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Here we show that, a hidden vector field whose gauge invariance is ensured by a Stueckelberg scalar 
and whose mass is spontaneously generated by the Standard Model Higgs field contributes to quadratic 
divergences in the Higgs boson mass squared, and even leads to its cancellation at one-loop when 
Higgs coupling to gauge field is fine-tuned. In contrast to mechanisms based on hidden scalars where 
a complete cancellation cannot be achieved, stabilization here is complete in that the hidden vector 
and the accompanying Stueckelberg scalar are both free from quadratic divergences at one-loop. This 
stability, deriving from hidden exact gauge invariance, can have important implications for modeling
dark phenomena like dark matter, dark energy, dark photon and neutrino masses. The hidden fields can 
be produced at the LHC.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

With the discovery of a new resonance at the Large Hadron Col-
lider (LHC), having a mass mh = 125.9 ± 0.4 GeV [1] and couplings 
well consistent with the Standard Model (SM) predictions [2], the 
Higgs naturalness problem [3] has become the foremost problem 
to be tackled. The resolution, if any, brings its own new physics 
structure. The squared-masses of fundamental scalars, contrary to 
chiral fermions and gauge bosons whose masses are protected 
by chiral and gauge invariances, receive additive quantum correc-
tions proportional to Λ2 – the UV boundary of the SM. In explicit 
terms, one-loop quantum correction to Higgs squared-mass, origi-
nally computed by Veltman [4], reads as

(
δm2

H

)
quad = Λ2

16π2

(
6λH + 9

4
g2 + 3

4
g′ 2 − 6g2

t

)
, (1)

where g and g′ are the SU (2)L and U (1)Y gauge couplings of the 
SM, respectively, and gt = mt/υH (υH = 246 GeV is the VEV of the 
Higgs field) is the top quark Yukawa coupling. The top quark, being 
the most strongly coupled SM particle to the Higgs field, induces 
the biggest contribution and ensures a nonvanishing, unremovable 

* Corresponding author.
E-mail addresses: demir@physics.iztech.edu.tr (D.A. Demir), 

cananduzturk@iyte.edu.tr (C.N. Karahan), bestekorutlu@iyte.edu.tr (B. Korutlu).
http://dx.doi.org/10.1016/j.physletb.2014.11.038
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
coefficient before Λ2. The Higgs boson mass is stabilized to elec-
troweak scale if |δm2

H | < m2
H < Λ2. This is the Veltman condition 

(VC). The parameters in it have all been measured, and it violates 
the LHC results for Λ > 500 GeV [5].

Having no symmetry to prevent the Higgs boson mass from 
sliding to the higher scales via (1), frequently a cancellation mech-
anism is implemented via fine-tuning of counter terms in which 
low and high energy degrees of freedom are mixed. This renders 
the whole procedure unnatural. It would be more natural, if the 
cancellation occurred by means of a symmetry principle at higher 
scales, or if it arose by accidental cancellations of certain terms. In 
fact, models of new physics constructed to complete the SM be-
yond Fermi energies have all been motivated by Higgs naturalness 
problem [5] (see also [6] for studies within supersymmetry). So 
far, however, in the 7 TeV and 8 TeV LHC searches reaching out 
beyond the TeV domain, no compelling sign of evidence for new 
physics has been found [7].

