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Keywords:
Massive gravity
De Sitter space

We present a simple procedure to obtain a large class of different versions of the de Sitter solution in 
the ghost-free massive gravity theory via applying the Gordon ansatz. For these solutions the physical 
metric describes a hyperboloid in 5D Minkowski space, while the flat reference metric depends on the 
Stuckelberg field T (t, r) subject to (∂t T )2 − (∂r T )2 = 1. This equation admits infinitely many solutions, 
hence there are infinitely many de Sitter vacua with different physical properties. Only the simplest 
solution with T = t has previously been studied, as it is manifestly homogeneous and isotropic, but this 
solution turns out to be unstable. However, other solutions could be stable. We require the timelike 
isometry to be common for both metrics and this gives physically distinguished solutions since only for 
them the canonical Killing energy is time-independent. We conjecture that these solutions minimize the 
energy and are therefore stable. We also show that in some cases solutions can be homogeneous and 
isotropic in a non-manifest way such that their symmetries are not obvious. All of this suggests that the 
theory may admit physically interesting cosmologies.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of the ghost-free massive gravity theory by de 
Rham, Gabadadze, and Tolley (dRGT) [1] (see [2,3] for a review) 
opens up the possibility to explain the dark energy and the cosmic 
acceleration [4,5] by a tiny mass of the gravitons. The dRGT field 
equations admit the de Sitter solution with the cosmological con-
stant mimicked by the graviton mass. This solution can describe 
the late time cosmic acceleration, but a special analysis is needed 
to decide whether its other properties are physically acceptable.

A closer look reveals that the de Sitter solution in the dRGT 
theory is actually not unique, and a number of its versions have 
been found [6–14]. A special attention was received by one par-
ticular solution whose physical and reference metrics are both 
of the manifestly homogeneous and isotropic Freedman–Lemaître–
Robertson–Walker (FLRW) form [10]. However, a detailed analy-
sis reveals that this solution is unstable [15,16]. For other known 
solutions only the physical metric is manifestly FLRW while the 
reference metric looks inhomogeneous, for which reason they are 
considered to be less interesting [9]. All of this has reduced the 
interest towards the dRGT theory, the focus shifting towards its 
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extensions, as for example the bigravity [17–25] and other gener-
alizations admitting FLRW solutions [26–29].

However, we would like to argue in this paper that it may be 
premature to abandon the dRGT theory on the basis of negative 
evidence obtained from just one solution, because the theory actu-
ally admits infinitely many other solutions that could be physically 
interesting. They all have the same physical (de Sitter) metric but 
different values of the reference metric depending on the Stuckel-
berg field T (t, r) subject to a complicated differential equation [9,
11–14]. Below we shall describe a simple way to obtain these so-
lutions by applying the Gordon ansatz [30] and using the global 
embedding coordinates for the de Sitter space. The T -equation 
then assumes a simple form, (∂t T )2 − (∂r T )2 = 1, whose essentially 
general solution is known. The simplest solution T = t is unstable 
[15,16] but other solutions could be stable. One can choose T (t, r)
in such a way that both metrics are invariant under the time-
like isometry, which gives distinguished solutions since only for 
them the canonical Killing energy is time independent. We con-
jecture that their energy is minimal and hence these solutions are 
stable. We also give explicit examples where the reference met-
ric looks inhomogeneous but shares with the physical metric the 
same translational and rotational isometries. Hence, solutions pre-
viously considered to be non-FLRW can actually be homogeneous 
and isotropic. All of this suggests that physically interesting dRGT 
cosmologies may exist.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. The dRGT massive gravity

The theory is defined on a four-dimensional spacetime mani-
fold endowed with two Lorentzian metrics, the physical one gμν

and the flat reference metric fμν = ηAB∂μ�A∂ν�B with ηAB =
diag[−1, 1, 1, 1]. The scalars �A(x) are sometimes called Stuckel-
berg fields. The theory is defined by the action

