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Equational rules for rewriting logic
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Abstract

In addition to equations and rules, we introduce equational rules that are oriented while having
an equational interpretation. Correspondence between operational behavior and intended seman-
tics is guaranteed by a property of coherence, which can be checked by examination of critical
pairs and linearity conditions. We present applications of this theory to three examples where
the rewrite relation is interpreted, respectively, as equality, transition and deduction. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Rewriting logic [31] can be thought of as one of the most general logical frameworks,
in the sense that all logical systems found in practice can be mapped in a simple way
into a rewriting logic theory [29]. A major reason of this success is that rewriting logic
does not impose any implicit structure on the objects to be represented: all structure
must be explicitly de9ned using equations.
A rewrite theory mainly consists of a set of oriented rules R and a set of non-oriented

equations E. Operationally, the sequent s→ t is valid in the rewrite theory (E; R) i;
there is a derivation from s to t by rewriting with the rules of R modulo E. Equations
in E can be thought of as specifying the structure over which rules of R operate. The
semantics of rules in R is not 9xed ; depending on the application, a rewrite step can
be interpreted for instance as a transition between states (e.g. automata, processes),
as a logical deduction (e.g. sequent calculus) or as equality (e.g. �-reduction in the
�-calculus).
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Let us take a closer look at this dichotomy between rules and equations:
• from a semantic point of view, the equations in E are always given an equational
semantics, but it is not necessarily so for the rules in R.
• from an operational point of view, the rules in R can be used only according to their
orientation, while the equations in E are not oriented.

These two aspects are often conBicting, and choosing between specifying something
as a rule or an equation can be a dilemma. In particular, when E is not tractable
directly, classical rewriting techniques can replace all or part of E by oriented rewrite
rules, mapping equivalence classes to their unique canonical representative. But doing
so implies adding these rules to R, where they lose their equational semantics.
A solution to this dilemma is to introduce a second set of rules ER (for “Equational

Rules”, denoted with =→), which are oriented but keep an equational semantics. Con-
sider the following example, which may be thought of as specifying a double function
(f) and a non-deterministic choice operator (?) over the natural numbers:

E R

(1) x + y = y + x
(2) 0 + x = x
(3) s(x) + y = s(x + y)

(4) f(x) → x + x
(5) ? → 0
(6) ? → 1

R is not interpreted equationally, hence the rules for non-deterministic choice do not
imply 0=1. In order to handle E more eHciently, one may wish to orient Eqs. (2)
and (3) into equational rules, changing their operational meaning (they ought to be
used only according to their orientation), while preserving their equational semantics
(0 + x is equal to x).
For semantic considerations, one may wish also to transform rule (4) into an equa-

tional rule, keeping its operational meaning while giving it an equational semantics.
The resulting oriented rewrite theory (E; ER; R) is

E ER R

(1) x + y = y + x
(2) 0 + x =→ x
(3) s(x) + y =→ s(x + y)
(4) f(x) =→ x + x

(5) ? → 0
(6) ? → 1

2. Structure of the paper

After introducing some basic concepts (Sections 3 and 4), we formally de9ne the
notion of an oriented rewrite theory in Section 5.
The central notion appearing in this framework is the property of coherence

(Section 5.1), which ensures a correspondence between operational behavior and in-
tended semantics. We show how to check coherence (Sections 5.2 and 5.3), and possi-
bly obtain it through coherence completion (Section 5.5). Section 6 extends the previous
results to the case of conditional rules.
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In Section 7, we show how the techniques of [23] for implementing rewriting mod-
ulo E using matching modulo E can be extended to the case of an oriented rewrite
theory.
In Section 8, we develop an example showing how the coherence techniques may

help replacing a non-terminating rewrite relation by a terminating one.
The rest of the paper is devoted to examples. We present three examples, corre-

sponding to the most usual interpretations of the rewriting relation:
(1) Equational semantics (Section 9): Example of calculi with bound variables,

whose main representative is the �-calculus. Substitution is usually considered an im-
plicit meta-operation, but a full 9rst-order speci9cation requires to make it explicit
using a substitution calculus. The substitution rules are oriented rules, with an equa-
tional semantics (i.e. part of the internal structure).
(2) Transition semantics (Section 10): A rewrite step is interpreted as a transition

between states, the structure of a state being speci9ed by E and ER. A typical example
is a process algebra, in the spirit of CCS [33]. Building on the treatment of bound
variables developed above, we present the example of the �-calculus [34].
This example can be extended by specifying the actual data exchanged by processes

as abstract data types, in a manner similar to LOTOS [5], thus having the transition
semantics and data types speci9ed in a single framework.
(3) Deduction semantics (Section 11): A rewrite step is interpreted as a logical de-

duction between propositions. By varying the structure of propositions, we can specify
for instance classical logic or linear logic (including or not the weakening axioms in
E). Here moving a rule from R to ER can be seen as the building-in of equality.
Most of the material presented here originates from [38,39,40,41,42]. Some changes

and additions have been introduced, in particular a new de9nition of local coherence
(Section 5.2) that allows to get rid of a troublesome termination condition, and a
section on conditional rules.
The coherence checking and coherence completion techniques presented here have

been implemented in Maude [30] using the reBection features of this system, and are
now part of the standard distribution [14].

3. Basic concepts

3.1. Relations

Given a binary relation →, we denote ← its inverse, � its transitive and reBexive
closure, ↔ its symmetric closure and �� its transitive symmetric and reBexive closure.
The notation� is equivalent to the usual→∗, but makes diagrams much more readable.
An element u is a →-normal form if there is no v such that u→ v. The normalizing

relation
!
� is de9ned as u

!
� v if u� v and v is a →-normal form.

Given a rewrite system R= {li→ ri}, the rewrite relation R→ is the smallest relation

stable by context and instantiation containing li
R→ ri for each li→ ri ∈R. For a set of

equations E= {ui = vi}, the replacement relation E↔ is de9ned similarly, and closed
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by symmetry. [u]E denotes the equivalence class of u modulo E, i.e. [u]E is the set

{v|v E
�� u}. Similarly, a set of rules R, when considered as equations, also de9nes

equivalence classes [u]R. For any relations
R→ and S→, de9ne

R=S→ =
S
� R→ S

�

In particular, when S→ is the replacement relation E↔ generated by a set E of equations,
R=E−→ is the basis for de9ning rewriting over classes modulo E:

[u]E
[R]E→ [v]E i; u

R=E→ v:

We use the abbreviations
[R=S]E−→ for

[R]E=[S]E−→ =
[S]E�

[R]E−→ [S]E� , and
[R∪S]E−→ for

[R]E−→ ∪ [S]E−→.
Finally, because it makes de9nitions and diagrams simpler, instead of

[R=S]E−→ we will

often use the relation
[R(S)]E−→ de9ned as

[R(S)]E→ =
[S]E�

[R]E→
[S]E� steps are allowed only before the

[R]E−→ steps, but we have the following correspon-
dence:

[R=S]E→ =
[R(S)]E→ [S]E�

and for derivations
[R=S]E� =

[R(S)]E�
[S]E�

3.2. Diagrams

A diagram is a way to express complex formulas about relations. Plain arrows are
quanti9ed universally and dotted arrows existentially. In a complex diagram, the num-
bers inside the smaller diagrams state in what order we prove them. For instance:

reads: for all a; b and c such that a 1→ b and a 2→ c, there exists d such that c 3→d and
b 4→d.

