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Recall that a Hausdorff space X is said to be Namioka if for every compact (Hausdorff)
space Y and every metric space Z , every separately continuous function f : X × Y → Z is
continuous on D × Y for some dense Gδ subset D of X . It is well known that in the class
of all metrizable spaces, Namioka and Baire spaces coincide (Saint-Raymond, 1983) [23].
Further it is known that every completely regular Namioka space is Baire and that every
separable Baire space is Namioka (Saint-Raymond, 1983) [23].
In our paper we study spaces X , we call them weakly Namioka, for which the conclusion
of the theorem for Namioka spaces holds provided that the assumption of compactness of
Y is replaced by second countability of Y . We will prove that in the class of all completely
regular separable spaces and in the class of all perfectly normal spaces, X is Baire if and
only if it is weakly Namioka.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

All the spaces considered in this paper are assumed to be Hausdorff. For spaces X , Y , and Z , we say a function f : X ×
Y → Z is continuous with respect to x if f |X×{y} is continuous for every y ∈ Y . Similarly, f is continuous with respect to y if
f |{x}×Y is continuous for every x ∈ X . We say f is separately continuous if f is continuous with respect to x and continuous
with respect to y. In [23], J. Saint-Raymond shows that every completely regular Namioka space is Baire and that every
metrizable or separable Baire space is Namioka, thus providing a characterization of Baire spaces in terms of Namioka
spaces. In this paper, we will be concerned with finding a similar characterization of Baire spaces using weakly Namioka
spaces.

2. Main results

Let us start with the following:

Definition 1. A space X is weakly Namioka if for every second countable space Y and every metric space Z , every separately
continuous function f : X × Y → Z is continuous on D × Y for some dense Gδ subset D of X .

In [5], J. Calbrix and J.-P. Troallic show that given a sequence of open subsets (Un)n∈N of Y and a metric space M , there
is a residual set R in X such that the separately continuous function f : X × Y → M is continuous at each point of R × Q ,
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where Q is the set of points y ∈ Y admitting a subsequence of (Un)n∈N as a neighborhood basis. In [4,12,14–17,20], it is
shown that for a topological space X , a second countable space Y , a metric space M , and f : X × Y → M such that f is
continuous with respect to y and f |X×{y} is continuous for every y ∈ D for some D dense in Y , there is a residual set A in
X such that f is continuous on A × Y . Here we offer a new proof of this result:

Lemma 2.1. Let Y be second countable, (M,d) be metric and f : X × Y → M be such that f is continuous with respect to y and
f |X×{y} is continuous for every y ∈ D for some D dense in Y . There is then a residual set A in X such that f is continuous on A × Y .

Proof. Without loss of generality, assume X is of second category, for otherwise there is nothing to prove. In fact, if X is of
first category then the set A can possibly be a priori empty. Assume M1 = {x ∈ X: ∃y ∈ Y , f is discontinuous at (x, y)} is
of second category in X .

For each x ∈ M1, let yx be an element of Y such that f is discontinuous at (x, yx). Let ε > 0 be such that the set
M2 = {x ∈ M1: for any open neighborhood O of (x, yx) in X × Y , there exists (u, v) ∈ O such that d( f (x, yx), f (u, v)) � ε}
is of second category in X .

Let B1, B2, B3, . . . be a countable base for Y . Now, let n be an index of Bn such that the set

(∗) M3 = {x ∈ M2: yx ∈ Bn and ∀y ∈ Bn,d( f (x, yx), f (x, y)) < ε
6 }

is of second category in X . Let y1 ∈ D ∩ Bn and let U be an open set of X such that U ∩ M3 is dense in U . Let x0 ∈ U ∩ M3
and let V be an open subset of U containing x0 such that for every x ∈ V ,

(∗∗) d( f (x0, y1), f (x, y1)) < ε
6 .

There is a point (a,b) ∈ V × Bn , such that

(∗∗∗) d( f (a,b), f (x0, yx0)) � ε .

Let G be an open subset of Bn , containing b such that for every y ∈ G ,

(∗v) d( f (a,b), f (a, y)) < ε
6 .

Let c ∈ G ∩ D . Finally, let W be an open subset of V containing a such that for every x ∈ W ,

(v) d( f (a, c), f (x, c)) < ε
6 .

Let x1 ∈ W ∩ M3. Now:

d( f (a,b), f (a, c)) < ε
6 , by (∗v),

d( f (a, c), f (x1, c)) < ε
6 , by (v),

d( f (x1, c), f (x1, yx1 )) < ε
6 , by (∗),

d( f (x1, yx1), f (x1, y1)) < ε
6 , by (∗),

d( f (x1, y1), f (x0, y1)) < ε
6 , by (∗∗),

d( f (x0, y1), f (x0, yx0)) < ε
6 , by (∗).

