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 On Combinatorics of Al-Salam Carlitz Polynomials

 D ONGSU  K IM

 A new combinatorial interpretation of the moments of Al-Salam Carlitz polynomials as
 ‘striped’ skew-shapes is used to explain the cancellation in the moments of Viennot theory for
 these polynomials .

 ÷   1997 Academic Press Limited

 1 .  I NTRODUCTION

 The Al-Salam Carlitz polynomials  U ( a )
 n  ( x ) (see [1] or [2 ,  p .  195]) ,  are a family of

 orthogonal polynomials defined by the following generating function

 ( w ) ̀  ( aw ) ̀

 ( xw )  5  O ̀
 n 5 0

 U ( a )
 n  ( x )

 w n

 ( q ) n
 ,  (1)

 where ( a ) ̀    denotes the product  P ̀
 i 5 0  (1  2  aq i ) and ( a ) n  5  P n 2 1

 i 5 0  (1  2  aq i ) .
 These polynomials satisfy a recurrence relation

 U ( a )
 n 1 1 ( x )  5  ( x  2  (1  1  a ) q n ) U ( a )

 n  ( x )  1  aq n 2 1 (1  2  q n ) U ( a )
 n 2 1 ( x ) ,  n  >  1 ,  (2)

 with initial conditions  U ( a )
 2 1 ( x )  5  0 and  U ( a )

 0  ( x )  5  1 .
 Let [ n

 k ] q   denote the  q -binomial number ,  i . e .

 F n
 k
 G

 q
 5

 P k
 i 5 1  (1  2  q n 2 k 1 i )
 P k

 i 5 1  (1  2  q i )
 5

 ( q ) n

 ( q ) k ( q ) n 2 k
 .

 The generating function (1) can be used to obtain an explicit expression for the
 polynomials ,  i . e .

 U ( a )
 n  ( x )  5  O n

 i 5 0
 F n

 i
 G

 q
 ( 2 1) n 2 i q ( n 2 i )( n 2 i 2 1)/2  P i 2 1

 j 5 0
 ( x  2  aq j ) ,

 which is equivalent to

 U ( a )
 n  ( x )  5  O n

 i 5 0
 F n

 i
 G

 q
 ( 2 1) i x n 2 i S O i

 j 5 0
 F i

 j
 G

 q
 q ( i 2 j )( i 2 j 2 1)/2 1 j (  j 2 1)/2 a j D .  (3)

 Let  L  be the linear functional with respect to which  h U ( a )
 n  ( x ) j n > 0  are orthogonal .

 Then the  n th moments have the following expressions :

 L ( x n )  5  O n
 k 5 0

 F n
 k
 G

 q
 a k .  (4)

 The orthogonality of  h U ( a )
 n  ( x ) j n > 0  is

 L ( U ( a )
 m  ( x ) U ( a )

 n  ( x ))  5  ( 2 a ) n q n ( n 2 1)/2 ( q ) n d m n  ,  (5)

 which will be proved combinatorially in Section 4 .
 Viennot gives a combinatorial model for orthogonal polynomials in the context of

 weighted paths and Motzkin paths .  His model is based on three-term recurrence
 relations for orthogonal polynomials ,  [6 ,  7] ,  and can be applied to any family of
 orthogonal polynomials .  However ,  many known orthogonal polynomials have more
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 structured combinatorial models ,  which are dif ferent from Viennot’s general one (see
 [4 ,  5]) .

 Since the coef ficient of  U ( a )
 n 2 1 ( x ) in the recurrence relation of (2) has mixed signs but

 the expressions for  U ( a )
 n  ( x ) in (3) and moments  L ( x n ) in (4) have no terms to be

 cancelled ,  the  U ( a )
 n  ( x )’s and moments in Viennot’s model contain some terms to be

 cancelled out .
 In this paper we interpret  U ( a )

 n  ( x ) and the moments using the explicit expressions and
 find a weight-preserving bijection and several weight-preserving sign-reversing ( wpsr )
 involutions to explain the cancellations in the Viennot’s model of the polynomials
 U ( a )

 n  ( x )   and the moments  L ( x n ) .  The main results of the paper ,  which are in Section 3 ,
 are the encoding of Motzkin paths as striped skew-shapes and a  wpsr  involution on
 striped skew-shapes ,  achieving the desired cancellations .