4. The permutation lemma

The following permutation lemma will be used in Section 5.3 (checking local
coherence). It is generic in the sense that it is valid for E containing axioms for
A (associative) and AC (associative and commutative) symbols. We do not know of
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any other case where this lemma is valid (it does not hold even for arbitrary shallow
theories [8]). Intuitively, the lemma relies on being able to identify positions in a term.
For A and AC symbols, positions in Battened terms are considered.
We do not consider this restriction to A and AC as a practical limitation, since

available rewrite interpreters such as OBJ [17], Maude [32,30] or ELAN [39,24] do
provide implementations only for rewriting modulo theories including the axioms of
associativity, commutativity, identity and idempotency, and the last two axioms will
normally be considered as oriented equational rules.

De�nition 1 (Flattened terms [11]). A Battened term is a term [t]A considered modulo
all associativity axioms in E (in the following we consider only Battened terms, in-
cluding in rules, and abbreviate [t]A to t). It is possible to de9ne a notion of positions
Pos(t) in Battened terms, depending on the properties of the topmost symbol f:
• If f is a free symbol, then

Pos(f(t1; : : : ; tn) = {�} ∪
n⋃

i=1
{ip |p ∈ Pos(ti)}:

• If f is an A symbol, then

Pos(f(t1; : : : ; tn)) = {�} ∪ {[i; j] | 16 i ¡ j 6 n} ∪
n⋃

i=1
{ip |p ∈ Pos(ti)}:

• If f is an AC symbol, then

Pos(f(t1; : : : ; tn)) = {�} ∪P({1; : : : ; n}) ∪
n⋃

i=1
{ip |p ∈ Pos(ti)}:

The usual notions of substitution, stability by context and instantiation, rewriting, are
easily extended to Battened terms.

For instance, considering an AC symbol +, the rule a + c→d applies to the term
a+ b+ c at position {1; 3}, giving b+ d as a reduct.

De�nition 2 (Extended critical pairs [27]). Extended critical pairs extend the usual
notion of critical pairs to Battened terms. Consider two Battened rules �1 : l1→ r1 and
�2 : l2→ r2; there is a head superposition between l1 and l2 if Head(l1)=Head(l2)=f
and there exists a substitution ! such that one of the three possibilities below holds:
• f is a free symbol and l1!=E l2!
• f is an A symbol and L1 =E L2, where L1 is either l1!; f(x; l1)!; f(x; l1; y)! or

f(l1; y)!; and L2 is either l2!; f(u; l2)!; f(u; l2; v)! or f(l2; v)!, with x; y; u; v
being new variables.
• f is an AC symbol and L1 =E L2, where L1 is either l1! or f(x; l1)!; L2 is either

l2! or f(u; l2)!, with x; u being new variables.
Superpositions of l2 within l1 at position p �= � are de9ned similarly, considering for
L1 only the case L1 = l1!.
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The set CPE(�1; �2) of extended critical pairs is de9ned as usual considering all
superpositions between l1 and l2. Note that in the presence of A symbols, the set of
critical pairs may possibly be in9nite since A-uni9cation is not 9nitary [37].

For instance, considering an AC symbol +, the rules a+b→ c and a+d→ e induce
the critical pair (c + d; b + e). Taking != {x �→d; y �→ b}, we have (a+ b+ x)!=AC
(a+ d+y)!=AC a+ b+ d.
This de9nition of critical pairs is di;erent from the usual notion of critical pairs

modulo [23]: it takes into account the fact that rewriting is performed directly on
Battened terms and in some sense internalizes the extension rules [35] that would be
needed if rewriting modulo were done on syntactic (non-Battened) terms.

Lemma 3 (Permutation lemma). For an equational theory E containing only axioms
for A and AC symbols, we have: for any two rules �1 : l1→ r1 and �2 : l2→ r2, and

any critical peak [s]E
[�1]E←− [�2]E−→[t]E ,

• (Superposition case) either there is a critical pair (s; t)∈CPE(�1; �2),
• (Non-superposition case) or the critical peak can be closed as follows

Moreover, if l2 is linear or if the l1→ r1 step is not below the l2→ r2 step, then the
derivation (a) is empty. If r2 is linear or if the l1→ r1 step is not below the l2→ r2
step, then the derivation (b) is a single step. Note that the notion of applying a
step below another has to be understood in the context of :attened terms.

A proof for the case AC is given in [28]. With the de9nition of superposition for
A symbols and the associated de9nition of extended critical pairs that we introduced
here, the same proof works by replacing =AC with =A when considering A symbols.
Note that the notion of critical pairs modulo E proposed in [23] is not general enough
for the permutation lemma to hold.

5. Oriented rewrite theory

Extending the notion of a rewrite theory of rewriting logic [31], we de9ne an oriented
rewrite theory as a tuple ($; E; ER; R), where
• $ is the signature upon which terms are built
• E is a set of equations (u= v)∈T 2

$;X
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• ER is a set of equational rules (u =→ v)∈T 2
$;X

• R is a set of reduction rules 1 (u→ v)∈T 2
$;X .

The case of conditional rules will be addressed later in Section 6. Compared to a
“classical” rewrite theory, this de9nition makes room for two kinds of rules:
• Rules of ER are always given an equational interpretation: the oriented rewrite
theory de9nes equivalence classes modulo E ∪ER. We will always suppose that

the rules of ER form a rewrite system convergent modulo E (i.e.
[ER]E−→ is conBuent

and terminating).
• Rules of R are not necessarily interpreted equationally. They may be interpreted for
instance as transitions between states or deduction steps. However, nothing prevents
giving an equational interpretation to the reduction rules as well.
In “classical” rewriting logic, the same semantics would be obtained by considering

ER rules as non-oriented equations. The idea behind the above de9nition is that even
though rules of ER have an equational interpretation, they must be used only according
to their orientation. Each of these considerations leads to a di;erent view:
Operational view: “The rules of ER must be used according to their orientation”.

This leads to consider sequents for the rewrite theory (E; ER∪R):

[s]E
[R(ER)]E→ [t]E

Semantic view: “The rules of ER have an equational semantics”. This leads to con-
sider sequents for the rewrite theory (E ∪ER; R):

[s]E∪ER
[R]E∪ER→ [t]E∪ER

These two relations are not equivalent. We have

[s]E
[R(ER)]E→ [t]E ⇒ [s]E∪ER

[R]E∪ER→ [t]E∪ER

but the opposite is not true in general. As an example, consider

E = ∅; ER = {x + 0 =→ x}; R = {f(x + y)→ g(x) + g(y)}:

We have [f(x)]E∪ER
[R]E∪ER−→ [g(x)+g(0)]E∪ER, since [f(x)]E∪ER= [f(x+0)]E∪ER, but

[f(x)]E is not reducible by
[R(ER)]E−→ .

