J. Matn. Anai. Appl. 348 (2008) 571

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Corrigendum

Corrigendum to "Approximation by C^p -smooth, Lipschitz functions on Banach spaces" [J. Math. Anal. Appl. 315 (2006) 599–605]

R. Fry

Department of Maths, Thompson Rivers University, Kamloops, 900 McGill road, Kamloops, BC, Canada

ARTICLE INFO

Article history: Available online 9 August 2008

There is a gap in the proof of Theorem 1. Specifically, the estimate for $\sup_{x \in E_n} \|\overline{f}'_n(x) - F'_n(x)\|$ does not hold (as the inductive proof fails here), and as a consequence the conclusion of Theorem 1 does not follow. Nevertheless, using a construction from [2], techniques from [1], and employing a proof similar to that used originally, we are able to recover the results under the additional assumption that the subset $Y \subset X$ is convex (see Theorem 1 below). For full details of the proof, we refer the reader to http://www.tru.ca/advtech/faculty/Robb_Fry.html, or via e-mail request (rfry@tru.ca).

Theorem 1. If *X* is a Banach space with an unconditional basis and admits a C^p -smooth, Lipschitz bump function, and *Y* is a convex subset of *X*, then any uniformly continuous function $f: Y \to \mathbb{R}$ can be uniformly approximated by Lipschitz, C^p -smooth functions $K: X \to \mathbb{R}$.

Also, if Z is any Banach space, $Y \subset X$ is any subset, and $f: X \to Z$ (respectively $f: Y \to \mathbb{R}$) is Lipschitz with constant η , then we can choose $K: X \to Z$ (respectively $K: X \to \mathbb{R}$) to have Lipschitz constant no larger than $C_0\eta$, where $C_0 > 1$ is a constant depending only on X and the basis constant (in particular, C_0 is independent of ε).

References

- [1] D. Azagra, R. Fry, J.G. Gill, J.A. Jaramillo, M. Lovo, C¹-fine approximation of functions on Banach spaces with unconditional basis, Q. J. Math. 56 (1) (2005) 13–20.
- [2] M. Johanis, Approximation of Lipschitz mappings, Serdica Math. J. 29 (2) (2003) 141-148.

DOI of original article: 10.1016/j.jmaa.2005.07.009. *E-mail address:* rfry@tru.ca.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\ @$ 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.08.007