In consequence, having no TeV scale new physics for achieving 
naturalness, one is forced to understand the electroweak unnat-
uralness within the SM plus general relativity, albeit with some 
imperative extensions required by specifics of the approach taken. 
In 1995, conformal symmetry [8] was proposed as a mechanism 
for solving the Higgs mass hierarchy problem (the latest studies on 
the conformal symmetry as a solution to the fine-tuning problem 
may be found in [9]). Recently, the Higgs coupling to spacetime 
curvature has been found to stabilize the electroweak scale by 
a harmless, soft fine-tuning [10]. Furthermore, anti-gravity effects 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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have been claimed to improve Higgs naturalness [11]. Alternatively, 
one may view the parameters chosen by nature as the necessity 
of existence, and this leads to anthropic considerations [12]. In 
variance with all these approaches, a fine-tuning method based 
on singlet scalars [13] has also been employed. In this approach, 
the main idea is to cancel the quadratic divergences in Higgs bo-
son mass with the loops of the singlet scalars that couple to Higgs 
field [14]. This method, though a fine-tuning operation by itself, 
nullifies the quadratic divergences and accommodates viable dark 
matter candidates [15,16]. Nevertheless, for real singlet scalars 
with vacuum expectation value (VEV), it is not possible to kill the 
quadratic divergences consistently because there is a mixing be-
tween the CP-even component of the Higgs field and the real sin-
glet scalar, and it does not allow for simultaneous cancellation of 
the quadratic divergences in Higgs boson and singlet scalar masses 
[17]. There are also studies on two-Higgs doublet models without 
flavor changing neutral currents, demonstrating that, although the 
cancellation in the coefficient of the one-loop quadratically diver-
gent terms is possible, the parameter space is severely constrained 
[18]. An additional complex scalar triplet extension of the SM has 
also been studied and proven to be a solution to the fine-tuning 
problem [19].

In the present work, as a completely new approach never ex-
plored before, we study protection of the Higgs boson mass by a 
SM-singlet gauge field (not a scalar field as in [14]). In contrast 
to the attempts based on hidden scalars [14,15,18,19], which are 
now known to be unable to simultaneously protect the masses of 
the Higgs boson and the singlet scalar [17], in the present work, 
we consider a hidden U (1) gauge field Vμ whose invariance is 
ensured by a Stueckelberg scalar S and whose mass is sponta-
neously induced by the SM Higgs field. We show that Vμ and S
enable cancellation of the quadratic divergence in Higgs boson 
mass with no quadratic divergence arising in their own masses. 
It is important that the SM Higgs boson is stabilized at one-loop 
along with already-stable hidden gauge and Stueckelberg scalar. 
This phenomenological advantage has important implications not 
only for stabilizing the Higgs boson mass but also for correlating 
the SM Higgs field with hidden sectors.

The paper is organized as follows. In Section 2 below, we con-
struct the model starting from the basic Stueckelberg setup. Sec-
tion 3 is devoted to computation of the quadratic divergences and 
vanishing of the Higgs mass divergence by fine-tuning. We con-
clude in Section 4.

2. The model

In this section, we consider a massive Abelian gauge field Vμ

accompanied by a real scalar field S(x), introduced to preserve the 
gauge invariance of the theory. Originally proposed by Stueckel-
berg [20] and noted afterwards by Pauli [21] that, Vμ satisfies a 
restricted U (1) gauge invariance, with the gauge function Θ(x)
obeying a massive Klein–Gordon equation. The mechanism pro-
vides an alternative to the Higgs mechanism, where the vector 
boson acquires its mass with the breakdown of the gauge invari-
ance of not the Lagrangian but of the vacuum. These features are 
encoded in the Stueckelberg model [22]

L = −1

4
V 2

μν + 1

2
m2

(
V μ − 1

m
∂μS

)2

− 1

2

(
∂μV μ + mS

)2
, (2)

where m is the common mass for Vμ and S . Despite its massive 
spectrum, this model enjoys a U (1)m invariance

Vμ(x) → V ′
μ(x) = Vμ(x) + ∂μΘ(x),

S(x) → S ′(x) = S(x) + mΘ(x), (3)
provided that (� + m2)Θ(x) = 0. Consequently, in spite of its non-
vanishing hard mass, Vμ enjoys exact gauge invariance, albeit 
with a restricted gauge transformation function Θ(x) [22]. In the 
massless limit, m → 0, the Stueckelberg Lagrangian (2) reduces to 
Lm=0 = − 1

4 V 2
μν + 1

2 ∂μS ∂μS , which is obviously U (1)m invariant in 
Lorentz gauge (∂μV μ = 0) with an unrestricted Θ(x). Interestingly, 
the Stueckelberg scalar S , transforming like the gauge field Vμ in 
massive case, turns into a gauge-singlet scalar in massless limit.