 2 .  M ODELS OF   U ( a )
 n  ( x )

 According to Viennot [6] ,   U ( a )
 n  ( x ) is the generating function of the paths of length  n ,

 from 0 to  n ,  with three dif ferent weighted steps :  for some integer  i ,
 (1)  a step from  i  to  i  1  1 of weight  x ,
 (2) a step from  i  to  i  1  1 of weight  2 q i  2  aq i ,  and
 (3)  a step from  i  to  i  1  2 of weight  2 aq i ( q i 1 1  2  1) .
 We split a step of length 2 to a sequence of two steps of length 1 of weight  2 aq i   and
 q i 1 1  2  1   respectively ;  and replace a step of weight  2 q i  2  aq i   with two types of steps of
 weight  2 q i ,  and  2 aq i   respectively ;  and replace a step of  q i 1 1  2  1 with two types of
 steps of weight  q i 1 1 ,  and  2 1 respectively .  Then we can see that  U ( a )

 n  ( x ) is the
 generating function of the paths of length  n  with steps ,  for each  i  P  h 0 ,  1 ,  .  .  .  ,  n  2  1 j ,
 (i)  a step from  i  to  i  1  1 of weight  x ,  and
 (ii)  a step from  i  to  i  1  1 of weight  2 1 ,   q i ,  2 q i   or  2 aq i ,
 with a condition that in each path steps of weight  2 1 or  q i   are preceded by a step the
 weight of which contains a factor  2 a .  This condition comes from the fact that  q i 1 1  is
 split from a step of length 2 of weight  2 aq i ( q i 1 1  2  1) .  There is a  wpsr  involution on this
 set ,  the fixed set of which consists of paths where ,  in terms of weight of steps ,  no  2 aq i

 is followed by  q i 1 1  or  2 q i 1 1 .  The involution is defined as follows :  if a path contains a
 sequence  2 aq i   and  Ú q i 1 1 ,  then find the smallest such  i  and change the sequence to
 2 aq i   and  Ò q i 1 1 .  The fixed set of this  wpsr  involution consists of steps ,
 (i)  a step from  i  to  i  1  1 of weight  x ,  and
 (ii)  a step from  i  to  i  1  1 of weight  2 1 ,   2 q i ,  2 aq i ,
 where each occurrence of a step of weight  2 1 is preceded by a step of weight  2 aq i .
 This fixed set can be regarded as the weighted set ,  denoted ( T n ,  w ) ,  of all
 multi-permutations of length  n  with entries from  h x ,  2 1 ,  2 a j ,  where the weight  w  is
 defined as follows :  for  s  5  s  0 s  1  ?  ?  ?  s  n 2 1  P  ( T n  ,  w ) ,  let  w ( s  )  5  P n 2 1

 i 5 0  w ( s i ) ,  where

 w ( s i )  5 5
 x ,

 2 aq i ,

 2 q i ,

 2 1 ,

 if  s i  5  x ,

 if  s i  5  2 a ,

 if  s i  5  2 1 ,  s  i 2 1  ?  2 a ,

 if  s i  5  2 1 ,  s  i 2 1  5  2 a .

 However ,  there is another interpretation of  U ( a )
 n  ( x ) ,  which can be read from the

 generating function of  U ( a )
 n  ( x ) or the explicit expression in equation (3) .  Let  T n   denote



 On Al - Salam Carlitz polynomials  297

 the same set as before ,  i . e .  the set of all multi-permutations of length  n  of  h x ,  2 a ,  2 1 j .
 We assume that  2 a  ,  2 1  ,  x  symbolically .  We define a new weight  w 9  on  T n   as follows :

 w 9 ( s i )  5 5  x ,
 2 aq i ,

 2 q k ,

 if  s i  5  x ,
 if  s i  5  2 a ,
 if  s i  5  2 1  and  k  5  u h  j  :  s j  5  2 1  or  x ,  0  <  j  ,  i j u ,

 The exponent of  q  in  w 9 ( s  ) can be regarded as the number of inversions ,  where ,  in
 addition to usual inversions ,  each pair ( 2 1 ,  2 1) or ( a ,  a ) is counted as an inversion .

