On Combinatorics of Al-Salam Carlitz Polynomials

Dongsu Kim

Abstract

A new combinatorial interpretation of the moments of Al-Salam Carlitz polynomials as 'striped' skew-shapes is used to explain the cancellation in the moments of Viennot theory for these polynomials.

© 1997 Academic Press Limited

1. Introduction

The Al-Salam Carlitz polynomials $U_{n}^{(a)}(x)$ (see [1] or [2, p. 195]), are a family of orthogonal polynomials defined by the following generating function

$$
\begin{equation*}
\frac{(w)_{\infty}(a w)_{\infty}}{(x w)}=\sum_{n=0}^{\infty} U_{n}^{(a)}(x) \frac{w^{n}}{(q)_{n}}, \tag{1}
\end{equation*}
$$

where $(a)_{\infty}$ denotes the product $\Pi_{i=0}^{\infty}\left(1-a q^{i}\right)$ and $(a)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right)$.
These polynomials satisfy a recurrence relation

$$
\begin{equation*}
U_{n+1}^{(a)}(x)=\left(x-(1+a) q^{n}\right) U_{n}^{(a)}(x)+a q^{n-1}\left(1-q^{n}\right) U_{n-1}^{(a)}(x), \quad n \geqslant 1, \tag{2}
\end{equation*}
$$

with initial conditions $U_{-1}^{(a)}(x)=0$ and $U_{0}^{(a)}(x)=1$.
Let $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ denote the q-binomial number, i.e.

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\prod_{i=1}^{k}\left(1-q^{n-k+i}\right)}{\prod_{i=1}^{k}\left(1-q^{i}\right)}=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}} .
$$

The generating function (1) can be used to obtain an explicit expression for the polynomials, i.e.

$$
U_{n}^{(a)}(x)=\sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}(-1)^{n-i} q^{(n-i)(n-i-1) / 2} \prod_{j=0}^{i-1}\left(x-a q^{j}\right),
$$

which is equivalent to

$$
U_{n}^{(a)}(x)=\sum_{i=0}^{n}\left[\begin{array}{c}
n \tag{3}\\
i
\end{array}\right]_{q}(-1)^{i} x^{n-i}\left(\sum_{j=0}^{i}\left[\begin{array}{l}
i \\
j
\end{array}\right]_{q} q^{(i-j)(i-j-1) / 2+j(j-1) / 2} a^{j}\right) .
$$

Let L be the linear functional with respect to which $\left\{U_{n}^{(a)}(x)\right\}_{n \geqslant 0}$ are orthogonal. Then the nth moments have the following expressions:

$$
L\left(x^{n}\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{4}\\
k
\end{array}\right]_{q} a^{k} .
$$

The orthogonality of $\left\{U_{n}^{(a)}(x)\right\}_{n \geqslant 0}$ is

$$
\begin{equation*}
L\left(U_{m}^{(a)}(x) U_{n}^{(a)}(x)\right)=(-a)^{n} q^{n(n-1) / 2}(q)_{n} \delta_{m n} \tag{5}
\end{equation*}
$$

which will be proved combinatorially in Section 4.
Viennot gives a combinatorial model for orthogonal polynomials in the context of weighted paths and Motzkin paths. His model is based on three-term recurrence relations for orthogonal polynomials, [6,7], and can be applied to any family of orthogonal polynomials. However, many known orthogonal polynomials have more
structured combinatorial models, which are different from Viennot's general one (see $[4,5])$.

Since the coefficient of $U_{n-1}^{(a)}(x)$ in the recurrence relation of (2) has mixed signs but the expressions for $U_{n}^{(a)}(x)$ in (3) and moments $L\left(x^{n}\right)$ in (4) have no terms to be cancelled, the $U_{n}^{(a)}(x)$'s and moments in Viennot's model contain some terms to be cancelled out.

In this paper we interpret $U_{n}^{(a)}(x)$ and the moments using the explicit expressions and find a weight-preserving bijection and several weight-preserving sign-reversing ($w p s r$) involutions to explain the cancellations in the Viennot's model of the polynomials $U_{n}^{(a)}(x)$ and the moments $L\left(x^{n}\right)$. The main results of the paper, which are in Section 3, are the encoding of Motzkin paths as striped skew-shapes and a wpsr involution on striped skew-shapes, achieving the desired cancellations.