In the next section, we introduce di;erent notions of coherence. Strong coherence
is a suHcient condition for the above implication to be an equivalence, but may be
diHcult to verify. Weaker notions of coherence correspond to weaker correspondences

between
[R(ER)]E−→ and

[R]E∪ER−→ .
Then in the following sections, we provide some techniques for checking or estab-

lishing these coherence properties.

1 In the original de9nition, rules may also be labelled.
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5.1. Coherence

Depending on how close a correspondence we seek between the operational and
semantic views of oriented rewriting logic, we introduce three notions of coherence.
• Strong coherence states that the exact number of steps of a derivation is preserved
(one may wish also to impose that the same rule is used — or a rule generated by
completion from the original one, see Section 5.5 — the results extend straightfor-
wardly to this case).
It is the property needed when one wishes to preserve the whole derivation space,

namely being able to identify single steps of the semantic view and of the operational
view, for instance when implementing automata or process algebras.
• Weak coherence states that derivability is preserved, but not necessarily the inter-
mediate steps.
• Equational coherence states that the set of normal forms is preserved, except possibly
for some cycles.
This property makes sense mainly in an equational context (R equationally inter-

preted), where one is only interested in normal forms with respect to
[R]E∪ER−→ . In such

a context,
[R]E∪ER−→ is usually supposed to be conBuent.

Equational coherence is the most general property, it can be checked by looking at
critical pairs. Weak coherence may be more diHcult to establish in the presence of
non-left-linear rules in R, and strong coherence in the presence of non-right-linear rules
as well. We will see suHcient conditions in the next sections.

De�nition 4 (Coherence).
[R(ER)]E−→ is strongly (1), weakly (2) or equationally (3) co-

herent if

Properties (1) and (2) di;er only in the number of
[R(ER)]E−→ steps allowed to close

the diagram. Note that property (3) is equivalent to property (3′) (below).
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The intuition behind the de9nition of these three notions of coherence is justi9ed by
the following theorem.

Theorem 5 (Coherence). Remember that we suppose
[ER]E−→ convergent.

• If
[R(ER)]E−→ is strongly coherent, then

[u]E∪ER
[R]E∪ER→ [v]E∪ER ⇒ [u]E

[R(ER)]E→ [v′]E
[ER]E
��[v]E:

• If
[R(ER)]E−→ is weakly coherent, then

[u]E∪ER
[R]E∪ER� [v]E∪ER ⇒ [u]E

[R(ER)]E� [v′]E
[ER]E
��[v]E:

• If
[R(ER)]E−→ is equationally coherent, then

if [u]E is a normal form for
[R(ER)]E−→ , then either [u]E∪ER is a normal form for

[R]E∪ER−→ , or there is a non-empty cycle [u]E∪ER
[R]E∪ER� [u]E∪ER.

In the case of equational coherence, the set of normal forms is not exactly preserved,

since a cycle in
[R]E∪ER−→ may be matched by an empty derivation of

[R(ER)]E−→ . This is the
reason why in the identity rewriting example (Section 8), a non-terminating relation
modulo AC1 can be simulated by a terminating relation, and the reason why we choose
this de9nition of equational coherence.
If an exact correspondence between the sets of normal forms is required, the def-

inition of equational coherence has to be adapted in order to close the diagram with

at least one
[R(ER)]E−→ step. This latter de9nition rules out the possibility of a non-empty

cycle.

Proof (Strong case). Suppose that [u]E∪ER
[R]E∪ER−→ [v]E∪ER, which is equivalent to

[u]E
[ER]E
��

[R]E−→ [ER]E
��[v]E

We have
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(1) conBuence of
[ER]E−→

(2) strong coherence of
[R(ER)]E−→

(3) conBuence of
[ER]E−→.

Hence [u]E
[R(ER)]E−→ [v′]E

[ER]E
�� [v]E .

Weak case. Suppose that [u]E∪ER
[R]E∪ER� [v]E∪ER, which is equivalent to

[u]E(
[ER]E
��

[R]E→︸ ︷︷ ︸
n

)∗
[ER]E
��[v]E:

We want to prove that [u]E
[R(ER)]E�

[ER]E
�� [v]E by induction over the number n of

[R]E−→
steps in the derivation. Either n=0 and the theorem is trivially true, or we have

(1) conBuence of
[ER]E−→

(2) weak coherence of
[R(ER)]E−→

(3) induction hypothesis
with n− 1 R-steps

Hence [u]E
[R(ER)]E�

[ER]E
�� [v]E .

Equational case. Remember that [u]E
[R]E−→ [v]E is de9ned as u

E
�� R−→ E

�� v.

Suppose that [u]E is a normal form for
[R(ER)]E−→ , namely there does not exist any v

such that [u]E
[ER]E�

[R]E−→ [v]E , i.e. u(
E
�� ER−→ E

��)∗ R−→ E
�� v.

Now consider a derivation [u]E
[ER]E
��

[R]E−→ [v]E , i.e. u(
E
�� ER↔ E

��)∗ R−→ E
�� v, which

can be written in the more compact form u
ER=E
�� R−→ E

�� v:

• If no such derivation exists, then [u]E∪ER is a normal form for
[R]E∪ER−→ , by de9nition.

• If such a derivation exists, then there must be at least one “backward” ER←− step,

since we supposed [u]E to be a normal form for
[R(ER)]E−→ . Consider the last of these

steps, we have
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by equational coherence. Since we supposed that [u]E is a normal form for
[R(ER)]E−→ ,

the derivation (a) is empty, hence there is a derivation u
E∪ER
�� v, which means that

[u]E∪ER= [v]E∪ER and there is a cycle [u]E∪ER
[R]E∪ER−→ [v]E∪ER.

This ends the proof of Theorem 5.

5.2. Local coherence

In order to be able to check coherence syntactically (by looking only at the rewrite sys-
temsR andER),we9rst de9ne the local versions of strong,weak and equational coherence:

De�nition 6 (Local coherence).
[R(ER)]E−→ is locallystrongly(1), locallyweakly(2)or locally

equationally (3) coherent if

Note that coherence diagrams use the relation
[R(ER)]E−→ , while local coherence diagrams

use
[R(ER!)]E−→ , i.e. when closing local coherence diagrams we request that terms be in ER-

normal form before a rule of R may be applied. This is a change from [40], allowing
to discharge termination hypotheses on R.
Now we boil down coherence to local coherence:

Theorem 7 (Local coherence). Remember that we suppose
[ER]E−→ convergent.

• If
[R(ER)]E−→ is locally strongly coherent, then

[R(ER)]E−→ is strongly coherent.

• If
[R(ER)]E−→ is locally weakly coherent, then

[R(ER)]E−→ is weakly coherent.

• If
[R(ER)]E−→ is locally equationally coherent, then

[R(ER)]E−→ is equationally coherent.

Proof. In all cases we use the fact that
[ER!]E−→ ⊆ [ER]E� .