 We claim that ( T n  ,  w ) and ( T n  ,  w 9 ) have the same distribution .  Note that if  q  5  1
 then it is obvious .  To handle the general case ,  we define a weight-preserving bijection
 Θ  from ( T n  ,  w ) to ( T n  ,  w 9 ) .  Let  s  5  s  0 s  1  ?  ?  ?  s n 2 1  be an element of ( T n  ,  w ) .  Then
 Θ ( s  )  P  ( T n  ,  w 9 )   is defined as follows .  For each occurrence of  2 1 from the left in order :
 (i)  if it is preceded by either  x  or  2 1 ,  then exchange each  2 a  to the left of it ,  one by
 one from right to left ,  with the next entry ;
 (ii)  otherwise ,  exchange each of  x  or  2 1 to the left of it ,  one by one from right to left ,
 with the next entry (of  x  or  2 1) (this is equivalent to moving the  2 a  just before the  2 1
 to the beginning) .
 Let  Θ ( s  ) be the final multi-permutation .

 Since each step preserves the contribution of  2 1 to the weight ,   Θ ( s  )  P  ( T n  ,  w 9 ) has
 the same weight as  s  P  ( T n  ,  w ) .  Moreover ,  this process is reversible .  To go backward ,
 we start from the rightmost  2 1 .  For each  2 1 ,  if the starting entry is either  x  or  2 1 ,
 then exchange each  2 a  to the left of it ,  one by one from left to right ,  with the next
 entry ,  else exchange each occurrence of  x  or  2 1 to the left of it ,  one by one from left to
 right ,  with the next entry or ,  equivalently ,  move the starting  2 a  to the left of the  2 1 ,
 making it adjacent to the  2 1 .

 Hence  Θ  :  ( T n  ,  w )  5  ( T n  ,  w 9 ) is a weight-preserving bijection .
 For instance ,  if  s  5  ( 2 1 ,  2 a ,  x ,  2 1 ,  x ,  2 a ,  2 1 ,  2 a )  P  ( T n  ,  w 9 ) ,  then

 s  5  ( u 2 1  ,  2 a ,  x ,  2 1 ,  x ,  2 a ,  2 1 ,  2 a )  é  ( 2 1 ,  2 a ,  x ,  u 2 1  ,  x ,  2 a ,  2 1 ,  2 a )  é

 ( 2 1 ,  x ,  2 a ,  2 1 ,  x ,  2 a ,  u 2 1  ,  2 a )  é  ( 2 a ,  2 1 ,  2 a ,  x ,  2 1 ,  x ,  2 1 ,  2 a )  5  Θ ( s  ) .

 Note that we do nothing for the leftmost  2 1 in the first step .  In each step ,  we rearrange
 the elements to the left of the boxed  2 1 ,  according to the above rules .

 3 .  M OMENTS AS  ‘S TRIPED 9   S KEW  S HAPES

 In Viennot’s theory [6] ,  the  n th moment  L ( x n ) is the weight-generating function of
 the Motzkin paths on the plane of length  n  from (0 ,  0) to ( n ,  0) with the following
 steps :
 (i)  a step from ( i ,  j ) to ( i  1  1 ,  j  1  1) of weight  aq i ;
 (ii)  a step from ( i ,  j ) to ( i  1  1 ,  j ) of weight  aq i   of  q i ;
 (iii)  a step from ( i ,  j ) to ( i  1  1 ,  j  2  1) of weight  q i   or  2 1 .
 Since there are steps with a negative weight ,   L ( x n ) in Viennot’s model is a sum
 involving some terms of negative coef ficients .  However ,   L ( x n ) ,  in equation (4) ,  has
 only positive terms .  This suggests that there exist a  wpsr  involution ,  explaining the
 cancellation .

 From the expression of  L ( x n ) in equation (4) ,  it is clear that  L ( x n ) can be interpreted
 as a partition inside an ( n  2  k )  3  k  rectangle .  A partition here is a finite weakly
 decreasing sequence of non-negative integers .  Let  P n   be the set of all multi-
 permutations of length  n  with entries  h 1 ,  a j .  Put a weight  w  on  P n   as follows :  for
 s  5  s  1 s  2  ?  ?  ?  s n  P  P n  ,  let  w ( s  )  5  a k q l ,  where  k  is the number of  a ’s in  s   and  l  is the
 number of pairs ( i ,  j ) , i  ,  j ,  such that  s i  5  a  and  s j  5  1 .  An element  s   in  P n   with
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 F IGURE  1 .  Five dif ferent kinds of step .

 exactly  k  a ’s corresponds to a partition the Ferrers diagram of which fits inside an
 ( n  2  k )  3  k  rectangle ,  where a partition is represented as a lattice path from the lower
 left corner of the rectangle to the upper right corner ,  with a ‘ right ’ step for  a  and an
 ‘ up ’   step for 1 .  The power of  q  in  w ( s  ) corresponds to the integer of which  s   is a
 partition .