2. Models of $U_{n}^{(a)}(x)$

According to Viennot [6], $U_{n}^{(a)}(x)$ is the generating function of the paths of length n, from 0 to n, with three different weighted steps: for some integer i,
(1) a step from i to $i+1$ of weight x,
(2) a step from i to $i+1$ of weight $-q^{i}-a q^{i}$, and
(3) a step from i to $i+2$ of weight $-a q^{i}\left(q^{i+1}-1\right)$.

We split a step of length 2 to a sequence of two steps of length 1 of weight $-a q^{i}$ and $q^{i+1}-1$ respectively; and replace a step of weight $-q^{i}-a q^{i}$ with two types of steps of weight $-q^{i}$, and $-a q^{i}$ respectively; and replace a step of $q^{i+1}-1$ with two types of steps of weight q^{i+1}, and -1 respectively. Then we can see that $U_{n}^{(a)}(x)$ is the generating function of the paths of length n with steps, for each $i \in\{0,1, \ldots, n-1\}$,
(i) a step from i to $i+1$ of weight x, and
(ii) a step from i to $i+1$ of weight $-1, q^{i},-q^{i}$ or $-a q^{i}$,
with a condition that in each path steps of weight -1 or q^{i} are preceded by a step the weight of which contains a factor $-a$. This condition comes from the fact that q^{i+1} is split from a step of length 2 of weight $-a q^{i}\left(q^{i+1}-1\right)$. There is a $w p s r$ involution on this set, the fixed set of which consists of paths where, in terms of weight of steps, no $-a q^{i}$ is followed by q^{i+1} or $-q^{i+1}$. The involution is defined as follows: if a path contains a sequence $-a q^{i}$ and $\pm q^{i+1}$, then find the smallest such i and change the sequence to $-a q^{i}$ and $\mp q^{i+1}$. The fixed set of this wpsr involution consists of steps,
(i) a step from i to $i+1$ of weight x, and
(ii) a step from i to $i+1$ of weight $-1,-q^{i},-a q^{i}$,
where each occurrence of a step of weight -1 is preceded by a step of weight $-a q^{i}$. This fixed set can be regarded as the weighted set, denoted $\left(T_{n}, w\right)$, of all multi-permutations of length n with entries from $\{x,-1,-a\}$, where the weight w is defined as follows: for $\sigma=\sigma_{0} \sigma_{1} \cdots \sigma_{n-1} \in\left(T_{n}, w\right)$, let $w(\sigma)=\prod_{i=0}^{n-1} w\left(\sigma_{i}\right)$, where

$$
w\left(\sigma_{i}\right)= \begin{cases}x, & \text { if } \sigma_{i}=x \\ -a q^{i}, & \text { if } \sigma_{i}=-a \\ -q^{i}, & \text { if } \sigma_{i}=-1, \sigma_{i-1} \neq-a \\ -1, & \text { if } \sigma_{i}=-1, \sigma_{i-1}=-a\end{cases}
$$

However, there is another interpretation of $U_{n}^{(a)}(x)$, which can be read from the generating function of $U_{n}^{(a)}(x)$ or the explicit expression in equation (3). Let T_{n} denote
the same set as before, i.e. the set of all multi-permutations of length n of $\{x,-a,-1\}$. We assume that $-a<-1<x$ symbolically. We define a new weight w^{\prime} on T_{n} as follows:

$$
w^{\prime}\left(\sigma_{i}\right)= \begin{cases}x, & \text { if } \sigma_{i}=x, \\ -a q^{i}, & \text { if } \sigma_{i}=-a, \\ -q^{k}, & \text { if } \sigma_{i}=-1 \text { and } k=\mid\left\{j: \sigma_{j}=-1 \text { or } x, 0 \leqslant j<i\right\} \mid\end{cases}
$$

The exponent of q in $w^{\prime}(\sigma)$ can be regarded as the number of inversions, where, in addition to usual inversions, each pair $(-1,-1)$ or (a, a) is counted as an inversion.