Strong case. Consider a derivation
[ER]E
� [u]E

[ER]E� [v]E
[R]E−→. Either [v]E is a [ER]E−→-normal

form and the result is trivial, or we have
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(1) convergence of
[ER]E−→

(2) local strong coherence

(3) uniqueness of
[ER]E−→-normal forms

Weak case. Consider a derivation
[ER]E
� [u]E

[ER]E� [v]E
[R]E−→. Either [v]E is a

[ER]E−→-normal
form and the result is trivial, or we have two cases: either the local coherence diagram

is closed with an empty
[R(ER!)]E� derivation, and again the result is trivial, or we have

(1) convergence of
[ER]E−→

(2) local weak coherence with at least one
[R(ER!)]E−→ -step

(3) uniqueness of
[ER]E−→-normal forms

Equational case. Similar to the weak case.

5.3. Checking local coherence

Now, checking coherence reduces to ensuring that for all critical peaks
[ER]E←− [R]E−→,

the de9nition of local strong, local weak or local equational coherence is veri9ed.
Checking all the possible critical peaks can be reduced to checking critical pairs

modulo E using the permutation lemma (Lemma 3), which is feasible when they are
in 9nite number (this is the case for free and AC symbols; in the presence of A
symbols, 9niteness cannot be guaranteed).
Checking local coherence properties reduces to ensuring that the property is veri9ed

for all critical pairs, and that it is true in the non-superposition case. The 9rst part
depends on the particular rewrite theory and must be checked individually, but we can
give general results for the second part.
Note that the results of this section are based on the permutation lemma, and thus

are only valid for E containing axioms for A and AC symbols.
• Equational coherence. The de9nition of equational coherence is veri9ed in the non-
superposition case.
• Weak coherence. The de9nition of weak coherence is not necessarily veri9ed in the

non-superposition case: no
[R(ER)]E� derivation is allowed after the 9rst

[R(ER)]E−→ step.
This is guaranteed by the permutation lemma if a non-left-linear rule of ER cannot

be applied above a rule of R. We will see some suHcient conditions below.
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• Strong coherence. Similarly, the de9nition of strong coherence is not necessarily
veri9ed in the non-superposition case: the diagram has to be closed by exactly one
[R(ER)]E−→ step.
This is guaranteed by the permutation lemma if any rule of ER that can be applied

above a rule of R is left-linear, right-linear and regular (the same set of variables
appears in the left- and right-hand sides).
There is no general way of ensuring the conditions about non-linear rules, but we

can, however, give suHcient conditions ensuring that such critical peaks will never
happen. The idea is to restrict the set of possible terms in such a way that a rule of
ER can never apply above a rule of R. For instance, separate “deterministic” and “non-
deterministic” function symbols, and impose sort conditions so that the former cannot
appear above the latter. This reduces somewhat the expressiveness, but nevertheless
allows to handle the case of abstract data types: terms are built upon constructors
and de9ned symbols, the constructors having to be “deterministic”. It also includes the
example of LOTOS (Section 10.3): processes may contain values, but not the opposite.
It is not possible to impose conditions on rules, except the very brutal one that

forbids non-linear rules in ER, since the kind of critical peaks that we have to avoid
does not correspond to a superposition of left-hand sides of rules.
In the next section, we give some examples of what may happen when the linearity

conditions are not veri9ed.

5.4. Examples of non-linearity

Consider

ER =



0 + 0→ 0
f(x)→ x + x
g(x; x)→ x

R =
{
?→ 0
?→ 1

ER is convergent and there are no critical pairs between R and ER.

Non-right-linearity: There is an equational rewrite step [f(?)]ER
[R]ER−→ [f(0)]ER, that

we cannot simulate by a single rewrite step if we start from the representative ?+ ?∈
[f(?)]ER. Two

R→ steps would be needed, hence
[R]ER−→ is not strongly coherent:

Non-left-linearity: Though there is an equational rewrite step [g(?; ?)]ER
[R]ER−→

[g(0; ?)]ER, there is no derivation ?
R
� t ∈ [g(0; ?)]ER, hence [R]ER−→ is not even weakly
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coherent:

5.5. Coherence completion

If not all critical pairs are coherent, we can try to achieve coherence by adding new
rules to R according to the inference rule

(Deduce) R � R ∪ {u!ER → v!ER} if (u; v) ∈ CPE(R; ER)

(Deduce) adds rules to R in order that all critical peaks can be closed according to the

local equational coherence diagram. u!ER is a representative of the
[ER]E←−-normal form

of [u]E .
Applying this rule as much as possible to an original system R0 may not terminate,

but if it does it provides an equivalent system which is locally equationally coherent:

Theorem 8. Suppose that R0 � · · · �Rn using the above inference rule, with the requi-
site that (Deduce) is never applied twice to the same critical pair, and does not apply

to Rn. Then
[Rn]E∪ER−→ =

[R0]E∪ER−→ and
[Rn]E−→ is locally equationally coherent with

[ER]E−→.

Proof. One can easily check that if Ri �Ri+1 using the rule (Deduce), then
[Ri]E∪ER−→ =

[Ri+1]E∪ER−→ .
If (Deduce) does not apply to Rn, then all critical pairs in CPE(Rn; ERn) have already

been computed. A rule added by (Deduce) cannot disappear later, hence for each
(u; v)∈CPE(Rn; ERn) we have

This diagram is an instance of the local equational coherence diagram, thus
[Rn(ER)]E−→ is

equationally coherent by the permutation lemma and Theorem 7.
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For the cases of weak and strong coherence, the same completion procedure can
be used, but one still has to check separately that the conditions about critical peaks
involving non-linear rules are veri9ed.
This completion procedure is not related to the classical Knuth–Bendix completion

procedure. In particular:
• Critical pairs are computed between two systems, not within one.
• (Deduce) generates oriented rules, not equations.
• The procedure does not rely on a given ordering, rather the orientation of the new
rules is determined by the orientation of the rules already in R.

5.6. Completion modulo a rewrite system

In the particular case where R (in addition to ER) has an equational interpretation,
there is a strong relationship between coherence completion and classical Knuth–Bendix
completion:

Theorem 9. Remember that we always suppose
[ER]E−→ con:uent. Suppose that

[R∪ER]E−→
terminates. If

[R]E−→ is con:uent and
[R(ER)]E−→ is equationally coherent; then

[R∪ER]E−→ is
con:uent.

Proof. Any of the following local critical peaks can be closed

(1) by conBuence of
[R]E−→, (2) by equational coherence of

[R(ER)]E−→ , and (3) by conBu-

ence of
[ER]E−→. Since

[R∪ER]E−→ terminates, applying the above properties to a critical peak

u
[R∪ER]E
�

[R∪ER]E� v eventually terminates and we get u
[R∪ER]E�

[R∪ER]E
� v.