Hence: d( f (a,b), f (x0, yx0)) < ε , contradicting (∗∗∗). �
From either of the above mentioned results comes the following theorem as an easy corollary:

Theorem 2.2. Baire spaces are weakly Namioka.

All that remains, then, in finding a characterization of Baire spaces using weakly Namioka spaces is to determine under
what conditions the converse is true. We turn to this task now. The proof of the forthcoming theorem is an adaptation of
the proof of Theorem 3 of [23].

Theorem 2.3. Completely regular, separable, weakly Namioka spaces are Baire.

Proof. Let X be a completely regular, separable space and assume that X is not Baire. Then there exists a nonempty open
set K in X such that K ⊂ ⋃

n∈γ Kn , where γ is a countable indexing set and Kn is closed and nowhere dense for each n ∈ γ .
Let S be a countable dense subset of X . Then for any n ∈ γ , S \ Kn is dense in X . For each n ∈ γ choose an indexing set γn

such that S \ Kn = {sn,i: i ∈ γn} and write Sn = S \ Kn = {sn,i: i ∈ γn}.
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Choose n ∈ γ and let Φ be a set of continuous functions ϕ : X → [0,1] such that ϕ(Kn) ⊂ {0}, ϕ(sn,i) = 1 for some
sn,i ∈ Sn , and such that ϕ(x) 	= 0 ⇒ ϕ′(x) = 0 for all x ∈ X and any ϕ,ϕ′ ∈ Φ , ϕ 	= ϕ′ (note that while for every ϕ ∈ Φ there
is a corresponding sn,i ∈ Sn such that ϕ(sn,i) = 1, the reverse is not true). Then for each ϕ ∈ Φ the set Aϕ = {x: ϕ(x) 	= 0}
is nonempty and Aϕ ∩ Aϕ′ = ∅ if ϕ 	= ϕ′ (note that supp(ϕ) is the closure of Aϕ ). Let PΦ = {Aϕ : ϕ ∈ Φ} be the set of all
Aϕ ’s for Φ . Let Fn be the set of all Φ ’s so defined (for fixed n ∈ γ ), and take the partial order ≺ on Fn to be Φ ≺ Φ ′ if
PΦ ⊂ PΦ ′ . Take a simply ordered subset H of Fn , and let H∗ = ⋃

Φ∈H Φ . Then for any ϕ ∈ H∗ there exists sn,i ∈ Sn such
that ϕ(Kn) ⊂ {0} and ϕ(sn,i) = 1.

Seeking contradiction, assume Aϕ ∩ Aϕ′ 	= ∅ for some ϕ,ϕ′ ∈ H∗ , ϕ 	= ϕ′ . There exists Φ,Φ ′ ∈ H such that ϕ ∈ Φ and
ϕ′ ∈ Φ ′ . Since H is simply ordered, it follows that Φ ≺ Φ ′ or Φ ′ ≺ Φ . Without loss of generality, assume Φ ≺ Φ ′ . Then
PΦ ⊂ PΦ ′ , so Aϕ = Aϕ′′ for some ϕ′′ ∈ Φ ′ . But then Aϕ′′ ∩ Aϕ′ 	= ∅, a contradiction. So for all x ∈ X , ϕ(x) 	= 0 ⇒ ϕ′(x) = 0 if
ϕ 	= ϕ′ . Thus H∗ ∈ Fn , so H∗ is an upper bound of H in Fn . Zorn’s Lemma therefore guarantees the existence of a maximal
element of Fn . For each n, then, take Φn to be the maximal element of Fn . Note that each Φn is countable since it must be
no larger than Sn .

Seeking contradiction, assume now that for some n ∈ γ , {x ∈ X: ∃ϕ ∈ Φn,ϕ(x) 	= 0} is not dense in X . Then there exists
an open set U in X such that for all ϕ ∈ Φn , ϕ(U ) ⊂ {0}. Since Sn is dense in X , there exists sn,u ∈ Sn such that sn,u ∈ U .
Then since X is completely regular, there exists continuous g : X → [0,1] such that g(sn,u) = 1 and g((X \ U ) ∪ Kn) ⊂ {0}.
But Φn ≺ Φn ∪ {g}, contradicting the maximality of Φn . So for all n ∈ γ , {x ∈ X: ∃ϕ ∈ Φn,ϕ(x) 	= 0} is dense in X .

Let Φn be given the discrete topology. Since Φn and [0,1] are both locally compact and Hausdorff, their product Φn ×
[0,1] is locally compact and Hausdorff, and so admits a one-point compactification. For each n ∈ γ , let Yn be the one-point
compactification of Φn × [0,1] where λn is the point at infinity. Let Y = ∐

n∈γ Yn be the disjoint union equipped with the
coherent topology. Define f : X × Y → [0,1] by

f (x, y) =
{

f (x,ϕ, t) = (2t)(ϕ(x))
t2+(ϕ(x))2 t 	= 0 and ∀n ∈ γ , y 	= λn,

0 otherwise.