Inspired from the Stueckelberg model (2), we propose the 
Higgsed Stueckelberg model

L = − 1

4
V 2

μν + λ1 H† H

(
V μ − 1√

λ1aH
∂μS

)2

− 1

2

(
∂μV μ + √

λ1aH S
)2

, (4)

where λ1 is a positive dimensionless constant and aH is a mass 
parameter. This model is manifestly gauge-invariant under both 
the hidden U (1)m invariance with m → √

λ1aH , and the elec-
troweak gauge group SU (2)L ⊗ U (1)Y . The Higgs potential V (H) =
m2

H H† H + λH (H† H)2 and hence the total energy is minimized at 
the Higgs field configuration

〈
H† H

〉 =
{

υ2
H

2 if m2
H < 0,

0 if m2
H > 0,

(5)

where υH =
√

−m2
H

λH
is the Higgs VEV in the broken phase 

(m2
H < 0), to which masses of the SM particles are all proportional. 

In this phase electroweak gauge group SU (2)L ⊗ U (1)Y is spon-
taneously broken down to electromagnetism. In unbroken phase 
(m2

H > 0) electroweak group stays exact and all the SM particles 
but Higgs boson are massless.

From (4) it is clear that, the two phases of the SM directly 
leave distinguishable effects on the mass of Vμ and kinetic term 
of S . And the Stueckelberg structure in (2) is achieved properly 
if the mass parameter aH can keep track of the two electroweak 
phases. This feature is implemented into the Higgsed Stueckelberg 
model (4) by setting

aH = �
(√

−m2
H

λH

)
=

{
υH if m2

H < 0,

0 if m2
H > 0,

(6)

which obviously dogs the Higgs VEV in (5). It turns out that 
〈H† H〉 = a2

H/2 in both broken and exact electroweak phases, and 
υH = aH specifically in the broken phase. This switching ability 
of aH ensures that, in the broken phase of electroweak group, 
there arises, in addition to the massive SM spectrum, a massive 
vector Vμ with mass M2

V = λ1υ
2
H and a massive scalar m2

S = λ1a2
H . 

In the unbroken phase, however, the Higgs field stands as the only 
massive field. The rest, including Vμ and S , are all massless. In 
what follows, we will work in the physical vacuum of the broken 
electroweak phase and necessarily set aH = υH everywhere.

It is instructive to study the transcription of the Stueckelberg 
U (1)m symmetry in (3) into the Higgsed Stueckelberg case. To this 
end, one notes that the Stueckelberg scalar S(x) facilitates U (1)m

gauge invariance of the hidden sector, and also, helps to keep
the Hamiltonian positive definite1 [20]. In this formalism, Lorentz 

1 Note that the last term in (4) can also be written as Lgf = − 1
2α (∂μV μ +

α
√

λ1υH S)2, where α is a real parameter, similar to ’t Hooft’s parametrization 
for Abelian Higgs model. The choice of α = 1 corresponds to the Stueckelberg–
Feynman gauge. When α 
= 1, the restriction on the gauge function changes to 
(� + αλ1υ

2
H )Λ(x) = 0. It is also possible to choose two different parameters α1
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subsidiary condition does not follow from equation of motion. 
Imposing an operator equation of the form ∂μV (−)

μ (x)|phys〉 = 0, 
where V (−)

μ (x) involves the free field annihilation operators, how-
ever, gives rise to conflict between the operator equation and the 
canonical commutation relations. This puzzle is solved via the in-
troduction of an additional scalar field S(x), replacing the opera-
tor equation with Φ(x)|phys〉 ≡ [∂μV (−)

μ (x) + mS(−)(x)]|phys〉 = 0, 
where S(−)(x) also involves free field annihilation operators. The 
operator equation decreases the number of degrees of freedom of 
the Lagrangian to four. The required constraint to decrease it to 
three for a massive vector field comes into play with the gauge 
transformation

Vμ(x) → V ′
μ(x) = Vμ(x) + ∂μΘ(x),

S(x) → S ′(x) = S(x) + √
λ1υHΘ(x), (7)

which closely follows the Stueckelberg transformation (3). The 
U (1)m invariance is ensured if (∂2 +λ1υ