6. Conditional rules

Until now we have considered only the non-conditional fragment of rewriting logic.
In the presence of conditional rules, Theorems 5 and 7 are still valid since they
refer only to abstract relations. The question now is how to prove local coherence
(Section 5.3), since the permutation lemma from Section 4 does not hold for
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conditional systems, as shown by the following example [4]: 2

f(x)→ a if x = f(x)

b→ f(b)

There are no critical pairs, but the critical peak a←f(f(b))→f(a) cannot be closed.
However, the permutation lemma does still hold in many cases. Consider a critical

peak
�1←−
p1

t
�2→
p2
where rule �1 (resp. �2) is applied at position p1 (resp. p2) in a Battened

term t, where �1 is a conditional rule. Let us call “conditional part of t” the set of
subterms of t corresponding to instances of variables appearing in the conditional part
of �1. The problem appears in the non-superposition case, if p2 is in the conditional
part of t: the application of �2 may modify the conditional part, and the condition of
�1 may not be true anymore. In all other cases, the conditional part is not a;ected and
the permutation lemma still holds.
A number of strategies can be devised in order to avoid this problematic case:
• Impose syntactic restrictions on the rewrite systems, in order to guarantee that no
rule will ever apply in the conditional part [4,10,18].

• Use the hierarchical approach [6] to guarantee that the evaluation of conditions is
conBuent.

7. Oriented matching

A well known technique for implementing a relation over equivalence classes
[R]E−→ is

to replace it by a weaker one
R;E−→ over terms. If an appropriate coherence property 3 is

veri9ed [23], then the former can be “simulated” by the latter. The major interest of

using the relation
R;E−→ is that it can be implemented by matching modulo E.

We can extend these ideas to the case of matching modulo oriented rules. De9ne

R;(E∪ER)−→ =
(

E↔
¿p
∪ ER−→

¿p

)∗
R→
p

where →
p
denotes a step at position p and →

¿p
a step at any position q¿p (q below p).

This relation can be implemented by an oriented matching algorithm that, given
two terms u and v, returns a minimal set of most general substitutions ! such that
!u and v are joinable by applying equations of E and rules of ER according to their
orientation, i.e. !u( E↔

¿p
∪ ER→
¿p
)∗v. Refer to [1] for the design of matching algorithms.

2 A condition a= b is usually interpreted as joinability (a ∗→ ∗← b). In rewriting logic, a= b is interpreted
as reducibility (a ∗→ b).

3 The name “coherence” was originally inspired by Jouannaud and Kirchner [23], although the two notions
of coherence are di;erent: we consider two rewrite systems while Jouannaud and Kirchner [23] consider
only one.
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Under some conditions, the relation
R; (E∪ER)−→ can be used in place of

[R(ER)]E−→ :
• Strong case. If the two following properties are veri9ed

then [u]E
[R(ER)]E−→ [v]E ⇔ u

R;(E∪ER)−→ v′ E∪ER←→ v:

Proof. [u]E
[R∪ER]E−→ [v]E implies u(

E
�� ER−→)∗ E

��
R; (E∪ER)−→ E

�� v. Apply repeatedly prop-
erties (a) and (b) to this derivation.

• Weak case. If
[R∪ER]E−→ is terminating and the two following properties are veri9ed:

then [u]E
[R (ER)]E� [v]E⇔ u

R;(E∪ER)
� v′

E∪ER
�� v.

The proof is similar to the one in the previous case, but requires the termination

of
[R∪ER]E−→ .

• Equational case. If
[R∪ER]E−→ is terminating and the two following properties are

veri9ed:

then
R; (E∪ER)−→ and

R(ER)=E−→ have the same normal forms.
The proof goes as follows: suppose that u

R(ER)=E−→ v, using the two properties above,

one can show that there is a derivation
R; (E∪ER)−→ starting from u, and that if this

derivation is empty, then there is a cycle u
[R∪ER]E� u, which contradicts the termination

hypothesis.

If ER= ∅, we are in the usual situation of rewriting modulo an equational theory,
and property (b) for the equational case coincides with the notion of coherence of [23],
from which we can borrow the techniques to check or ensure property (b).
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Property (a) is more unusual. Seemingly, checking it involves critical pairs between
a left-hand side of R and a right-hand side of ER. We can notice, however, that it
holds in an important subcase, including identity and idempotency rules. Assume that
all right-hand sides of the rules in ER are variables, and consider a derivation

u ER→
p

R;(E∪ER)→
q

v ⇔ u ER→
p

(
E→
¿q
∪ ER→
¿q

)∗
R→
q
v

If p¿ q, then u
R;(E∪ER)−→ v, since the 9rst ER step is below q, and property (a) is trivially

satis9ed. In all other cases, the two steps commute (since by hypothesis the rules in
ER have variables as right-hand sides), and property (a) is veri9ed for the weak and
equational case. For the strong case, we also need to require that the variable forming
the right-hand side of a rule appears exactly once in its left-hand side.
This technique extends to the case where only a subset of rules in ER have variable

right-hand sides, using the fact that if ER= S ∪T , then

[R(S∪T )]E→ ⇔ [R(S)(T (S))]E→

8. Rewriting modulo identity

As an example for equational coherence, we consider here the case of rewriting
modulo identity, famous for its termination problems. Consider R= {f(x+y)→f(x)+

f(y)} and E= {x + 0= x}. [R]E−→ does not terminate: we have

[f(x)]E
[R]E→ [f(x) + f(0)]E

[R]E→ · · ·

since f(x)
E
��f(x + 0) R−→f(x) + f(0).

The problem here is that the equation x + 0= x can be used as expansion (from
right to left). Rewriting modulo identity would better be speci9ed as an oriented rule

x+0 =→ x in ER. In this case,
[R(ER)]E−→ is not coherent, but coherence completion is able

to 9nd an equivalent strongly coherent system by adding a rule to R:

ER = {x + 0 =→ x}; R =

{
f(x + y)→ f(x) + f(y)

f(x)→ f(x) + f(0)

}

Note that the orientation of the rule f(x)−→f(x) + f(0) is 9xed by the completion
procedure.

[R(ER)]E−→ is still non-terminating, but one cannot blame coherence (or identity) com-

pletion: since completion tries to simulate the relation
[R]E∪ER−→ , which does not terminate,

one cannot expect to get a terminating relation. However, there is a solution if we are
only interested in equational coherence. Suppose that R contains additional rules for f,
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for instance:

ER = {x + 0 =→ x}; R =

{
f(x + y) → f(x) + f(y)

f(0) → 0

}

Then
[R(ER)]E−→ is equationally coherent, and

[R(ER)]E−→ is terminating even though
[R]E∪ER−→

is not, basically because equational coherence does not require that we simulate the
identity step

[f(x)]ER
[R]ER→ [f(x)]ER

Of course, it would be impossible to get a terminating relation if we demand strong
coherence (weak coherence is possible by adding rules to ER instead of R).