 It is not clear that the weight-generating function of  P n   is equivalent to that of
 Motzkin paths for Al-Salam Carlitz polynomials given by Viennot [6] .  We show
 combinatorially that the weight-generating function of  P n   is the moment of  x n   for
 Al-Salam Carlitz polynomials .

 In this section ,  we encode Motzkin paths as ‘ striped ’ skew-shapes and define a
 combinatorial  wpsr  involution on ‘ striped ’ skew-shapes ,  the fixed point set of which is
 ( P n  ,  w ) .

 3 . 1 .  Encoding of a Motzkin path as a striped skew shape .  We will call a step in a
 Motzkin path an  a -step ,  if its weight contains  a  ;  a 1-step ,  if its weight is 1 ;  or a
 ( 2 1)-step ,  if its weight is  2 1 .  We will also use adjectives ,   up , horizontal  and  down ,  to
 describe steps in Motzkin paths .  Note that there are five dif ferent kinds of step ;
 namely ,  an  up  or  horizontal a -step ,  a  horizontal  or  down  1-step ,  and a  down  ( 2 1)-step .
 One of each type of step shows in Figure 1 .

 We will represent a moment path of length  n  as a skew shape  l  / m  ,  with some
 diagonal stripes ,  inside a rectangle of size ( n  2  k )  3  k  for some  k .  Given a lattice path
 from (0 ,  0) to ( k ,  n  2  k ) ,  there exists the unique partition  l   the Ferrers diagram of
 which is enclosed by the lattice path and the line  x  5  0 and the line  y  5  n  2  k .

 We describe how a skew shape is obtained from a moment path .  We begin at the
 point (0 ,  0) .  The partition  l   is determined by  n  steps from (0 ,  0) to ( k ,  n  2  k ) for some
 k .  If the  i th step in the moment path is an  a -step ,  then the  i th step of  l   is a horizontal
 unit step ,  called a ‘right’ step ;  otherwise ,  it is a vertical unit step ,  called an ‘ up ’ step .

 The partition  m   is also determined by  n  steps from (0 ,  0) to ( k ,  n  2  k ) .  If the  i th step
 in the moment path is an up  a -step or a horizontal 1-step ,  then the  i th step of  l   is an
 ‘ up ’   step ;  otherwise ,  it is a ‘ right ’ step .

 Since the number of  up a -steps in a Motzkin path is equal to the number of  down
 steps in the path ,  both  l   and  m   have the same number of  right  steps and the same
 number of  up  steps .

 We assume that a skew shape of shape  l  / m   consists of  u l u  2  u m  u   unit squares .  If the
 i th path in the moment path is a ( 2 1)-step ,  then we put a white circle inside each box
 in the diagonal starting from the box containing the  i th step of  m   and ending with the
 box containing the  i th step of  l .

 We put a black circle inside each box in  m .  We will call a box with a black circle a
 black box  and a box with a white circle a  white box .

 In Figure 2 it is shown how we obtain a striped skew shape from a Motzkin path .
 Let  M n   be the set of all objects that we can obtain from the above encoding of

 Motzkin paths .  We can define  M n   formally as follows .  Note that a partition is a weakly
 decreasing finite sequence of non-negative integers .  In particular ,  we allow 0 as a part
 of a partition .
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 F IGURE  2 .  Encoding of a Motzkin path :   m  5  2200 ,  l  5  4432 .

