i

V is a summand of theith
tensor power ofV . It follows thatL(G) ↓X is a direct sum of tilting modules, as required.

The case where(X,Y,p)= (A2,A2A5,5) is similar: hereG=E7 andL(G) ↓A2A5 =
L(A2)⊕ L(A5)⊕ (λ1 ⊗ λ2)⊕ (λ2 ⊗ λ4). If r = 2 and there is a field twist in one of the
projections fromX to the factors ofY , then the conclusion follows from theY = A5 case
above. And ifr = 1, we see as above that each summand is tilting forX.

We next treat together the casesX = C3,G2 or B2 with p = 7 andY = D7. Here
X < D7 < E8 = G with the embedding inD7 given by the 14-dimensionalX-modules
VX(λ) with λ= λ2, λ2 or 2λ2, respectively. For each of these, the Weyl moduleWX(λ) is
irreducible.

It follows from [7] that L(E8) ↓ D7 = λ2/λ
2
1/λ6/λ7/0. This is a direct sum, so it

suffices to consider the various summands. LetV denote the natural module forD7, an
irreducible tilting module forX. HenceV ⊗ V and its direct summandL(D7) are also
tilting for X. (We note that inB2 case this restriction isTB2(22)= 02|22|02.) So it suffices
to consider the action ofX on the two spin modules.

LetA<X be a regularA1 inX. One then checks thatV ↓A= T (8) orT (10), the latter
only whenX =G2. It follows that if 1 
= u ∈ A is unipotent, thenu acts onV as the sum
of two Jordan blocks of size 7. Henceu has typeA6 in the notation of the classification of
unipotent classes inG (see [4]). Then [4] implies thatL(G) ↓ u= (J7)

35 + (J1)
3, where

Jr denotes a Jordan block of sizer. In particular there is no Jordan block of length 6.
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It is shown in [7, 2.12] that each of the spin modules restricts toX with composition
factors the same as those of the Weyl moduleWC3(110), WG2(11) or WB2(13). We have
WC3(110)= 110|100,WG2(11)= 11|20, andWB2(13)= 13|03. In each case a dimension
argument using the action ofu implies that the spin module must be indecomposable forX,
hence must be isomorphic to one of these Weyl modules, and the conclusion follows.

Next considerX = B2 with p = 5. HereX < D5 with embedding given by the 10-
dimensional adjoint moduleVX(02). NowG=E6 orE7 (as 5 is not a good prime forE8).
As above, let 1
= u ∈ A < X, whereA is of typeA1 embedded inX via an irreducible
restricted representation. AsVX(02) is a direct summand ofVX(01)⊗VX(01), it is tilting,
so it follows thatVX(02) ↓A= TX(6). Consequently,u acts asJ 2

5 and is hence a unipotent
element of typeA4 in G.

NowL(G) ↓D5 is a direct sum ofL(D5), trivial modules, natural modules (only inE7),
and spin modules, so we work with each of these. Observe thatL(D5) is a direct summand
of the tensor square of the natural module, so its restriction toB2 is a direct summand of
02⊗02, a tilting module. So we need only consider the spin modules. Now [7, 2.12] shows
that restrictions toB2 of the spin modules have composition factors 11|01. By [4] unipotent
elements of typeA4 have Jordan form onL(G) of typeJ a5 + J b1 . On the other hand, the
action on 01 isJ4. Hence the spin modules must be indecomposable upon restriction toB2,
as required.

Next consider the case where(X,Y,p) = (A2,E7,7). HereX is a maximal subgroup
of E7. We first consider the action ofE7 onV = VE7(λ7), an irreducible 56-dimensional
module. It follows from [7] thatV ↓ X = 60+ 06, the sixfold symmetric power of the
natural module plus its dual.