S = M2
Pl

m2

∫ (
1

2
R(g) − U

)√−g d4x , (2.1)

where the metrics and all coordinates are assumed to be dimen-
sionless, the length scale being the inverse graviton mass 1/m. The 
interaction between the two metrics is determined by the tensor 
γ

μ
ν subject to (γ 2)

μ
ν ≡ γ

μ
αγ α

ν = gμα fαν , hence, using the hat to 

denote matrices, one has γ̂ =
√

ĝ−1 f̂ . If λA are the eigenvalues of 
γ̂ then the interaction potential is

U = b0 +
3∑

n=1

bk Uk (2.2)

where b0, bk are parameters and Uk are defined by (with [γ ] ≡
tr(γ̂ ) and [γ k] ≡ tr(γ̂ k))

U1 =
∑

A

λA = [γ ], U2 =
∑
A<B

λAλB = 1

2! ([γ ]2 − [γ 2]),

U3 =
∑

A<B<C

λAλBλC = 1

3! ([γ ]3 − 3[γ ][γ 2] + 2[γ 3]). (2.3)

The metric gμν and the scalars �A are the variables of the theory. 
Varying the action with respect to gμν gives the Einstein equations 
Gμν = Tμν with

T μ
ν = {b1 + b2 U1 + b3 U2}γ μ

ν − {b2 + b3 U1}(γ 2)
μ
ν

+ b3(γ
3)

μ
ν − U δ

μ
ν . (2.4)

Varying the action with respect to �A gives the conservation con-
ditions ∇μT μ

ν = 0, but these equations are not independent and 
follow from the Bianchi identities for the Einstein equations.

3. De Sitter space

The field equations Gμν = Tμν admit solutions for which the 
physical metric is de Sitter. The de Sitter space can be globally 
visualized as the hyperboloid

−X2
0 +

∑
i

X2
i + X2

4 = α2 (3.1)

in the 5D Minkowski space with the metric

ds2 = −dX2
0 +

∑
i

dX2
i + dX2

4 . (3.2)

The 4D geometry induced on the hyperboloid fulfills the equations 
Gμ

ν + 
δ
μ
ν = 0 with 
 = 3/α2. Rescaling the coordinates, X0 = αt , 

Xi = αxi , X4 = αr with xi ≡ (x, y, z), the metric reads

ds2
g = α2

{
−dt2 + dr2 + dx2 + dy2 + dz2

}

= α2
{
−dt2 + dr2 + dR2 + R2 d�2

}
(3.3)

where d�2 = dϑ2 + sin2 ϑdϕ2 and the following constraint is im-
posed
R2 ≡ x2 + y2 + z2 = 1 + t2 − r2. (3.4)

Let us choose the flat reference metric as

ds2
f = α2u2

{
−dT 2 + dX2 + dY 2 + dZ 2

}
, (3.5)

where u is a constant and T , X , Y , Z are the Stuckelberg fields.
The constants α, u and the functions T , X , Y , Z in the above 

formulas can be chosen such that the two metrics fulfill the field 
equations. It turns out that it is sufficient to make sure that the 
following relation is fulfilled (the Gordon ansatz) [30],

fμν = ω2
(

gμν + (1 − ζ 2)VμVν

)
, (3.6)

where ω, ζ are functions and

gμν VμVν ≡ V μVμ = −1. (3.7)

If Eq. (3.6) holds, then one can see at once that

γ
μ
ν = ω

(
δ
μ
ν + (1 − ζ )V μVν

)
(3.8)

fulfills γ μ
α γ α

ν = gμα fαν . One has (γ n)
μ
ν = ωn

(
δ
μ
ν + (1 − ζn)V μVν

)
and so the energy–momentum tensor (2.4) becomes

T μ
ν = −{P0(ω) − ζωP1(ω)} δ

μ
ν + ω(ζ − 1)P1(ω)V μVν . (3.9)