 D EFINITION  3 . 1 .  A striped skew shape of shape  l  / m   inside a rectangle  k  3  ( n  2  k ) is a
 region enclosed by two partitions  l  5  l 1 l 2  ?  ?  ?  l k   and  m  5  m  1 m  2  ?  ?  ?  m k   such that :
 (i)  for all  i ,  1  <  i  <  k ,  we have 0  <  m i  <  l i  <  n  2  k ;
 (ii)  some diagonals from north-west to south-east may become a  stripe  if the top
 leftmost box in the diagonal is the topmost box in the column of  l  / m   in which the box
 belongs ,  and the bottom rightmost box in the diagonal is the rightmost box in the row
 of  l  / m   in which the box belongs .
 A stripe is denoted by putting a white circle inside each box in it .  Let  M n ,k   be the set of
 all striped skew shapes of shape  l  / m   inside a rectangle  k  3  ( n  2  k ) and let  M n   be the
 disjoint union of  M n , 0 , M n , 1 , M n , 2 ,  .  .  .  ,  M n ,n .  We can put a weight  w  on  M n .  For
 π  P  M n ,k ,  define the weight of  π   as

 w ( π  )  5  ( 2 1) s a k q u l u 2 u m  u 2 l ,

 where  l  is the number of boxes in stripes in  π  ,  and  s  is the number of stripes .

 E XAMPLE .  If  π   is the striped skew-shape in Figure 3 ,  then  w ( π  )  5  ( 2 1) 2 a  5 q 5 .

 It is clear from the above description that the encoding of Motzkin paths described
 earlier defines a weight-preserving bijection between the set of Motzkin paths for
 U ( a )

 n  ( x )   and the weighted set ( M n  ,  w ) .  We state this fact as a theorem without a proof .

 T HEOREM  3 . 1 .  There is a weight - preser y  ing bijection between Motzkin paths for the
 moments of U ( a )

 n  ( x )  and the weighted set  ( M n  ,  w ) .

 3 . 2 .  An in y  olution on striped skew shapes .  We now want to define a  wpsr  involution
 the fixed set of which is  P n .  Let  π   be a striped skew shape of shape  l  / m .  The basic idea
 of the involution is that we change the boxes in a certain vertical strip of  m   to white
 boxes ,  or a diagonal stripe of white boxes in  l  / m   to black boxes .  After changing the
 color of boxes ,  we arrange the colored boxes by ‘ floating ’ .  Black boxes float to the left ,
 resulting in enlargement of  m  ,  and white boxes float to the right ,  forming a diagonal
 stripe .  If some sequence of boxes changes color and can be floated ,  then this sequence
 is called ‘ changeable ’ .

 F IGURE  3 .  A striped skew shape of shape  l / m  :   m  5  2210 ,  l  5  5431 .
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 F IGURE  4 .  Examples of Cases 1 . 1 and 1 . 2 .

 We now want to define a  wpsr  involution  P   on ( M n  ,  w ) .  Let  s   be a striped
 skew-shape of shape  l  / m   inside a  k  3  ( n  2  k ) rectangle .  If  m   has any non-zero parts ,
 then let  k 1  be the number of positive parts in  m .  Recall that ,  in Definition 3 . 1 ,  a stripe
 is a diagonal sequence of boxes in  l  / m  ,  such that the top leftmost box in the diagonal is
 the topmost box in the column of  l  / m   in which the box belongs ,  and the bottom
 rightmost box in the diagonal is the rightmost box in the row of  l  / m   in which the box
 belongs .  If  s   has any stripes ,  then let  k 2  be the largest integer  k 2  such that  s   has a
 stripe ending in the  k 2 th row of  l ;  otherwise ,  set  k 2  5  0 .  There are three cases to be
 considered .

 C ASE  1 .  Suppose that  k 1  .  k 2  .  Consider the diagonal in  l  / m   ending at the last box in
 the  k 1 th row of  l .  Let  d 1  be the length of this diagonal .  Note that a vertical strip is a
 skew shape which has exactly one box at each of its rows .  There are two subcases ,  as
 follows .

 Case  1 . 1 .  If the upper-leftmost box of the diagonal is the topmost box of a column of
 l  / m  ,  then we change the vertical strip of  m   consisting of  d 1  boxes contained in the last
 d 1   rows of  m   to white boxes and float them ,  to form a stripe of length  d 1  .

 Case  1 . 2 .  If the upper-leftmost box of the diagonal is not the topmost box of a
 column of  l  / m  ,  then we change the vertical strip of  m   consisting of  d 1  1  1 boxes
 contained in the last  d 1  1  1 rows of  m   to white boxes and float them ,  to form a stripe of
 length  d 1  1  1 .

 Examples for Cases 1 . 1 and 1 . 2 are shown in Figure 4 .