2
H )Θ(x) = 0. This restricted 

gauge invariance changes to an unrestricted, standard gauge in-
variance in the unbroken (m2

H > 0) electroweak phase in which 
Vμ and S are massless and non-interacting. Moreover, S is a gauge 
singlet in this phase. The Vμ and its Stueckelberg companion S do 
possess identical masses in broken and unbroken phases of the 
electroweak symmetry. In broken phase, Stueckelberg–Feynman 
gauge, their propagators read as

�μν = − igμν

q2 − m2
, � = i

q2 − m2
, (8)

where m2 = λ1υ
2
H is the common mass for Vμ and S .

3. Phenomenology

In this section we study quantum corrections to masses of 
the Higgs boson h and Stueckelberg fields S and Vμ . The main 
constraint on the model is that Higgs boson must weigh mh =
125.9 GeV [1]. As follows from (4), there are three-point and four-
point interactions among the vector boson Vμ , the Stueckelberg 
field S , and the Higgs field h. The vertex factors are summarized 
in Appendix A. The Higgsed Stueckelberg hidden sector then mod-
ifies the Veltman condition (1) as

(
δm2

H

)
quad = Λ2

16π2

(
11

3
λH + 9

4
g2 + 3

4
g′ 2 − 6g2

t + λ1

)
, (9)

wherein λ1 shows up as a new degree of freedom. In the philos-
ophy of the original attempts in [14], one can suppress (δm2

H )quad

by choosing λ1 appropriately. In particular, (δm2
H )quad vanishes for 

λ1 = 4.41. The Vμ and S are degenerate in mass, and for this spe-
cific value of λ1 they weigh m = √

λ1υH = 517 GeV. This value 
of λ1 is certainly large but not too large to break perturbativ-
ity (λ1 = 4.41 � 4π ). In this sense, Higgsed-Stueckelberg model 
is safe for employing the usual perturbation theory. In spite of 
this perturbative safety, one may still want to reduce λ1 for phe-
nomenological and other reasons. In this case, remedy is in en-
larging the hidden sector. One possible way would be to con-
sider not just one Stueckelberg pair (Vμ, S) but various such pairs 
(V (i)

μ , S(i)) (i = 1, . . . , N) each interacting with the SM Higgs field 
with a coupling λ(i) as in (4). These independent Stueckelberg sec-
tors give rise to a Veltman term as in (9) with the replacement

and α2, to check the gauge independence of the parameters. However, there is 
the disadvantage that the terms of the form V μ∂μ B survive for this choice. In the 
present work, we will work in Stueckelberg–Feynman gauge.
Fig. 1. The schematic representation of the quadratically divergent contributions to 
Higgs boson mass at one-loop level. Here, h denotes the Higgs boson, W ± , Z the 
electroweak bosons, t the top quark, V , S the hidden gauge boson Vμ and the 
Stueckelberg scalar S , respectively. Higgs mass is protected from destabilizing quan-
tum effects when the hidden gauge sector is included.

λ1 →
N∑

i=1

λ(i) (10)

whose fine-tuned value is still 4.41. Now, obviously, a given λ(i)
does not need to be large. In fact, taking λ(i) = λ1 for ∀i for 
simplicity, one finds that λ1 < 1 for N ≥ 5. This means that λ1
can be sufficiently suppressed by populating hidden sector with 
some N copies of (V (i)

μ , S(i)). In general, smaller the λ1 smaller the 
masses of the Stueckelberg pairs (V (i)

μ , S(i)), and these SM singlets 
enhance invisible rates at the LHC accordingly. In spite of the pos-
sibility of suppression in this way, one should keep in mind that 
λ1 = 4.41 is actually small enough to ensure validity of perturba-
tion theory.

In Fig. 1, a schematic representation of the one-loop quantum 
corrections to Higgs mass is shown in our extended scenario. As it 
is apparent from this figure, a hidden Abelian gauge sector splen-
didly cancels the quadratically divergent contributions to Higgs 
mass from the SM fields.