Here we have defined

Pm(ω) ≡ bm + 2bm+1 ω + bm+2 ω2 , (3.10)

where m = 0, 1, 2 (assuming that b4 = 0). Let us set ω = u where 
u is a constant chosen such that

P1(u) = 0. (3.11)

Then the energy–momentum tensor (3.9) reduces to

T μ
ν = −P0(u)δ

μ
ν (3.12)

and the Einstein equations become Gμ
ν +
δ

μ
ν = 0 with 
 = P0(u), 

hence the de Sitter metric (3.3) will fulfill these equations if

3

α2
= 
 = P0(u). (3.13)

Therefore, choosing u, α according to (3.11), (3.13), the metrics 
(3.3) and (3.5) will fulfill the field equations, if only the functions 
T , X , Y , Z can be adjusted such that the Gordon relation (3.6)
holds.

Let us choose in (3.5) T = T (t, r), X = x, Y = y, Z = z so that 
the f-metric becomes

ds2
f = α2u2

{
−dT 2 + dx2 + dy2 + dz2

}

= α2u2
{
−dT 2 + dR2 + R2d�2

}
. (3.14)

The two metrics (3.3) and (3.14) are related to each other as

ds2
f = u2

(
ds2

g + dt2 − dr2 − dT 2
)

. (3.15)

This will be compatible with the Gordon relation (3.6) if

∂μt∂νt − ∂μr∂νr − ∂μT ∂ν T = (1 − ζ 2)VμVν . (3.16)

Assuming that the indices μ, ν correspond to (t, r, ϑ, ϕ) yields 
Vϑ = Vϕ = 0 and

(∂t T )2 − 1 = (ζ 2 − 1)V 2
t ,

(∂r T )2 + 1 = (ζ 2 − 1)V 2
r ,

∂t T ∂r T = (ζ 2 − 1)Vt Vr . (3.17)
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From the first two of these relations one obtains

V 2
t = (∂t T )2 − 1

ζ 2 − 1
, V 2

r = (∂r T )2 + 1

ζ 2 − 1
, (3.18)

inserting which into the normalization condition (3.7) deter-
mines ζ . Finally, inserting (3.18) into the third relation in (3.17)
yields

(∂t T )2(∂r T )2 = ((∂t T )2 − 1)((∂r T )2 + 1) (3.19)

and therefore

(∂t T )2 − (∂r T )2 = 1. (3.20)

This completes the procedure, because Vμ and ζ are determined 
by the above formulas and the Gordon relation is fulfilled.

Summarizing, the de Sitter solution in the theory is described 
by (3.3), (3.14) where u, α are defined by (3.11), (3.13) and T
is a solution of the differential equation (3.20). Since there are 
infinitely many T ’s subject to (3.20), there are infinitely many ver-
sions of the de Sitter solution. They all have the same physical 
metric (3.3) but differ one from the other by the choice of T in the 
reference metric (3.14). The physical properties of solutions with 
different T ’s, as for example their stability, can be different.

These solutions were actually discussed previously [9,11–14], 
but within a different computation scheme yielding the T -equation 
in a form that gives little hope to solve it (see Eq. (6.7) below). Our 
procedure yields the simple equation (3.20) that can be solved. In 
addition, new solutions can be obtained by slightly modifying the 
procedure. Specifically, it was assumed in the above derivation that 
both metrics have the same spatial SO(3) symmetry. However, let 
us choose instead

ds2
f = α2u2

{
−dt2 + dx2 + dy2 + dZ 2

}
(3.21)

with Z = Z(r, z), so that the two metrics share the same SO(1, 2)

symmetry in the t, x, y subspace. Repeating the above analysis one 
obtains

(∂r Z)2 + (∂z Z)2 = 1, (3.22)

and this gives new solutions. When expressed in the standard 
spherical coordinates, the f-metric will not even look spherically 
symmetric since for generic Z it has no common with the g-metric 
SO(3) symmetry, although it has its own SO(3) in the x, y, Z space. 
Below we shall only be discussing equation (3.20) since the analy-
sis of (3.22) is similar. We have also tried to make all Stuckelberg 
fields T , X , Y , Z non-trivial but could not obtain new solutions in 
this way.