We claim that $\left(T_{n}, w\right)$ and $\left(T_{n}, w^{\prime}\right)$ have the same distribution. Note that if $q=1$ then it is obvious. To handle the general case, we define a weight-preserving bijection Θ from $\left(T_{n}, w\right)$ to $\left(T_{n}, w^{\prime}\right)$. Let $\sigma=\sigma_{0} \sigma_{1} \cdots \sigma_{n-1}$ be an element of $\left(T_{n}, w\right)$. Then $\Theta(\sigma) \in\left(T_{n}, w^{\prime}\right)$ is defined as follows. For each occurrence of -1 from the left in order: (i) if it is preceded by either x or -1 , then exchange each $-a$ to the left of it, one by one from right to left, with the next entry;
(ii) otherwise, exchange each of x or -1 to the left of it, one by one from right to left, with the next entry (of x or -1) (this is equivalent to moving the $-a$ just before the -1 to the beginning).
Let $\Theta(\sigma)$ be the final multi-permutation.
Since each step preserves the contribution of -1 to the weight, $\Theta(\sigma) \in\left(T_{n}, w^{\prime}\right)$ has the same weight as $\sigma \in\left(T_{n}, w\right)$. Moreover, this process is reversible. To go backward, we start from the rightmost -1 . For each -1 , if the starting entry is either x or -1 , then exchange each $-a$ to the left of it, one by one from left to right, with the next entry, else exchange each occurrence of x or -1 to the left of it, one by one from left to right, with the next entry or, equivalently, move the starting $-a$ to the left of the -1 , making it adjacent to the -1 .

Hence $\Theta:\left(T_{n}, w\right) \rightarrow\left(T_{n}, w^{\prime}\right)$ is a weight-preserving bijection.
For instance, if $\sigma=(-1,-a, x,-1, x,-a,-1,-a) \in\left(T_{n}, w^{\prime}\right)$, then

$$
\begin{gathered}
\sigma=(\boxed{-1},-a, x,-1, x,-a,-1,-a) \Rightarrow(-1,-a, x, \boxed{-1}, x,-a,-1,-a) \Rightarrow \\
(-1, x,-a,-1, x,-a, \boxed{-1},-a) \Rightarrow(-a,-1,-a, x,-1, x,-1,-a)=\Theta(\sigma)
\end{gathered}
$$

Note that we do nothing for the leftmost -1 in the first step. In each step, we rearrange the elements to the left of the boxed -1 , according to the above rules.

3. Moments as 'Striped' Skew Shapes

In Viennot's theory [6], the nth moment $L\left(x^{n}\right)$ is the weight-generating function of the Motzkin paths on the plane of length n from $(0,0)$ to $(n, 0)$ with the following steps:
(i) a step from (i, j) to $(i+1, j+1)$ of weight $a q^{i}$;
(ii) a step from (i, j) to $(i+1, j)$ of weight $a q^{i}$ of q^{i};
(iii) a step from (i, j) to $(i+1, j-1)$ of weight q^{i} or -1 .

Since there are steps with a negative weight, $L\left(x^{n}\right)$ in Viennot's model is a sum involving some terms of negative coefficients. However, $L\left(x^{n}\right)$, in equation (4), has only positive terms. This suggests that there exist a wpsr involution, explaining the cancellation.

From the expression of $L\left(x^{n}\right)$ in equation (4), it is clear that $L\left(x^{n}\right)$ can be interpreted as a partition inside an $(n-k) \times k$ rectangle. A partition here is a finite weakly decreasing sequence of non-negative integers. Let P_{n} be the set of all multipermutations of length n with entries $\{1, a\}$. Put a weight w on P_{n} as follows: for $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in P_{n}$, let $w(\sigma)=a^{k} q^{l}$, where k is the number of a 's in σ and l is the number of pairs $(i, j), i<j$, such that $\sigma_{i}=a$ and $\sigma_{j}=1$. An element σ in P_{n} with

Figure 1. Five different kinds of step.
exactly $k a$'s corresponds to a partition the Ferrers diagram of which fits inside an $(n-k) \times k$ rectangle, where a partition is represented as a lattice path from the lower left corner of the rectangle to the upper right corner, with a 'right' step for a and an ' $u p$ ' step for 1 . The power of q in $w(\sigma)$ corresponds to the integer of which σ is a partition.

It is not clear that the weight-generating function of P_{n} is equivalent to that of Motzkin paths for Al-Salam Carlitz polynomials given by Viennot [6]. We show combinatorially that the weight-generating function of P_{n} is the moment of x^{n} for Al-Salam Carlitz polynomials.