9. Calculi with bound variables

Bound variables appear in many di;erent calculi. In the �-calculus, they are higher-
order variables, bound by �. In the �-calculus, they are channel names bound by *
and Sx. Other examples of variable binders are the logical quanti9ers ∀ and ∃, or the
integration operator. In all these calculi, terms are taken up to the renaming of bound
variables (+-conversion), and substitution is considered as a meta-theoretic operator.
Trying to describe such calculi in a 9rst-order setting, bound variables become just

names, and substitution has to be made explicit as a 9rst-order operator. Bound vari-
ables are usually replaced by De Bruijn indices in order to “build-in” +-conversion.
We end up with two di;erent notions of variables and substitutions, however usually
only ground terms (not containing 9rst-order variables) are considered. First-order vari-
ables may be introduced for solving equations (e.g. higher-order uni9cation [12]), with
restrictions over where they may appear.
The explicit substitution approach has the advantage of modelling very precisely the

possible implementations of a calculus. It is shown in [20] how di;erent strategies for
the application of substitution rules of the weak �!-calculus correspond to di;erent
models of machines implementing this calculus, and moreover that a machine can be
derived quite easily from a given strategy.
Many substitution calculi have been proposed, with various conBuence, termination

or eHciency properties. A survey of substitution calculi for the �-calculus can be found
in [25]. As an example, we will consider here the �,-calculus introduced in [3]; this
choice is motivated by the fact that it is the simplest in the literature (it has the fewest
number of rules and extra operators).
Bound variables are represented by De Bruijn indices n (they can be formally de9ned

as Peano integers — for better readability, we sometimes subscript indices and their
corresponding binders with variables names, as e.g. in �x:0x). A substitution operator
[ =] is introduced, with the intuition that [a=] corresponds to the substitution

1 �→ a 2 �→ 1 · · · n+ 1 �→ n
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�-reduction is simulated by the only reduction rule

R = {(�a)b→ a[b=]}
Note that the fact of putting �-reduction as a rule of R does not imply that it cannot
be equationally interpreted. If it is, then the partitioning of rules between R and ER
is still useful as a hierarchical composition mechanism. At the lower level, one will
see all the implementation details including the application of substitutions, while they
will be hidden at the upper level.
The equational rules specify how to reduce terms containing substitutions (two aux-

iliary operators ↑ and ⇑ are introduced):

ER =



(ab)[s] =→ a[s]b[s]
(�a)s =→ �(a[⇑ (s)])
1[a=] =→ a
n+ 1[a=] =→ n

1[⇑ (s)] =→ 1
n+ 1[⇑ (s)] =→ n[s][↑]
n[↑] =→ n+ 1




It is shown in [3] that

• The �,-calculus is a conservative extension of the �-calculus: the relation R−→ ER!
�

over pure terms (not containing [ =], ↑ or ⇑ ( )) coincides with �-reduction, hence

also
R(ER!)−→ (putting aside the last

ER!
� steps of a derivation).

• ER−→ is convergent.
• R∪ER−→ is conBuent over ground terms. This cannot be shown by the usual critical pair
analysis, because there is a non-conBuent critical pair between the rule in R and the
9rst rule of ER.
If conBuence over open terms is required, the system �!⇑ from [19] can be used,

it is, however, much more complex than our example.

The relation
R(ER)−→ is equationally coherent over ground terms (or over all terms in

the case of �!⇑): this is a trivial consequence of the conBuence of R∪ER−→ . It is not
strongly coherent, because of the following critical peak:

(ab)[(�c)d] R−−−−−→ (ab)[c[d=]]

ER

�
a[(�c)d]b[(�c)d]

Two R−→ steps are required in order to close the diagram.
We do not know about weak coherence: seemingly, proving it would require a careful

examination of the proof of conBuence of R∪ER−→ . Weak coherence for �!⇑ can be proved
or refuted by examining the critical pairs, but this would require an automated tool
because of the great number of rules.
The same speci9cation is also possible in the framework of classical rewriting

logic [29], considering the equational rules as non-oriented axioms, but it is restricted
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to a semantic description since rewriting modulo such a complex theory is not prac-
tically feasible. The fact of having two sets of rules is useful for relating �-reduction
and its implementation in a single framework.

10. Process algebras

In this second example, we will develop the case of the �-calculus augmented with
abstract data types.
The �-calculus [34] and LOTOS [5] are two modern representatives of the process

algebra tradition that emerged from earlier works on CSP [21] and CCS [34]. The
�-calculus describes mobile processes, where mobility is achieved by the introduction
of binder operators and bound variables allowing name passing.
LOTOS integrates processes and data types in a two-level framework. The 9rst is

based on CSP=CCS, the second is based on ACT-ONE, a speci9cation language for
abstract data types. This layer structure is not completely satisfactory, as noticed in an
introductory book [34, p. 70]:

(...) many elements of a system can be speci9ed both as processes and as data
types. (...) a deeper understanding of the relation between the two components
could be bene9cial, and some harmonization between them could be attempted
(...), for instance a common semantic model.

We will see here how an oriented rewrite theory provides such a common semantic
model.

10.1. Structure of �-calculus processes

As in the previous section, the bound variables of the �-calculus will be represented
by indices and the substitution operation will be made explicit using the substitution
calculus part of �, (i.e. without �-reduction).
The terms of the �-calculus with indices are de9ned as follows (using a syntax more

digestible to rewrite interpreters than the usual one):
• indices and substitution operators are as in the previous section.
• processes

P := nil | (*)P | g:P |P1 + P2 |P1 |P2 | !P |P!(substitution)
• guards g := in(c) input on channel c (binder)

| out(c; x) output x on channel c
| bout(x) bound output (binder)
| - internal choice

Bound output can be de9ned in terms of other basic operators (bout(x):P=
(*)cout(0 c; x):P), but we choose to introduce it explicitly for technical reasons.

The structure of processes is de9ned by a set of equations E and a set of equational
rules ER.
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Processes are considered modulo the equations AC(+) and AC(|) (associativity and
commutativity of the + and | operators) and the following equational rules:

P + nil =→ P
P | nil =→ P

P | (*)Q =→ (*) ([↑]P |Q)
The substitution rules of �, from the previous section are also part of the equational
rules.
The last two equational rules allow to replace | and ! operators with non-deterministic

choice:
The expansion rule: Let P= +1:P1 + · · · ++n:Pn and Q= �1:Q1 + · · · +�m:Qm, then

P |Q =−→ ∑
i=1:::n

+i:(Pi |Q) +
∑

i=1:::m
�i:(P |Qi) +

∑
i=1:::n
j=1:::m

Sync(+i:Pi; �j:Qj)

where

Sync(+i:Pi; �j:Qj) =




-:(Pi[z=]|Qj) if +i = in(x) and �j = out(x; z)

-:(*)(Pi|Qj) if +i = in(x) and �j = bout(x)

(and similarly by swapping the arguments)

nil in all other cases

The replication rule: Let P= g1:P1 + · · ·+ gn:Pn, then

!P =→ g1:(P1|!P) + · · ·+ gn:(Pn|!P)
A process is in weak disjunctive normal form [34] if it is of the form

(*) : : : (*)(g1:P1 + · · ·+ gn:Pn)

with n¿0. Using the above equational rules, any process can be put in weak disjunctive
normal form.
Expansion and replication are rule schemes rather than proper rewrite rules because

of the variable n, but can be easily simulated using extra hidden operators.
The rewrite relation de9ned by the above equational rules (modulo AC) does not

terminate because of the replication rule that can be applied repeatedly into its own
right-hand side. In order to ensure termination, the rewrite rules must be applied
according to a strategy $ that allows application of the replication rule only when
needed in order to compute a weak disjunctive normal form.