4. The simplest solution

Even though there are infinitely many solutions of Eq. (3.20), 
almost all known dRGT cosmologies reported in the literature cor-
respond just to the simplest choice,

T = t. (4.1)

A slightly more general choice is

T = cosh(ξ) t + sinh(ξ) r (4.2)

with a constant ξ . However, the value of ξ can be changed by 
boosts in the t , r plane of the ambient 5D Minkowski space, which 
does not affect the g-metric (3.3), hence one can set ξ = 0 without 
loss of generality. Rewriting (4.1) in different coordinates gives re-
sults which look very different, and it has not been recognized that 
they actually describe the same solution. Let us therefore see what 
happens when this solution is expressed in the standard spatially 
flat, closed, or open coordinate systems.
4.1. Flat slicing

Let us express t , r, R in (3.3) in terms of two new coordinates 
τ and ρ as

t = sinhτ + ρ2

2
eτ , r = coshτ − ρ2

2
eτ , R = eτ ρ . (4.3)

This solves the constraint (3.4) and transforms the de Sitter metric 
(3.3) to the standard FLRW form with flat spatial sections,

ds2
g = α2{−dτ 2 + a2(τ )(dρ2 + ρ2d�2)}, (4.4)

where a(τ ) = eτ . The function T = t can be represented as

T = 1

2

∫
dτ

ȧ(τ )
+ 1

2

(
1 + ρ2

)
a(τ ). (4.5)

This is the well-known solution, found first for special [9] and then 
for arbitrary [12–14] values of bk . Using (4.2) instead of (4.1), the 
solution can be generalized to include an integration constant. Al-
though the g-metric (4.4) is manifestly homogeneous and isotropic, 
the f-metric (3.14), when expressed in the τ , ρ coordinates, be-
comes non-diagonal and ρ-dependent, which suggests that it is in-
homogeneous. For this reason it is often said that the dRGT theory 
does not admit genuinely homogeneous and isotropic cosmologies 
with flat spatial sections [9]. However, we shall shortly comment 
on this.

4.2. Closed slicing

If one chooses in (3.3)

t = sinh(τ ), r = cosh(τ ) cos(ρ),

R = cosh(τ ) sin(ρ), (4.6)

this solves the constraint (3.4) and the de Sitter metric (3.3) as-
sumes the FLRW form with closed spatial sections,

ds2
g = α2{−dτ 2 + a2(τ )(dρ2 + sin2(ρ)d�2)}, (4.7)

with a(τ ) = cosh(τ ). These coordinates cover the whole of de Sit-
ter space. The Stuckelberg field is T = sinh(τ ) and the f-metric 
(3.14) expressed in the τ , ρ coordinates is again non-diagonal and 
ρ-dependent, which suggests that there are no genuinely homoge-
neous and isotropic cosmologies with closed spatial sections either.

4.3. Open slicing

For the open slicing one has

t = sinh(τ ) cosh(ρ), r = cosh(τ ),

R = sinh(τ ) sinh(ρ), (4.8)

and the g-metric becomes

ds2
g = α2{−dτ 2 + a2(τ )(dρ2 + sinh2(ρ)d�2)}, (4.9)

with a(τ ) = sinh(τ ). The Stuckelberg field is T = sinh(τ ) cosh(ρ), 
and the specialty now is that the f-metric (3.14) becomes diagonal 
in the τ , ρ coordinates,

ds2
f = α2u2{− cosh(τ )2dτ 2 + a2(τ )(dρ2 + sinh2(ρ)d�2)}.