In this section, we encode Motzkin paths as 'striped' skew-shapes and define a combinatorial wpsr involution on 'striped' skew-shapes, the fixed point set of which is $\left(P_{n}, w\right)$.
3.1. Encoding of a Motzkin path as a striped skew shape. We will call a step in a Motzkin path an a-step, if its weight contains a; a 1 -step, if its weight is 1 ; or a (-1)-step, if its weight is -1 . We will also use adjectives, up, horizontal and down, to describe steps in Motzkin paths. Note that there are five different kinds of step; namely, an u p or horizontal a-step, a horizontal or down 1 -step, and a down (-1)-step. One of each type of step shows in Figure 1.

We will represent a moment path of length n as a skew shape λ / μ, with some diagonal stripes, inside a rectangle of size $(n-k) \times k$ for some k. Given a lattice path from $(0,0)$ to $(k, n-k)$, there exists the unique partition λ the Ferrers diagram of which is enclosed by the lattice path and the line $x=0$ and the line $y=n-k$.

We describe how a skew shape is obtained from a moment path. We begin at the point $(0,0)$. The partition λ is determined by n steps from $(0,0)$ to $(k, n-k)$ for some k. If the i th step in the moment path is an a-step, then the i th step of λ is a horizontal unit step, called a 'right' step; otherwise, it is a vertical unit step, called an ' u ' step.
The partition μ is also determined by n steps from $(0,0)$ to $(k, n-k)$. If the i th step in the moment path is an up a-step or a horizontal 1 -step, then the i th step of λ is an 'up' step; otherwise, it is a 'right' step.

Since the number of $u p a$-steps in a Motzkin path is equal to the number of down steps in the path, both λ and μ have the same number of right steps and the same number of $u p$ steps.

We assume that a skew shape of shape λ / μ consists of $|\lambda|-|\mu|$ unit squares. If the i th path in the moment path is a (-1)-step, then we put a white circle inside each box in the diagonal starting from the box containing the i th step of μ and ending with the box containing the i th step of λ.

We put a black circle inside each box in μ. We will call a box with a black circle a black box and a box with a white circle a white box.

In Figure 2 it is shown how we obtain a striped skew shape from a Motzkin path.
Let M_{n} be the set of all objects that we can obtain from the above encoding of Motzkin paths. We can define M_{n} formally as follows. Note that a partition is a weakly decreasing finite sequence of non-negative integers. In particular, we allow 0 as a part of a partition.

Figure 2. Encoding of a Motzkin path: $\mu=2200, \lambda=4432$.

Definition 3.1. A striped skew shape of shape λ / μ inside a rectangle $k \times(n-k)$ is a region enclosed by two partitions $\lambda=\lambda_{1} \lambda_{2} \cdots \lambda_{k}$ and $\mu=\mu_{1} \mu_{2} \cdots \mu_{k}$ such that:
(i) for all $i, 1 \leqslant i \leqslant k$, we have $0 \leqslant \mu_{i} \leqslant \lambda_{i} \leqslant n-k$;
(ii) some diagonals from north-west to south-east may become a stripe if the top leftmost box in the diagonal is the topmost box in the column of λ / μ in which the box belongs, and the bottom rightmost box in the diagonal is the rightmost box in the row of λ / μ in which the box belongs.
A stripe is denoted by putting a white circle inside each box in it. Let $M_{n, k}$ be the set of all striped skew shapes of shape λ / μ inside a rectangle $k \times(n-k)$ and let M_{n} be the disjoint union of $M_{n, 0}, M_{n, 1}, M_{n, 2}, \ldots, M_{n, n}$. We can put a weight w on M_{n}. For $\pi \in M_{n, k}$, define the weight of π as

$$
w(\pi)=(-1)^{s} a^{k} q^{|\lambda|-|\mu|-l}
$$

where l is the number of boxes in stripes in π, and s is the number of stripes.
Example. If π is the striped skew-shape in Figure 3, then $w(\pi)=(-1)^{2} a^{5} q^{5}$.
It is clear from the above description that the encoding of Motzkin paths described earlier defines a weight-preserving bijection between the set of Motzkin paths for $U_{n}^{(a)}(x)$ and the weighted set $\left(M_{n}, w\right)$. We state this fact as a theorem without a proof.