$ is de9ned as follows, considering a strategy as a function from terms to terms:

$(P) = if P = nil then P
if P = g:Q then P (for g a guard)
if P = (*)Q then (*)$(Q)
if P = P1 + P2 then $(P1) + $(P2)
if P = P1|P2 then expand($(P1)|$(P2))
if P =!Q then repl($(P))
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where expand(P) applies the expansion theorem at the top of P and repl(P) the
replication theorem. The remaining rules are applied freely. A simple induction shows
that expand and repl are always applied to arguments where the corresponding rule
can be applied, and the maximal number of application of $ is bounded by the size
of the input term.

Let us denote
[ER]E�→ the derivations using all the above equational rules according to

this strategy $, then we have the following correspondence result:

Proposition 10 (Viry [41]). There is a one-to-one correspondence between processes
of the original �-calculus (modulo the usual structural axioms) and normal forms

with respect to
[ER]E�→ .

Proof.
• By construction, there is a one-to-one correspondence between processes of the
original �-calculus (modulo the usual structural axioms) and equivalence classes
modulo ER∪E.

• All critical pairs of ER modulo E are ground-conBuent.
The substitution calculus is conBuent on ground terms, hence over processes since

we did not introduce process variables (note that there also exists substitution calculi
convergent even on open terms, for instance �!⇑-calculus [9,25]). All other critical
pairs are easily shown to be conBuent except for

This critical pair is shown to be conBuent on ground terms by Lemma 5 used in
the proof of conBuence of �,-calculus in [26].

• The reduction relation [ER]E�→ terminates.
• If there is a derivation leading to a normal, there is a derivation following the

strategy $ leading to the same normal form, hence
[ER]E�→ computes unique normal

forms.

10.2. The reduction relation of the �-calculus

Whereas the equations (E) and equational rules (ER) specify the structure of pro-
cesses, the non-equational rules (R) are interpreted as irreversible transitions between
states, specifying the internal transitions of processes.
The reduction relation of the �-calculus corresponds to internal transitions of pro-

cesses (the so-called --transitions). It is denoted -→ and is traditionally de9ned by
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the following inference rules [22]:

-:P + Q -→ (Choice)
P -→P′

P|Q -→P′|Q
P -→P′

(*)P -→(*)P′

If we want to consider (Choice) as a rewrite rule, we have to make sure that it can be
applied only under the allowable contexts. Such a strategy can be easily implemented
by 9rst reducing processes with the equational rules, since we know the shape of weak
disjunctive normal forms.
We will thus consider (Choice) as the only non-equational rule in R. Its application

according to the above strategy will be denoted
[R]E�→ . The correspondence result is as

follows:

Proposition 11 (Viry [41]). There is a reduction step P -→Q in the original �-calculus

if and only if there is a rewrite derivation [P]E
[ER]E�→ [R]E�→ [Q′]E , where [Q′]

[ER]E
�� Q.

This result is proved by showing strong coherence between equational and reduction
rules (note that (Choice) is a linear rule). Although the rules in our speci9cation must
be applied according to some speci9c strategies, Theorems 5 and 7 are still valid since
they refer only to abstract relations. As for the proof of local coherence, one has to
ensure that the strategies are preserved by the permutation lemma, and that the local
coherence diagram can be closed according to these strategies.

We have implemented the relation
[ER]E�→ [R]E�→ in ELAN [24], which o;ers a power-

ful strategy speci9cation mechanism and a eHcient AC-rewriting engine (we believe
that our speci9cation would be very diHcult to encode using the OBJ [17] strategy
mechanism).
With the addition of a few new built-in operators, we have been able to design

an eHcient and semantically clean input–output system for ELAN based on this rela-
tion [41].

10.3. Addition of data types

So far, we have considered the plain monadic �-calculus. As shown in [34], this
calculus is powerful enough to encode any kind of structured data, so the game may
end here. However, for practical purposes one would like to be able to de9ne the data
exchanged by processes using abstract data types (ADTs).
ADTs are straightforwardly encoded with equational rules, but we have to guarantee

coherence in order for the above correctness results to still hold. As long as the op-
erators of the ADTs are disjoint from those of the �-calculus, this does not introduce
new critical pairs, and if we impose that data types appear only within processes, as
in LOTOS, then the linearity conditions are trivially veri9ed.



P. Viry / Theoretical Computer Science 285 (2002) 487–517 511

10.4. Example: double-way bu>er

A double-way bu;er consists of two processes in parallel, each of them repeatedly
reading a data element from a channel and writing it on the other channel. These
processes are most naturally speci9ed using recursive equations:

P = in(a)x:out(b; 0x):P

Q = in(b)x:out(a; 0x):Q

We cannot implement directly recursive equations, and need to restate this de9nition
using the replication operator. Note that this is always possible [34] and that the two
speci9cations are weakly bisimilar (i.e. equivalent up to the internal actions). P and Q
are rede9ned as

P = (*)p(out(0p; void):nil | !in(0p):in(a)x:out(b; 0x):out(1p; void):nil)

Q = (*)q(out(0q; void):nil | !in(0q):in(b)x:out(a; 0x):out(1q; void):nil)

where void is the only value of the single-valued type of channels that only exchange
synchronizations. Intuitively, the process below the replication operator of P (resp. Q)
can only be “activated” by an input from channel p (resp. q).
The process P |Q reduces to the weak disjunctive normal form

(*)p(*)q(in(a)x:P′ + in(b)x:Q′)

with

P′ = out(b; 0x):out(p; void):nil

| in(b)x:out(a; 0x):out(q; void):nil

| !in(0p):in(a)x:out(b; 0x):out(1p; void):nil

| !in(0q):in(a)x:out(b; 0x):out(1q; void):nil

and similarly for Q′ by swapping p with q and a with b.
This normal form exhibits the two possible external communications in(a) and in(b).

As soon as one of them is possible, the communication takes place and the computation
proceeds with either P′ or Q′. In P′, term (1) is the continuation of the bu;er process
P, term (2) is the bu;er process Q, and terms (3) and (4) are the “pools” of processes
that are activated by an input on channel p or q.
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So far we remained within the framework of the �-calculus. As an example of the
addition of ADTs, the two-way bu;er example can be extended by adding computation
of the output values, for instance

P = in(a)x:out(b; f(0x)):P

Q = in(b)x:out(a; g(0x)):P

where f and g are functions de9ned by equational rules. Since these de9ned operators
appear only strictly below process operators, we are guaranteed that strong coherence
is preserved and thus that our implementation remains correct.

10.5. Example: ?lter

In the previous example, in order to enforce the non-linearity conditions for strong
coherence, data types appear only below processes. Actually, the non-linearity condi-
tions are veri9ed as well if process expressions appear below de9ned symbols, as long
as no non-linear rewrite rule may ever be applied above a process expression.
This is the case for instance with the if:::then:::else::: operator, de9ned by the fol-

lowing linear rules

if true then x else y → x

if false then x else y → y

Then we can write a FILTER process, that repeatedly inputs values on a channel i
and copies them on an output channel o only when they verify a given condition:

FILTER = in(i)x: if c(x) then out(o; 0x):FILTER else FILTER

This recursive de9nition is then restated using the replication operator as in the previous
example.
This possibility allows for a much more “natural” programming style, similar to

CSP=Occam [21], but the constructs that may appear above processes must be clearly
identi9ed in order to ensure the condition about non-linear rules.