(4.10)

This solution, discovered in [10], is broadly considered to be the 
only genuinely homogeneous and isotropic dRGT cosmology be-
cause both metrics are manifestly homogeneous and isotropic and 
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Fig. 1. The T -equation in the method of characteristics.

share the same rotational and translational Killing symmetries. 
However, this solution is equivalent to its flat and closed versions 
considered above. Therefore, the latter have the same rotational 
and translational isometries and hence they are also homogeneous 
and isotropic, although this fact is not manifest in their case. The 
conclusion is that solutions can be homogeneous and isotropic in 
a non-manifest way.

At the same time, being homogeneous and isotropic, the T = t
solution is not static, whereas the de Sitter space is static. This can 
be seen as follows.

4.4. Static slicing

Setting

t =
√

1 − ρ2 sinh(τ ), r =
√

1 − ρ2 cosh(τ ),

R = ρ (4.11)

solves the condition (3.4) and reduces the de Sitter metric (3.3) to 
the static form

ds2
g = α2

{
−� dτ 2 + dρ2

�
+ ρ2d�2

}
(4.12)

with � = 1 − ρ2. The T = t solution then becomes

T (τ ,ρ) =
√

1 − ρ2 sinh(τ ), (4.13)

and it is non-static even in static coordinates. Therefore, the g-
metric is invariant under the action of the timelike Killing vector 
∂/∂τ , but the Stuckelberg field T and the f-metric are not in-
variant. As a result, the timelike isometry is not shared by both 
metrics.

As the solution T = t is not static, it is unlikely to describe the 
“ground state” of the theory. This is probably the reason why this 
solution was found to be unstable [15,16]. Therefore, we need to 
consider other solutions for T .

5. Other solutions

Solutions of the T -equation (∂t T )2 − (∂r T )2 = 1 can be con-
structed in different ways. A fairly general solution containing an 
arbitrary function W (ξ) is given by [31]

T = cosh(ξ) t + sinh(ξ) r + W (ξ) ,

0 = sinh(ξ) t + cosh(ξ) r + dW (ξ)

dξ
, (5.1)

where the second line implicitly determines the dependence of ξ
on t , r. Together with (4.2), this gives if not all but probably almost 
all solutions. However, this formula is difficult to use since one 
cannot explicitly determine ξ(t, r) for a generic W (ξ).
The T -equation can also be integrated by applying the method 
of characteristics [31], which has a simple geometric interpreta-
tion. Let us consider the 2D Minkowski space spanned by xa ≡
{t, r} with the metric gab = diag[1, −1]. The T -equation reads 
gab∂a T ∂b T ≡ 〈∇T , ∇T 〉 = 1. Let γ = xa(s) be a spacelike curve 
and let T be constant along γ . At every point of γ there is a 
unit timelike normal n such that 〈n, n〉 = 1 and 〈n, ∂/∂s〉 = 0. The 
T -equation is equivalent to ∂T /∂n = 1 [31].

This allows one to pass from γ where T = T (γ ) to a neigh-
boring curve γ̃ where T = T (γ̃ ) (see Fig. 1) and so on, thereby 
extending T to the whole of the space. The solution is therefore 
defined, up to an additive constant, by the choice of the initial 
curve γ . For example, the solution (4.2) can be obtained by choos-
ing γ to be a straight line.

In practice, solutions of (∂t T )2 − (∂r T )2 = 1 can be obtained 
by changing the variables and then separating them [32]. Let us 
illustrate this by passing to the static coordinates (4.11), in which 
case the T -equation becomes

1

�

(
∂T

∂τ

)2

− �

1 − �

(
∂T

∂ρ

)2

= 1. (5.2)

It is easy to see that T (τ , ρ) given by (4.13) fulfills this equation, 
but now we can obtain also other solutions, in particular those for 
which dT does not depend on time and the f-metric is static. The 
most general solution of this type is obtained by separating the 
variables,

T =
√

1 + q2 τ +
∫

ρ dρ

�

√
q2 + ρ2 , (5.3)

where q is an integration constant. If q = 0 then the solution be-
comes especially simple,

T = τ +
∫

dρ

�
− ρ ≡ V − ρ, (5.4)

and choosing V and ρ as coordinates, the two metrics become

ds2
g = α2{−� dV 2 + 2dV dρ + ρ2d�2},

ds2
f = u2α2{−dV 2 + 2dV dρ + ρ2d�2}. (5.5)

Solutions (5.3) are distinguished, since only for them the canonical 
Killing energy is time-independent.