Let A be a regularA1 subgroup ofX andu a nontrivial unipotent element ofA. As
WX(60) is irreducible, it is a direct summand of the sixfold tensor power of the natural
module 10, and similarly for the dual. Restricting toA, we see thatWX(60) ↓A is a tilting
module forA, and a consideration of weights shows this to beT (12)+ T (8). It follows
thatV ↓ u= J 8

7 . Consequently, it follows from [4] thatu is of typeA6. This implies that
L(E7) ↓ u= J 19

7 .
The composition factors ofL(E7) ↓ X are 44|112. SinceL(E7) is self-dual, the

only possibilities areL(E7) ↓ X = TX(44) or VX(44) ⊕ VX(11)2. But the latter case is
impossible, as this would contradict the action ofu. Therefore,L(E7) ↓ X = T (44) and
L(E8) ↓X = T (44)⊕ 602 ⊕ 062 ⊕ 003.

It remains to handle the case(X,Y,p) = (A2,E6,5). HereX is maximal inY , and
L(E6) ↓X = 11⊕41⊕14, a sum of irreducible Weyl modules. Hence we can assume that
G=E7 (notE8, asp is a good prime). We haveL(E7) ↓E6 = L(E6)⊕L(T1)⊕V27⊕V ∗

27,
whereV27 is the 27-dimensional moduleVE6(λ1).

Let A be regularA1 in X. As above,VX(40) ↓ A is tilting, hence so is the restriction
to A of the tensor productVX(40) ⊗ VX(01). A calculation with weights shows that
VX(40) ⊗ VX(01) = 41|30. As these composition factors do not extend each other, this
is a direct sum.

We conclude that the direct summandVX(41) is tilting on restriction toA, and further
calculation with weights implies thatVX(41) ↓ A = T (10) ⊕ T (6) ⊕ T (4). Hence if
1 
= u ∈ A is a unipotent element, it acts onVX(41) asJ 7

5 . Thereforeu acts onL(E6)
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asJ 15
5 + J3; it follows by [4] thatu lies in the classA4 +A1. Consequently, by [4] again,

we haveL(E7) ↓ u= J 25
5 + J3 + J 2

2 + J1.
Finally, from [7] we haveV27 ↓ X = 22|11. The action ofu shows that this must be

indecomposable. ThereforeV27 ↓X=WX(22), and the conclusion follows.
This completes the proof of Theorem 4.

9. Additional results

Theorem 1 and its corollary are of considerable importance for the analysis of
subgroups of exceptional algebraic groups. In this section we establish additional results
on subgroups.

We first extend Corollary 1 so as to cover semisimple groups. Then, returning to the
case whereX is simple, we show that the restricted subgroupsEi given by Corollary 1
are themselvesG-cr and we determineCG(X) as the intersection of the groupsCG(Ei).
Finally we describe a procedure for constructing all commuting productsE1 · · ·Ek as given
in Corollary 1.

LetX =X1 · · ·Xr be a commuting product of connected simpleG-cr subgroups ofG.
Corollary 1 shows that for eachi there is a uniquely determined familyEi,1, . . . ,Ei,ni
of commuting restricted subgroups ofG such thatXi is contained inEi,1 · · ·Ei,ni with
distinct field twists in each projection.

Proposition 9.1. If eachXi is a G-cr subgroup ofG, then the corresponding restricted
subgroupsEi,k and Ej,l commute fori 
= j . HenceX is contained in the commuting
product(E1,1 · · ·E1,n1) · · · (Er,1 · · ·Er,nr ).

Proof. Fix i 
= j and let X̃i, X̃j be the corresponding covering groups. The groups
Ei,s ,Ej,t arise from Theorem 1. Letφi : X̃i →G have imageXi and factor as in Theorem 1
with certain field morphisms and a uniquely determined restricted morphismµi .

Let xj ∈Xj . Then composingµi with conjugation byxj yields another such morphism
and corresponding factorization ofφi . Uniqueness implies that these morphisms agree and
hencexj centralizesEi,s for all 1� s � ni .

Now start withφj : X̃j → G with imageXj and factor this using a unique restricted
morphismµj . Conjugating by elements ofEi,1 · · ·Ei,ni and using uniqueness from
Theorem 1, we have the result.✷

For the next two results fixX a simpleG-cr subgroup ofG and letX �E1 · · ·Ek be as
in Corollary 1. So eachEi is a restricted subgroup ofG. The next result shows that these
restricted subgroups are alsoG-cr.