It is clear that suppressing (δm2
H )quad requires λ1 to be finely 

tuned. The fine-tuning here is of the same size as the fine-tunings 
required for hidden scalar sectors [14,15,17–19]. There is one big 
difference, however. Indeed, the models based on hidden scalars 
suffer from the fact that masses of the hidden scalars and of 
the SM Higgs boson cannot be protected simultaneously [17]. The 
hidden scalar continues to have a mass O(Λ) after suppressing 
the radiative contribution to the Higgs boson mass. In the Higgs–
Stueckelberg model this impasse is overcome. To see this, one 
notes that mass of the Stueckelberg field does actually receive 
quadratically divergent radiative corrections from two self energy 
diagrams (one with Higgs boson in the loop and another with both 
Higgs and the Stueckelberg field S in the loop). The self energy 
diagram with a Higgs boson and vector boson Vμ in the loop di-
verges logarithmically. The spruceness of this scenario emerges at 
this point in that the quadratically-divergent contributions to the 
mass of the Stueckelberg field from the two loop diagrams cancel 
out to give

(
δm2

S

)
quad = 0. (11)

In the same manner, the mass of Vμ is protected against quadrat-
ically-divergent quantum corrections

(
δm2

V

) = 0. (12)
quad
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Leaving aside the logarithmic corrections, masses of V μ and S are 
found to be UV-insensitive. This is actually expected by gauge in-
variance because there exists an unbroken U (1)m invariance in 
both broken and unbroken electroweak phases. This invariance 
protects the mass of Vμ . Interestingly, the same invariance also 
protects the mass of S because S by itself acts like a gauge field 
when Vμ is massive and becomes a non-interacting U (1)m singlet 
when Vμ is massless. Clearly, the radiative stability of the hidden 
sector can have important implications for modeling ‘dark phe-
nomena’ like dark matter, dark energy, dark photon and neutrino 
masses.

4. Conclusion and outlook

The discovery of a new scalar [1] at the LHC, consistent with 
the SM Higgs boson, has accelerated studies on the UV-sensitivity 
of the Higgs boson. As opposed to the physical masses of chi-
ral fermions and gauge bosons, which are protected by chiral and 
gauge symmetries, there is no symmetry principle to protect the 
Higgs boson mass against quadratically divergent quantum correc-
tions. In the very absence of TeV-scale new physics, one is left 
with a finely-tuned Higgs sector where nature and degree of fine-
tuning vary with the modeling details. In the presence of hidden 
scalars, despite the protection of the Higgs boson mass the hidden 
sector itself is UV-unstable. In case the hidden sector is formed 
by the spacetime curvature scalar, the fine-tuning is severe yet 
harmless because the SM fields and couplings are immune to its 
presence. The fine-tuning is as severe as hidden scalars in other 
field-theoretic approaches.

In this Letter we have shown that a hidden sector spanned 
by an Abelian vector field whose mass is induced by electroweak 
breaking and whose gauge invariance is sustained by a Stueck-
elberg scalar can lead to stabilization of the Higgs boson mass 
by finely tuning its coupling to the SM Higgs field. In spite of 
this unavoidable fine-tuning, the Higgsed Stueckelberg model pos-
sesses the striking property that the hidden sector is insensitive 
to the UV scale. This stability, deriving from unbroken hidden 
gauge invariance, can have important collider, astrophysical and 
cosmological implications. Indeed, a stable hidden sector can be 
utilized in constructing viable models of dark matter, dark energy, 
dark photon and neutrino masses. The model can be tested at the 
LHC (and its successor FCC) via direct productions of Vμ and S
fields.
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Appendix A

Here we list the vertex factors:

λhhVV = 2iλ1 gμν,

λhhSS = − 2i

υ2
H

kμqν gμν,

λhVV = 2iλ1υH gμν,

λhSS = − 2i

υH
kμqν gμν,

λhVS = 2
√

λ1kμgμν, (13)
where kμ is the momentum of S . We used aH = υH in aH depen-
dent vertices.
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