11. Sequent calculus modulo

Our third and last example concerns the case where the rewrite relation is interpreted
as deduction steps.

11.1. An oriented rewriting logic theory for the sequent calculus

The sequent calculus is a quite complex logical system which has been thoroughly
studied in the literature. Our motivation for choosing to study this particular calculus
is to show a non-trivial example; other than that, this choice is purely arbitrary, and in
particular we will not develop logical considerations but will rather remain on a purely
syntactic level.
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R =
{

Axiom A; C � C; B → ✸

L∀ A;∀3:C � B → A; C[a=3] � B

ER = $∪




L∨ A; C ∨ D � B =→ A; C � B • A;D � B
R∧ A � C ∧ D; B =→ A � C; B • A � D; B
R∀ A�∀3:C; B =→ A�C; B

Uc A; =→ A
U• A •✸ =→ A

f¬ ¬¬A =→ A
f⇒ A⇒ B =→ ¬A ∨ B

U∨ A ∨ 0 =→ A
U∧ A ∧ 1 =→ A

Z∨ A ∨ ¬A =→ 1
Z∧ A ∧ ¬A =→ 0

fI ∧ A∧A =→ A
fI∨ A ∨ A =→ A

f∀ ∀x:A =→ ¬∃x:¬A

sIl A; C; C �B =→ A; C �B
sIr A�C; C; B =→ A�C; B
s¬l A; C �B =→ A�¬C; B
s∧ A; C ∧D�B =→ A; C; D�B
s∨ A�C ∨ D; B =→ A�C;D; B

E =




Ac A; (B; C) = (A; B); C
Cc A; B = B; A

A• A • (B • C) = (A • B) • C
C• A • B = B • A

Fig. 1. An oriented rewrite theory for the sequent calculus. $ is the substitution part of �,, as in the
previous section. Underlined variables range over multisets of formulas. and ✸ denote, respectively,
empty multisets of formulas and sequents.

A rewriting logic presentation of the sequent calculus can be found in [29]. In [42],
we showed that the sequent calculus (as de9ned in [16], assuming identity elements
for ∨ and ∧) can be presented by the oriented rewrite theory (E; ER; R) shown in
Fig. 1, where E only contains associativity and commutativity axioms. This rewrite
theory was obtained as follows:
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• Put in E the equations making explicit the implicit structure of formula and sequent
composition (such as associativity and commutativity) together with the equations
de9ning the explicit substitution calculus. Turn all inference rules of the original
sequent calculus de9nition into R rules:

premisses
consequences

becomes consequences → premisses

A proof of a sequent 7 is thus encoded into a rewriting logic sentence + :7→ ✸,

corresponding to a rewrite derivation [7]E
[R]E� [✸]E .

• Then, add to E equational consequences of this system, such as idempotency of
formula composition. This allows in turn to simplify the presentation by removing
rules in R that have become redundant.
• Finally, turn selected equations of E and selected rules of R into equational rules
in ER. This selection (and the orientation given to equations) is rather arbitrary: the
only requirement is that the resulting oriented rewrite theory be weakly coherent,
and one also usually wishes to keep in E only axioms for A and AC symbols.
A di;erent selection or a di;erent orientation of equations would provide a dif-

ferent view of sequent calculus proofs. For instance, moving a rule from R to ER
corresponds to what is usually called “building-in equality” in theorem provers [7].
Building-in equality can make proofs much smaller, at the expense of hiding logical
details.

The main result of [42] states that:

Proposition 12. The sequent 7 is provable in the sequent calculus if and only if there

is a rewrite derivation [7]E
[R(ER)]E� [�]E .

Proof.
• By construction, and using two lemmas stating that adding equational consequences
and removing redundant rules preserves derivability, we have that the sequent 7
is provable in the sequent calculus if and only if there is a rewrite derivation

[7]E∪ER
[R]E∪ER� [�]E∪ER (where � denotes the empty sequent multiset).

• ER−→ is convergent and
[R(ER)]E−→ is weakly coherent.

All critical pairs of ER are conBuent and termination is shown using an AC-
compatible recursive path ordering [2].
Weak coherence is shown by examining critical pairs. Since we reduce multisets

of sequents, and rules of R only apply at the “sequent level”, the situation where a
non-left linear rule of ER is applied above a rule of R cannot happen.

11.2. Theorem proving modulo

Now, we can think of adding additional equations or equational rules modulo which
we wish to do reasoning. These equations may for instance de9ne new operators or
specify the internal structure of the objects we reason about. By doing so, we end up
with a framework similar to that of “theorem proving modulo” introduced in [13].



P. Viry / Theoretical Computer Science 285 (2002) 487–517 515

As long as weak coherence is still veri9ed, new equations and equational rules can be
added, while preserving the correctness of the implementation. Because the additional
equations one may wish to introduce most often involve only new symbols not present
in the original calculus, weak coherence is trivially preserved (no new critical pairs are

introduced), and termination of
[ER]E−→ may be proved using modularity results [36,15].

In this way, we can handle the example of higher-order logic given in [13]. The
formulas of the sequent calculus are extended with a few operators, and considered
modulo equations. Intuitively, the operators ¬̇, ∨̇ and ∀̇ are external versions of their
sequent calculus counterparts, + denotes application, and 8 maps the external version
of a term to its internal version. The three equations giving the speci9cation of 8 are
better expressed as equational rules:

8(+(¬̇; x)) =−→¬8(x)

8(+(+(∨̇; x); y)) =−→ 8(x) ∨ 8(y)

8(+(∀̇T ; x)) =−→∀y:8(+(x; y))

Then it is possible to show that ER augmented with these rules is still convergent and
that weak coherence is preserved, hence we immediately obtain a correct implementa-
tion of this extended sequent calculus modulo equations.

12. Conclusion

The introduction of equational rules solves the dilemma, inherent to rewriting logic,
of whether to specify something as a rule or as an equation. Turning equations into
equational rules can lead to better eHciency (some rules can even be internalized into
an oriented matching algorithm), while turning rules into equational rules can be seen
as “building-in” equality. Equational rules can also serve as a way of hierarchically
structuring systems.
When using equational rules, one must ensure that their operational behavior corre-

sponds to their intended meaning. We proposed various suHcient conditions (various
notions of coherence) and veri9cation techniques based on critical pair criteria.
The three examples developed in the paper cover the most important interpretations

of rewriting logic (transitions, deductions and equality), and should provide a template
for most applications. In each case, we obtained an oriented rewrite theory containing
only the associativity and commutativity axioms, which can be easily implemented on
usual rewriting interpreters or compilers.
Rewriting logic as a logical framework o;ers a natural and simple way of specifying

most calculi encountered in practice, but the lack of equational rules makes its imple-
mentation diHcult. We believe that by solving this behavior vs. semantics dilemma,
we removed one of the most important barriers in the way of a wide practical use of
rewriting logic.
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