 C ASE  2 .  Suppose that  k 1  <  k 2  and  k 2  .  0 .  In this case ,  we change each box in the
 stripe ending at the  k 2 th row of  l   to a black box ,  and float them to the left .  If we
 reverse the arrows in Figure 4 ,  we obtain examples of this case .

 C ASE  3 .  Suppose that  k 1  5  k 2  5  0 .  Then we do nothing .

 We define  P ( s  ) to be the resulting striped skew shape .  It is clear that  P   is a  wpsr
 involution and  P   fixes  s   if f  k 1  5  k 2  5  0 .  In fact ,  Case 2 is the reverse operation of Case
 1 .  We state this as a theorem .

 T HEOREM  3 . 2 .  The map  P   defined on  ( M n  ,  w )  is a wpsr in y  olution . Moreo y  er , a
 striped skew shape of shape  l  / m   is fixed by  P   if f  m  5  00  ?  ?  ?  0  and it has no stripes .

 4 .  O RTHOGONALITY OF   U ( a )
 n  ( x )

 We first interpret  U ( a )
 n  ( x ) as ( T n  ,  w ) defined in Section 2 .  For each pair of integers

 ( m ,  n ) ,  we define a set  O m ,n   as the set of all pairs of sequences ( s  ,  τ  ) ,  where  s   is a
 multi-permutation of length  m  of 1 ,   2 1 ,   a ,  2 a  and  τ   is a multi-permutation of length  n
 of 1 ,   2 1 ,   a ,  2 a .  We put a weight  w  on  O m ,n .  Let ( s  ,  τ  ) be an element of  O m ,n ,  where
 s  5  s  0 s  1  ?  ?  ?  s  m 2 1 ,  τ  5  τ  0 τ  1  ?  ?  ?  τ  n 2 1 .  The weight of ( s  ,  τ  ) is defined as

 w ( s  ,  τ  )  5  P m 2 1

 i 5 0
 w ( s i ) P n 2 1

 j 5 0
 w ( τ j ) ,
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 where  w ( s i ) and  w ( τ j ) are defined as follows :

 w ( s i )  5

 a ,

 q k ,

 2 aq i ,

 2 q i ,

 2 1 ,

 if  s i  5  a ,

 if  s i  5  1  and  k  is  the  number  of  occurrences  of  a  before  s i  ,

 if  s i  5  2 a ,

 if  s i  5  2 1 ,  s  i 2 1  ?  2 a ,

 if  s i  5  2 1 ,  s  i 2 1  5  2 a .

E
 w ( τ j )  5

 a ,

 q k ,

 2 aq j ,

 2 q j ,

 2 1 ,

 if  τ j  5  a ,

 if  τ j  5  1  and  k  is  the  number  of  occurrences  of  a  before  s  and  τ j  ,

 if  τ j  5  2 a ,

 if  τ j  5  2 1 ,  τ  j 2 1  ?  2 a ,

 if  τ j  5  2 1 ,  τ  j 2 1  5  2 a .

E
 Note that the definition of  w ( s i ) and that of  w ( τ j ) are the same except for the second
 case .

 From equation (4) and Theorem 3 . 2 ,  we know that the  n th moment

 L ( x n )  5  O n
 k 5 0

 F n
 k
 G

 q
 a k

 is interpreted as the weight of the sequences of  h 1 ,  a j   of length  n ,  where the weight
 contains an appropriate factor of  q .  So it is clear that

 L ( U ( a )
 m  ( x ) U ( a )

 n  ( x ))  5  O
 ( s  , τ  ) P O m , n

 w ( s  ,  τ  ) .  (6)

 We now prove the orthogonality of  h U ( a )
 n  ( x ) j n > 0  by finding appropriate involutions in

 O m ,n .  In fact ,  we will use two involutions  G   and      defined below to accomplish it .
 A  wpsr  involution  G   on the  s   part :

 Assume that  s i  5  1 or  2 1 and  s j  ?  Ú 1 for all  j  ,  i .  There are four cases :
 (1)  s i  5  2 1 and  s  i 2 1  5  2 a :  set  s i  5  1 and move each  a  to the left of  s i   to the right by
 1 unit ,  by interchanging adjacent  a  and  2 a .
 (2)  s i  5  2 1 and  s  i 2 1  5  a :  set  s i  5  1 and move each  2 a  to the left of  s i   to the right by
 1 unit ,  by interchanging adjacent  a  and  2 a .
 (3)  s i  5  1 and  s  1  5  2 a :  set  s i  5  2 1 and move each  a  to the left of  s i   to the left by
 1 unit ,  by interchanging adjacent  a  and  2 a .
 (4)  s i  5  1 and  s  1  5  a :  set  s i  5  2 1 and move each  2 a  to the left of  s i   to the left by
 1 unit ,  by interchanging adjacent  a  and  2 a .