Theorem 3.1. There is a weight-preserving bijection between Motzkin paths for the moments of $U_{n}^{(a)}(x)$ and the weighted set $\left(M_{n}, w\right)$.
3.2. An involution on striped skew shapes. We now want to define a wpsr involution the fixed set of which is P_{n}. Let π be a striped skew shape of shape λ / μ. The basic idea of the involution is that we change the boxes in a certain vertical strip of μ to white boxes, or a diagonal stripe of white boxes in λ / μ to black boxes. After changing the color of boxes, we arrange the colored boxes by 'floating'. Black boxes float to the left, resulting in enlargement of μ, and white boxes float to the right, forming a diagonal stripe. If some sequence of boxes changes color and can be floated, then this sequence is called 'changeable'.

Figure 3. A striped skew shape of shape $\lambda / \mu: \mu=2210, \lambda=5431$.

We now want to define a wpsr involution Π on $\left(M_{n}, w\right)$. Let σ be a striped skew-shape of shape λ / μ inside a $k \times(n-k)$ rectangle. If μ has any non-zero parts, then let k_{1} be the number of positive parts in μ. Recall that, in Definition 3.1, a stripe is a diagonal sequence of boxes in λ / μ, such that the top leftmost box in the diagonal is the topmost box in the column of λ / μ in which the box belongs, and the bottom rightmost box in the diagonal is the rightmost box in the row of λ / μ in which the box belongs. If σ has any stripes, then let k_{2} be the largest integer k_{2} such that σ has a stripe ending in the k_{2} th row of λ; otherwise, set $k_{2}=0$. There are three cases to be considered.

Case 1. Suppose that $k_{1}>k_{2}$. Consider the diagonal in λ / μ ending at the last box in the k_{1} th row of λ. Let d_{1} be the length of this diagonal. Note that a vertical strip is a skew shape which has exactly one box at each of its rows. There are two subcases, as follows.

Case 1.1. If the upper-leftmost box of the diagonal is the topmost box of a column of λ / μ, then we change the vertical strip of μ consisting of d_{1} boxes contained in the last d_{1} rows of μ to white boxes and float them, to form a stripe of length d_{1}.

Case 1.2. If the upper-leftmost box of the diagonal is not the topmost box of a column of λ / μ, then we change the vertical strip of μ consisting of $d_{1}+1$ boxes contained in the last $d_{1}+1$ rows of μ to white boxes and float them, to form a stripe of length $d_{1}+1$.

Examples for Cases 1.1 and 1.2 are shown in Figure 4.
CASE 2. Suppose that $k_{1} \leqslant k_{2}$ and $k_{2}>0$. In this case, we change each box in the stripe ending at the k_{2} th row of λ to a black box, and float them to the left. If we reverse the arrows in Figure 4, we obtain examples of this case.

Case 3. Suppose that $k_{1}=k_{2}=0$. Then we do nothing.
We define $\Pi(\sigma)$ to be the resulting striped skew shape. It is clear that Π is a wpsr involution and Π fixes σ iff $k_{1}=k_{2}=0$. In fact, Case 2 is the reverse operation of Case 1 . We state this as a theorem.

Theorem 3.2. The map Π defined on $\left(M_{n}, w\right)$ is a wpsr involution. Moreover, a striped skew shape of shape λ / μ is fixed by Π iff $\mu=00 \cdots 0$ and it has no stripes.

4. Orthogonality of $U_{n}^{(a)}(x)$

We first interpret $U_{n}^{(a)}(x)$ as $\left(T_{n}, w\right)$ defined in Section 2. For each pair of integers (m, n), we define a set $O_{m, n}$ as the set of all pairs of sequences (σ, τ), where σ is a multi-permutation of length m of $1,-1, a,-a$ and τ is a multi-permutation of length n of $1,-1, a,-a$. We put a weight w on $O_{m, n}$. Let (σ, τ) be an element of $O_{m, n}$, where $\sigma=\sigma_{0} \sigma_{1} \cdots \sigma_{m-1}, \tau=\tau_{0} \tau_{1} \cdots \tau_{n-1}$. The weight of (σ, τ) is defined as

$$
w(\sigma, \tau)=\prod_{i=0}^{m-1} w\left(\sigma_{i}\right) \prod_{j=0}^{n-1} w\left(\tau_{j}\right),
$$