Proposition 9.2. With notation as above,Ei isG-cr for i = 1, . . . , k.

Proof. If X = A1, then eachEi is a goodA1 of G, so by [13, 1.1(iv)] eachEi is G-cr.
So now assumeX has rank at least 2. Let̂X be the simply connected cover ofX and
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φ : X̂ → X be the natural surjection. Factorφ = µ ◦ ψ (viewed as a morphism from̂X
toG) as in Theorem 1.

First supposeG is of classical type. The issue of beingG-cr is independent of the
isogeny type ofG, so we may takeG= SL(V ), Sp(V ), or SO(V ). As p is a good prime
forG, the issue is whether or not theEi act completely reducibly onV . Nowµ is uniquely
determined. So ifτ is an automorphism ofG centralizingX, thenτ ◦ µ = µ, henceτ
centralizesE1 · · ·Ek .

WriteV = V1 ⊥ · · · ⊥ Vs , where each summand isX-invariant. Moreover, we can make
the choice such that forG = SL(V ) eachVi is irreducible forX and forG = Sp(V ) or
SO(V ) each summand is either irreducible of the sum of two dual irreducible singular
spaces. It is now clear that we can choose suitable semisimple automorphisms,τj , of G
such that the intersection of the centralizers of theτj must stabilize eachVi and both
summands ofVi in caseVi is the sum of twoX-invariant singular spaces. HenceE1 · · ·Ek
is completely reducible and thus so are each of the summands.

Now assumeG is an exceptional group. Then Proposition 2.3(ii) gives the result except
whenX = G2 andp = 7. In this case the argument of Section 4.2 (which is based on
Proposition 2.2) shows thatk � 2 and describes the containmentX � E1 · · ·Ek . If k = 1,
the assertion is immediate since thenX =E1 which is assumed to beG-cr. Supposek = 2.
Then eitherE1E2 =G2G2 < B3B3 <D7 orE1E2 =G2G2 <G2F4 <G= E8. We must
show that in either case bothG2 factors areG-cr.

If E is aG2 subgroup withE contained in aD4 subsystem subgroup ofG, then the
high weights of composition factors ofE onL(G) are 00, 10, 01. None of these extend the
trivial module, so the arguments of [7] show thatE is G-cr. This settles the issue except
for E =E2 in the second case which we now consider.

Using [12, p. 193] we haveL(G) ↓ G2F4 = L(G2) ⊕ L(F4) ⊕ (10 ⊗ 0001) and
L(F4) ↓ E2 = L(E2) ⊕ 11. Also, using the labeled diagram in this reference we have
0001↓ E2 = 20. SoL(G) ↓ E2 = 207 ⊕ 11⊕ 10⊕ 0014, which is completely reducible.
We cannot immediately conclude thatE2 isG-cr becauseE2-composition factors of high
weight 20 do extend the trivial module. Note however, that the decomposition does imply
thatCG(E2)

0 =E1.
Suppose thatE2 <P , a parabolic subgroup ofG. Comparing composition factors ofP

onL(G) with those ofE2 it is clear that the Levi factor ofP must contain anE6 factor.
In fact, with suitable choice of root systemP = P7 or P7,8. HenceP � P7 = NG(UαUβ)

whereα is the high root andβ = α − α8. Let L = E6A1T1 be the Levi factor ofP7 and
W =UαUβ . ThenW is centralized byRu(P ) and by theE6 component ofL andW affords
an irreducible module for theA1T1 part ofL. HenceE2 < CG(W) and soW < E1. We
now argue from [6, 2.2(i)] that all elements ofW are long root elements ofE1 =G2 and so
NE1(W) is a maximal parabolic subgroup ofE1. In particular, there is a one-dimensional
torusZ in CG(E2) inducing scalars onUαUβ . ThenZ is a torus inP7 centralizing the
projection ofE2 and inducing scalars onW . It follows thatZ is P -conjugate to the central
torus ofL and henceE2<CG(Z)=E6A1Z, from which we concludeE2 <E6, so thatE2
isG-cr. ✷

We next state a useful result on centralizers which follows easily from what has already
been established.
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Proposition 9.3. LetX �E1 · · ·Ek �G be as in Corollary1. Then

(i) CG(Ei) is reductive fori = 1, . . . , k.
(ii) CG(X)= ⋂

i CG(Ei).

