Maggie P.Y. Lam, PhD
Vidya Venkatraman, MSc
Quan Cao, MD, PhD
Ding Wang, PhD
T. Umut Dincer, MSc
Edward Lau, PhD
Andrew I. Su, PhD
Yi Xing, PhD
Junbo Ge, MD
*Peipei Ping, PhD
Jennifer E. Van Eyk, PhD
*National Institutes of Health BD2K Center of Excellence for Biomedical Computing at UCLA
National Heart, Lung, and Blood Institute Proteomics Center at UCLA
David Geffen School of Medicine at UCLA
University of California, Los Angeles
675 Charles East Young Drive
MRL Building, Suite 1-619
Los Angeles, California 90095
E-mail: pping@mednet.ucla.edu
OR
†Advanced Clinical Biosystems Research Institute
Cedars-Sinai Medical Center
Advanced Health Sciences Pavilion
127 South San Vicente Boulevard
Los Angeles, California 90048
E-mail: Jennifer.VanEyk@cshs.org

Please note: This work was supported by National Institutes of Health grants NIH U54-GM114833-01 and HHSN268201000035C (to Dr. Ping) and HHSN268201000032C (to Dr. Van Eyk). Dr. Su has served as a consultant for Avera McKennan. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

REFERENCES

Adenosine and Clinical Forms of Neurally-Mediated Syncope

Central or peripheral baroreceptor reflex abnormalities, alterations in neurohumoral mechanisms, or both, are thought to play a role in causing neurally-mediated syncope. Because adenosine and its receptors are involved in some forms of syncope (1-3), we evaluated the purinergic profile of 4 common forms of syncope: typical vasovagal syncope (VVS); situational syncope (which occurs in specific circumstances after micturition, defecation, coughing, swallowing, or gastrointestinal stimulation); carotid sinus syncope (CSS); and syncope without prodromes or with very short (2 to 3 s) prodromes and a normal heart (no prodromes). We compared patients with neurally-mediated syncope with healthy control subjects to test the hypothesis that the adenosine profile differs with the different clinical presentation.

The purinergic profile included an assay of the baseline adenosine plasma level (APL) and characterization of A2A adenosine receptor (A2A R) expression and single nucleotide c.1083 C>T polymorphism (SNP), which is the most common SNP in the A2A R gene. The method was previously described (1-4). Clinical and biological characteristics of patients and control subjects are given in Table 1.

Thus, these findings demonstrate an association between adenosine plasmatic levels and unexplained syncope in patients without prodromes, CSS, and VVS, who have profiles different from normal control subjects. The clinical manifestation of adenosine depends on its concentration, on adenosine receptor expression level, and on the presence of receptor reserve. However, the causal role of this interplay in the mechanism of syncope is yet to be determined. Conversely, adenosine is not associated with situational syncope, which is mainly triggered by well identifiable afferent neural reflexes. Patients with situational syncope showed APL values similar to those in normal control subjects, although they had high A2A R expression and a higher rate of the TT variant. The purinergic profile of situational syncope patients was never investigated.

Syncope without prodromes and CSS (which is a similar form of syncope without prodromes or very short prodromes and an absence of known triggers) have a similar distinct profile. In these 2 forms, the role of adenosine may potentially be important in causing syncope. When APL values are very low, as in these clinical forms, and are mainly below or approximately at the KD value for A1A adenosine receptor (A1 R) of 0.7 µM, even a modest acute increase in APL may recruit a sufficient number of A1 R, which is known to be located within the sinus node and in the atrioventricular node. Their activation causes sinus bradycardia and/or atrioventricular block.

For patients with typical VVS, a combination of neural outflow and purinergic activation is likely.
The high APL values in VVS patients are compatible with the activation of low affinity A2A R activation (Kd 1.8 μM) and desensitization of high affinity A1, R. Low affinity A2A R is located in the vessels and causes vasodilation. Thus, syncope may be related to the vasodilatory effect of the A2A R activation, which acts synergically with the blunted sympathetic nervous activity. Interestingly, these patients also showed a high incidence of positive tilt tests. It is known that a positive tilt test denotes susceptibility to hypotension (5).