where $w\left(\sigma_{i}\right)$ and $w\left(\tau_{j}\right)$ are defined as follows:

$$
\begin{aligned}
& w\left(\sigma_{i}\right)= \begin{cases}a, & \text { if } \sigma_{i}=a, \\
q^{k}, & \text { if } \sigma_{i}=1 \text { and } k \text { is the number of occurrences of } a \text { before } \sigma_{i}, \\
-a q^{i}, & \text { if } \sigma_{i}=-a, \\
-q^{i}, & \text { if } \sigma_{i}=-1, \quad \sigma_{i-1} \neq-a, \\
-1, & \text { if } \sigma_{i}=-1, \quad \sigma_{i-1}=-a .\end{cases} \\
& w\left(\tau_{j}\right)= \begin{cases}a, & \text { if } \tau_{j}=a, \\
q^{k}, & \text { if } \tau_{j}=1 \text { and } k \text { is the number of occurrences of } a \text { before } \sigma \text { and } \tau_{j}, \\
-a q^{j}, & \text { if } \tau_{j}=-a, \\
-q^{j}, & \text { if } \tau_{j}=-1, \quad \tau_{j-1} \neq-a, \\
-1, & \text { if } \tau_{j}=-1, \quad \tau_{j-1}=-a .\end{cases}
\end{aligned}
$$

Note that the definition of $w\left(\sigma_{i}\right)$ and that of $w\left(\tau_{j}\right)$ are the same except for the second case.

From equation (4) and Theorem 3.2, we know that the nth moment

$$
L\left(x^{n}\right)=\sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} a^{k}
$$

is interpreted as the weight of the sequences of $\{1, a\}$ of length n, where the weight contains an appropriate factor of q. So it is clear that

$$
\begin{equation*}
L\left(U_{m}^{(a)}(x) U_{n}^{(a)}(x)\right)=\sum_{(\sigma, \tau) \in O_{m, n}} w(\sigma, \tau) . \tag{6}
\end{equation*}
$$

We now prove the orthogonality of $\left\{U_{n}^{(a)}(x)\right\}_{n>0}$ by finding appropriate involutions in $O_{m, n}$. In fact, we will use two involutions Γ and Ψ defined below to accomplish it.

A wpsr involution Γ on the σ part:
Assume that $\sigma_{i}=1$ or -1 and $\sigma_{j} \neq \pm 1$ for all $j<i$. There are four cases:
(1) $\sigma_{i}=-1$ and $\sigma_{i-1}=-a$: set $\sigma_{i}=1$ and move each a to the left of σ_{i} to the right by 1 unit, by interchanging adjacent a and $-a$.
(2) $\sigma_{i}=-1$ and $\sigma_{i-1}=a$: set $\sigma_{i}=1$ and move each $-a$ to the left of σ_{i} to the right by 1 unit, by interchanging adjacent a and $-a$.
(3) $\sigma_{i}=1$ and $\sigma_{1}=-a$: set $\sigma_{i}=-1$ and move each a to the left of σ_{i} to the left by 1 unit, by interchanging adjacent a and $-a$.
(4) $\sigma_{i}=1$ and $\sigma_{1}=a$: set $\sigma_{i}=-1$ and move each $-a$ to the left of σ_{i} to the left by 1 unit, by interchanging adjacent a and $-a$.
It can be shown that these operations define a wpsr involution Γ. An element (σ, τ) is fixed under Γ if σ contains neither 1 nor -1 .

Now we define another wpsr involution Ψ on the fixed set. Let k be the number of 1 's in τ. If $k<m$, then changing the sign of σ_{k} is a wpsr involution. Therefore the final fixed set consists of (σ, τ), where σ consists of only a or $-a$ and τ contains at least m 1 's. Hence, if $m>n$, then the fixed set is the empty set, which explains the orthogonality of $U_{m}^{(a)}(x)$ and $U_{n}^{(a)}(x)$ for $m \neq n$. For $m=n$, the fixed set consists of (σ, τ), where σ consists of only a or $-a$ and τ of only 1 's. The weight of this set will be

$$
\prod_{i=0}^{n-1}\left(a q^{n}-a q^{i}\right)=(-a)^{n} q^{n(n-1) / 2} \prod_{i=1}^{n}\left(1-q^{i}\right) .
$$