Proof. (i) The previous proposition shows that eachEi isG-cr. If G is of exceptional type
than Proposition 2.3(iii) yields the result. ForG of classical type this is proved at the end
of the proof of Lemma 3.1.

For (ii) first note that
⋂
i CG(Ei)� CG(X). For the other containment, letg ∈ CG(X)

and let inng denote the corresponding inner automorphism ofG. Let X̂ be the simply
connected cover ofX and φ : X̂ → X the natural surjection. Factorφ = µ ◦ ψ as in
Theorem 1, so thatµ(X × · · · × X) = E1 · · ·Ek . Now consider the mapµ′ ◦ ψ , where
µ′ = inng ◦ µ. As g centralizesX this is another factorization ofφ, so the uniqueness
assertion of Theorem 1 implies thatµ= µ′. But this implies thatg centralizes eachEi , as
required. ✷

We next establish results forG of exceptional type which can be used to determine
commuting products of restricted simple subgroups.

Assume then thatG is a simple algebraic group of exceptional type over an algebraically
closed field of good characteristicp. The simple restricted subgroups ofG are reasonably
well understood. The restrictedA1’s are determined in [13] and closely linked to unipotent
elements of prime order; the higher rank subgroups are determined explicitly in [10].

If X is a connected, restricted, simple subgroup ofG, then by definitionX is also
a restricted subgroup of any connected group containing it. The following remarkable
result shows that the converse often holds, and is a key result for determining commuting
products. Recall the definition ofN(X,G) taken from [7, p. 2].

Proposition 9.4. LetS be any closed subgroup of the exceptional groupG such thatCG(S)
is reductive. IfR is a connected simple restricted subgroup ofCG(S) andp > N(R,G),
thenR is also restricted inG.

Proof. By assumptionD = CG(S)
0 is reductive. LetR be a simple restricted subgroup

of D. SupposeR fails to beG-restricted. Asp > N(R,G), [7, Theorem 1] impliesR is
G-cr. Consequently we may apply Theorem 1 of this paper toR, obtaining a containment
R �R1 · · ·Rk , where eachRi is restricted inG and the embedding is diagonal with distinct
field twists in each projection. The result is trivial ifk = 1, so assume thatk � 2.

Reorder if necessary, so thatL(R) = L(R1). Of course,S � CG(L(R)). Using
Proposition 2.3 we then haveS � CG(L(R))

0 = CG(L(R1))
0 = CG(R1)

0. Therefore,
R1 � CG(S)

0. So thenR,R1 are both restricted subgroups ofD having the same Lie
algebra.

We claim thatR,R1 areD-cr. IfD has an exceptional simple factorDi , thenN(R,G)�
N(R,Di) and so the projection to this simple factor isDi -cr by [7, Theorem 1]. For
classical factors the same follows from [7, Theorem 3.8] (asp is a good prime forG).
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At this point Lemma 3.1 shows thatCD(R)0 = CD(L(R))
0 = CD(L(R1))

0 = CD(R1)
0.

Call this groupE. ThenR ◦ E = ND(L(R))
0 = ND(L(R1))

0 = R1 ◦ E. It follows that
R =R1, so thatR is restricted inG. ✷
Corollary 9.5. Let A be a restricted, connected, simple subgroup ofG and assume
p > N(A,G). If B is a simple restricted subgroup ofCG(A) of the same type asA, then
B isG-restricted.

Corollary 9.5 provides an algorithm for determining commuting products of restricted
subgroups of given type. The procedure is to choose one such subgroup and find its
centralizer. Choose a restricted subgroup of the required type in the (reductive) centralizer,
and repeat the process. It is hoped that the conjugacy classes of such commuting products
will be calculated in future work.
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