In conclusion, particular purinergic profiles, which are genetically predetermined, characterize different common forms of neurally-mediated syncope that can be classified as low, normal, and high adenosine syncope; this classification might have therapeutic implications.

Regis Guieu, MD
Jean-Claude Deharo, MD
Jean Ruf, PhD
Giovanna Mottola, PhD
Nathalie Kipson, BSc
Laurie Bruzzese, BSc
Victoria Gerolami, BSc
Frederic Franceschi, MD
Andrea Ungar, MD
Marco Tomaino, MD
Matteo I ori, MD
* Michele Brignole, MD
*Department of Cardiology
Ospedali del Tigullio
via don Bobbio 25
Lavagna, 16033
Italy
E-mail: mbrignole@asl4.liguria.it

http://dx.doi.org/10.1016/j.jacc.2015.04.066

Please note: The authors have reported that they have no relationships relevant to the contents of this paper to disclose.

REFERENCES

Early Repolarization

A Risk Factor in Brugada Syndrome

Conte et al. (1) reported their long-term results of implantable cardioverter-defibrillator therapy in Brugada syndrome (BS). The investigators noted that 4 patients experienced an electrical storm and 1 (Patient #3) had “a fragmentation of the QRS complex (f-QRS).” In fact, this patient’s electrocardiogram (ECG) showed a spike mainly at the terminal portion of all QRS complexes. After ajmaline challenge, a coved-type ECG was induced, and the spike disappeared, unmasking an S wave in leads V4 to V6.

We believe that the terminal QRS spike may signify early repolarization (ER) rather than f-QRS in this BS patient. Unlike in myocardial infarction, f-QRS has

| TABLE 1 Clinical Characteristics of the Study Population and Purinergic Profile |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | No Prodromes, | Carotid Sinus | Situational | Vasovagal | Control Subjects |
| | Normal Heart (n = 57) | (n = 9) | (n = 23) | (n = 30) | (n = 40) |
| Age, yrs | 64 ± 15* | 74 ± 10* | 56 ± 18 | 45 ± 17* | 53 ± 15 |
| Women | 36 (63) | 2 (22) | 8* (35) | 18 (60%) | 23 (57) |
| Total number of syncopes | 3 (2-5) | 2 (2-3) | 4 (2-6.5) | 8* (4-15) | – |
| Duration of symptoms, yrs | 1 (1-3) | 1 (1-2) | 4 (1.5-10) | 10* (3-22) | – |
| APL, μM | 0.18* (0.12-0.36) | 0.16* (0.10-0.31) | 0.60 (0.43-0.70) | 0.85* (0.59-1.90) | 0.60 (0.50-0.69) |
| SNP TT/TC/CC variants | 2/20/5 | 1/4/3 | 12/5/2* | 0/5/9 | 7/20/13 |
| A2A R expression, arbitrary units | 0.5* (0.3-0.6) | 0.5 (0.4-0.5) | 0.9* (0.9-1.0) | 0.8* (0.7-1.0) | 0.7 (0.5-0.8) |
| SNP TT/TC/CC variants | 2/20/5 | 1/4/3 | 12/5/2* | 0/5/9 | 7/20/13 |
| No Prodromes, | 13/56 (23%) | 2/6 (33%) | 8/23 (35%) | 22/30/5 | 77% (73%) |

Values are mean ± SD, n (%), or n (ranges). *p < 0.05 compared with control subjects; ‡p < 0.05 vasovagal compared with no prodromes and carotid sinus; † Value corresponding to the best receiving-operating characteristic curve discriminant (see Deharo et al. [2]; ‡p < 0.05 vasovagal compared with each other group.

APL = adenosine plasma level; A2A R = adenosine A2A receptor; SNP = single nucleotide c.1364 C>T polymorphism.