We next interpret $U_{n}^{(a)}(x)$ as $\left(T_{n}, w^{\prime}\right)$ defined in Section 2. In this case, the weight of the set $O_{m, n}$ defined at the beginning of this section should be changed. The change is made to only -1 . As in $\left(T_{n}, w\right)$, the weight of -1 will be $-q^{k}$ if k is the number of
occurrences of either a or 1 or 1 or -1 to the left of it. The orthogonality is easier to explain. Changing the sign of first ± 1 in σ is a wpsr involution. The fixed set is the same as before and we can apply the $w p s r$ involution Ψ on the fixed set to obtain the orthogonality for $m \neq n$.

5. Remarks

Recently, de Médicis, Stanton and White [3] interpreted q-Charlier polynomials combinatorially. Among other things, they interpreted the linearization coefficients

$$
L\left(C_{n_{1}}(x, a ; q) C_{n_{2}}(x, a ; q) C_{n_{3}}(x, a ; q)\right)
$$

combinatorially. Since it is known that

$$
C_{n}(x, a ; q)=a^{n} U_{n}^{(-1 / a(1-q))}\left(\frac{x}{a}-\frac{1}{a(1-q)}\right)
$$

we may expect that their approach will work for $U_{n}^{(a)}(x)$'s. But rescaling seems to make the problem very different.

The linearization coefficients $L\left(C_{n_{1}}(x, a ; q) C_{n_{2}}(x, a ; q)\right.$ in [3] can be used to show that $L\left(U_{n_{1}}^{(a)}(x) U_{n_{2}}^{(a)}(x) U_{n_{3}}^{(a)}(x)\right)$ is equal to

$$
\begin{aligned}
& (q)_{n_{1}}^{n_{1}+n_{2}-n_{3}} \sum_{m=0}^{n_{m}}(-a)^{n_{3}+m}\left[\begin{array}{c}
n_{2} \\
n_{1}+n_{2}-n_{3}-m
\end{array}\right]_{q}\left[\begin{array}{c}
n_{3} \\
n_{3}-n_{2}+m
\end{array}\right]_{q} \\
& \quad \times \sum_{k=0}^{\min \left(m, n_{1}+n_{2}-n_{3}-m\right)} q^{N}(-1)^{n_{1}+n_{2}-n_{3}-m-k}(q)_{n_{2}-k}\left[\begin{array}{c}
n_{1}+n_{2}-n_{3}-m \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
n_{3}-n_{2}+m \\
m-k
\end{array}\right]_{q},
\end{aligned}
$$

where

$$
N=\binom{n_{1}}{2}+\binom{n_{2}}{2}+\binom{k+1}{2}+\left(n_{3}-n_{1}+m\right)\left(n_{3}-n_{2}+k\right)+m\left(m-n_{1}-k\right) .
$$

Combinatorial interpretation of the above expression, similar to that in [3], will be interesting.

Acknowledgement

This work was partially supported by KOSEF: 941-0100-017-2 and KOSEF-RCAA.

References

1. W. A. Al-Salam and L. Carlitz, Some orthogonal q-polynomials, Math. Nachr., 30 (1965), 47-61.
2. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
3. A. de Médicis, D. Stanton and D. White, The combinatorics of q-Charlier polynomials, J. Combin. Theory, Ser. A, 69 (1995), 87-114.
4. M. Ismail, D. Stanton and G. Viennot, The combinatorics of q-Hermite polynomials and the Askey-Wilson integral, Europ. J. Combin., 8 (1987), 379-392.
5. J. Labelle and Y. N. Yeh, The combinatorics of Laguerre, Charlier and Hermite polynomials, Stud. Appl. Math., 80 (1989), 25-36.
6. G. Viennot, Une Théorie Combinatoire des Polynômes Orthogonaux, Lecture Notes, Publications du LACIM, UQAM, Montréal, 1983.
7. G. Viennot, Combinatorial theory for general orthogonal polynomials with extensions and applications, in: Polynômes Orthogonaux et Applications, Lecture Notes in Mathematics, vol. 1171, Springer-Verlag, Berlin, 1985, pp. 139-157.

Received 13 January 1995 and accepted 19 April 1996
Dongsu Kim
Department of Mathematics,
Korea Advanced Institute of Science and Technology,