6. Energy

We considered above the de Sitter solution (3.3), (3.14) ex-
pressed in several special coordinate systems. Let us now express 
it in arbitrary coordinates η, χ . The two metrics then read

ds2
g = α2

{
−N2dη2 + 1

�2
(dχ + β dη)2 + R2 d�2

}
,

ds2
f = α2u2

{
−dT 2 + dR2 + R2 d�2

}
(6.6)

where N , β , �, R , T depend on η, χ . Using this parametrization, 
one can directly analyse the field equation Gμν = Tμν (without 
using the Gordon ansatz) and check [13,14] that they reduce to 
Gμν + 
gμν = 0 with 
 = P0(u) and P1(u) = 0 provided that 
α2 = 3/
 and

(
Ṫ − βT ′ + N�R ′)2 − (

Ṙ − βR ′ + N�T ′)2

− (
�(Ṫ R ′ − ṘT ′) + N

)2 = 0 ; (6.7)

the dot and prime denoting, respectively, ∂/∂η and ∂/∂χ . This is 
the analogue of equation (3.20) expressed in arbitrary coordinates. 
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If the coordinates coincide with the coordinates of the ambient 5D 
Minkowski space used in (3.3), η = t , χ = r, then one finds by 
comparing (6.6) with (3.3)

N = 1√
1 + η2

, R =
√

1 + η2 − χ2 ,

� = N R , β = − ηχ

1 + η2
. (6.8)

Inserting this to (6.7) reduces the equation to (3.20). (Equa-
tion (6.7) can be avoided and T remains arbitrary if b2 + b3u = 0
[8,35,36].)

The parametrization (6.6) can be used to compute the canonical 
energy. If the coordinates are chosen such that the unitary gauge 
condition is fulfilled, η = T , χ = R , then the energy is given by 
expressions obtained in [33,34]. However, the energy can be com-
puted also for an arbitrary choice of η, χ and for a non-trivial 
Stuckelberg field T (η, χ). This computation will be presented sep-
arately but its result is as follows: the energy on a hypersurface 
�η of constant time η is

E[η, T ] = u2α4 P2(u)

∫
R2 (Ṫ R ′ − ṘT ′)dχ . (6.9)

In this formula T (η, χ) is assumed to be a solution of (6.7) and 
the energy depends on choice of this solution. The energy depends 
also on choice of the spacelike hypersurface �η over which the 
integration is carried out. Therefore, the energy E[η, T ] takes two 
arguments of which the first indicates the choice of the hypersur-
face and the second one refers to the solution chosen.

Let us go to the unitary gauge where η = T and χ = R . Then 
one will have the “unitary energy” evaluated on hypersurfaces �T

of constant T

E[T , T ] = u2α4 P2(u)

∫
χ2dχ , (6.10)

which depends neither on value of T nor on the functional form 
of T (η, χ). This may appear puzzling, but in fact this merely indi-
cates that the unitary time is not always the best choice. Indeed, 
as different solutions differ from each other precisely by the form 
of T (η, χ), choosing T as time coordinate implies that every solu-
tion has its own time with its own hypersurfaces �T and therefore 
with its own definition of the energy. It is then meaningless to 
compare energies of different solutions, since all of them are de-
fined differently. Hence, the fact that the unitary energy (6.10) is 
the same for any T (η, χ) is probably not very relevant.