 It can be shown that these operations define a  wpsr  involution  G .  An element ( s  ,  τ  )
 is fixed under  G   if  s   contains neither 1 nor  2 1 .

 Now we define another  wpsr  involution      on the fixed set .  Let  k  be the number of
 1’s in  τ .  If  k  ,  m ,  then changing the sign of  s k   is a  wpsr  involution .  Therefore the final
 fixed set consists of ( s  ,  τ  ) ,  where  s   consists of only  a  or  2 a  and  τ   contains at least  m
 1’s .  Hence ,  if  m  .  n ,  then the fixed set is the empty set ,  which explains the
 orthogonality of  U ( a )

 m  ( x ) and  U ( a )
 n  ( x ) for  m  ?  n .  For  m  5  n ,  the fixed set consists of

 ( s  ,  τ  ) ,  where  s   consists of only  a  or  2 a  and  τ   of only 1’s .  The weight of this set will be

 P n 2 1

 i 5 0
 ( aq n  2  aq i )  5  ( 2 a ) n q n ( n 2 1)/2  P n

 i 5 1
 (1  2  q i ) .

 We next interpret  U ( a )
 n  ( x ) as ( T n  ,  w 9 ) defined in Section 2 .  In this case ,  the weight of

 the set  O m ,n   defined at the beginning of this section should be changed .  The change is
 made to only  2 1 .  As in ( T n  ,  w ) ,  the weight of  2 1 will be  2 q k   if  k  is the number of
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 occurrences of either  a  or 1 or 1 or  2 1 to the left of it .  The orthogonality is easier to
 explain .  Changing the sign of first  Ú 1 in  s   is a  wpsr  involution .  The fixed set is the
 same as before and we can apply the  wpsr  involution      on the fixed set to obtain the
 orthogonality for  m  ?  n .

 5 .  R EMARKS

 Recently ,  de Me ́  dicis ,  Stanton and White [3] interpreted  q -Charlier polynomials
 combinatorially .  Among other things ,  they interpreted the linearization coef ficients

 L ( C n 1
 ( x ,  a ;  q ) C n 2

 ( x ,  a ;  q ) C n 3
 ( x ,  a ;  q ))

 combinatorially .  Since it is known that

 C n ( x ,  a ;  q )  5  a n U ( 2 1/ a (1 2 q ))
 n  S x

 a
 2

 1
 a (1  2  q )

 D ,

 we may expect that their approach will work for  U ( a )
 n  ( x )’s .  But rescaling seems to make

 the problem very dif ferent .
 The linearization coef ficients  L ( C n 1

 ( x ,  a ;  q ) C n 2
 ( x ,  a ;  q ) in [3] can be used to show

 that  L ( U ( a )
 n 1

 ( x ) U ( a )
 n 2

 ( x ) U ( a )
 n 3

 ( x )) is equal to

 ( q ) n 1  O n 1 1 n 2 2 n 3

 m 5 0
 ( 2 a ) n 3 1 m F  n 2

 n 1  1  n 2  2  n 3  2  m
 G

 q
 F  n 3

 n 3  2  n 2  1  m
 G

 q

 3  O min( m ,n 1 1 n 2 2 n 3 2 m )

 k 5 0
 q N ( 2 1) n 1 1 n 2 2 n 3 2 m 2 k ( q ) n 2 2 k F n 1  1  n 2  2  n 3  2  m

 k
 G

 q
 F n 3  2  n 2  1  m

 m  2  k
 G

 q
 ,

 where

 N  5 S n 1

 2
 D  1 S n 2

 2
 D  1 S k  1  1

 2
 D  1  ( n 3  2  n 1  1  m )( n 3  2  n 2  1  k )  1  m ( m  2  n 1  2  k ) .

 Combinatorial interpretation of the above expression ,  similar to that in [3] ,  will be
 interesting .
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