We therefore conclude that the time coordinate should be cho-
sen differently, and the geometrically distinguished choice is the 
Killing time associated with the timelike de Sitter isometry. Choos-
ing the static coordinates defined in (4.11) and setting η = τ and 
χ = ρ = R gives then the “Killing energy”

E[τ , T ] = u2α4 P2(u)

∫
∂τ T ρ2dρ (6.11)

where T (τ , ρ) fulfills (5.2). However, we notice that, since for a 
generic solution T (τ , ρ) the derivative ∂τ T depends on τ , the 
Killing energy is time-dependent. In particular, the energy is time-
dependent for the T = t solution expressed by (4.13).

One can wonder why the energy obtained from the same 
canonical Hamiltonian is conserved in the unitary gauge but be-
comes time-dependent when the Stuckelberg field T is non-trivial. 
The answer is that the energy depends on the choice of time. If 
the spacetime is foliated by hypersurfaces �T of constants unitary 
time T then the energy is the same on any �T . However, for other 
foliations it may become hypersurface dependent.
Since we adopt the viewpoint that the Killing time is physically 
distinguished, we wonder when the “Killing energy” (6.11) can be 
time-independent as the de Sitter space itself. The answer is that 
the energy will be time-independent if ∂τ T is time independent, 
and then the timelike isometry is common for both metrics. How-
ever, all such solutions are given by (5.3), in which case

E = u2α4 P2(u)

√
1 + q2

∫
ρ2dρ . (6.12)

Depending on values of the theory parameters bk , this energy can 
be positive, negative, or zero.

The actual value of the background energy is probably not so 
important, but it is important to know if it is minimal or not. We 
conjecture that the static solutions (5.3) correspond to the energy 
minima and are therefore stable. Therefore, they are candidates for 
describing the de Sitter ground state in the theory. To prove the 
conjecture will require to compute the energy for deformations of 
the de Sitter background, similarly to what was done for deforma-
tions of the Minkowski space [33,34]. We presently have partial 
results supporting our conjecture, but the corresponding analysis 
is complicated and will be presented separately.

7. Conclusions

We have shown that the dRGT theory admits infinitely many de 
Sitter vacua labeled by solutions of (∂t T )2 − (∂r T )2 = 1. The sim-
plest solution T = t is manifestly homogeneous and isotropic when 
written in the open slicing, but it is unstable. Therefore, one should 
study other solutions. One could worry that other solutions will 
not be homogeneous and isotropic, because their reference metric 
is inhomogeneous. However, as we have seen, this is not necessar-
ily the case, as the reference metric can look inhomogeneous while 
sharing translational isometries with the physical metric.

The important issue is the number of common isometries of 
the two metrics. Since each of them describes a maximal symme-
try space, each metric has ten isometries, some of which can be 
common, as for example the SO(3) rotational isometries. The num-
ber of common isometries depends on choice of T , for example 
for T = t this number is six, but the same could be true for other 
choices of T as well.

Requiring the timelike isometry to be common for both met-
rics reduces the set of solutions to a one-parameter family (5.3). 
These solutions are physically distinguished since only for them 
the Killing energy is time-independent. We conjecture that they 
are stable and describe the de Sitter ground state in the theory. 
Their stability will be demonstrated if one shows that the en-
ergy increases for any deformations of the de Sitter background. 
However, the corresponding analysis goes beyond the scope of the 
present paper and will be reported separately.

As a final remark, we notice that the unitary energy can also 
be used to study stability of the solutions. Although the unitary 
energy is not good to compare different de Sitter solutions, it can 
be used to compare a given background solution and its deforma-
tions. For example, for the T = t solution the unitary time is just 
the global time of the ambient Minkowski space, and one should 
keep this gauge choice also for deformations of the background. 
One could then compute the energy of deformed configurations 
evaluated on the t = const. hypersurface and compare it with the 
background value (6.10). This would provide a non-perturbative 
confirmation (or disproof) of the perturbative instability of the so-
lution discovered in [15].
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