To show the separate continuity of f , first fix y0 ∈ Y . If y0 = (ϕ,0) or y0 = λn for some n ∈ γ , then f (x, y0) = 0 for
all x ∈ X . So f |X×{y0} ⊂ {0} and is thus continuous. If y0 	= (ϕ,0) and y0 	= λn for all n ∈ γ , then f (x, y0) = f (x,ϕ, t) =
(2t)(ϕ(x))

t2+(ϕ(x))2 for some fixed ϕ and t , so f |X×{y0} is continuous by the continuity of ϕ . Therefore f |X×{y} is continuous for any

fixed y ∈ Y .
Now fix x0 ∈ X . Take an open set (a,b) in [0,1] (or take (a,1] without loss of generality). For each n ∈ γ , f −1(a,b) ∩

{x0} × Yn = {(x0,ϕ, t): (2t)(ϕ(x0))

t2+(ϕ(x0))2 ∈ (a,b)} for a particular ϕ ∈ Φn (since ϕ(x) 	= 0 ⇒ ϕ′(x) 	= 0 if ϕ 	= ϕ′). Thus f −1(a,b) ∩
{x0} × Yn is open in {x0}× Yn since (2t)(ϕ(x0))

t2+(ϕ(x0))2 is continuous as a function of t (t 	= 0 since 0 /∈ (a,b)). So f −1(a,b)∩{x0} × Y

is open in {x0} × Y . Now take an open set [0,a) in [0,1]. For each n ∈ γ , f −1[0,a) contains (x0, λn) and there is at most
one ϕ in Φn such that for some t , (x0,ϕ, t) /∈ f −1[0,a). If there is no such ϕ in Φn , then f −1[0,a)∩ {x0} × Yn = ∅. If such a
ϕ does exist in Φn , then by the continuity of (2t)(ϕ(x0))

t2+(ϕ(x0))2 in terms of t (for fixed x0 and ϕ), it follows that for our particular

ϕ ∈ Φn the set {t ∈ [0,1]: (x0,ϕ, t) /∈ f −1[0,a)} is closed in [0,1], and so is compact. Thus ({x0} × Yn) \ f −1[0,a) is closed
and compact when restricted to {x0}× (Φn × [0,1]), and (x0, λn) ∈ f −1[0,a) for each n ∈ γ . So f −1[0,a)∩ {x0} × Yn is open
in {x0} × Yn for each n ∈ γ , and therefore f −1[0,a) ∩ {x0} × Y is open in {x0} × Y . It follows that f |{x}×Y is continuous for
any fixed x ∈ X , and the separate continuity of f is established.

We now demonstrate that for any dense Gδ subset D of X , f is not continuous on D × Y . To do so it suffices to show
that for each x ∈ K , there exists y ∈ Y such that f is discontinuous at (x, y). Choose xK ∈ K . Then for some n ∈ γ , xK ∈ Kn .
Since {x ∈ X: ∃ϕ ∈ Φn,ϕ(x) 	= 0} is dense in X , there is a directed set A and a net (xα)α∈A in {x ∈ X: ∃ϕ ∈ Φn,ϕ(x) 	= 0}
such that xα → xK . Since each xα is in {x ∈ X: ∃ϕ ∈ Φn,ϕ(x) 	= 0} there exists ϕ′ ∈ Fn and r ∈ (0,1] such that ϕ′(xα) = r.
Let yα = (ϕ′, r) for each α ∈ A and let pα = (xα, yα). Then (yα)α∈A is a net in Yn such that for each α ∈ A, f (pα) =
f (xα, yα) = f (xα,ϕ′, r) = (2r)(ϕ′(xα))

r2+(ϕ′(xα))2 = (2r)(r)
r2+r2 = 1. Since (yα) is a net contained in the compact subspace Yn of Y , there is

a subnet ( ỹβ)β∈B of (yα) that converges to some point y ∈ Yn . So then (x̃β)β∈B is a subnet of (xα)α∈A and thus x̃β → xK .
Let p̃β = (x̃β, ỹβ). Since (x̃β) → xK in X and ( ỹβ) → y in Y , p̃β → (xK , y) in X × Y . But since xK ∈ Kn (and y ∈ Yn) and
(p̃β)β∈B is a subnet of (pα)α∈A , we have

f (xK , y) =
{

f (xK ,ϕ, t) = (2t)(ϕ(xK ))

t2+(ϕ(xK ))2 = 0
t2 = 0 t 	= 0 and ∀n ∈ γ , y 	= λn,

0 otherwise,

and f (p̃β) = 1 for every β ∈ B . So p̃β → (xK , y) in X × Y but f (p̃β) � f (xK , y) in [0,1]. Thus f is discontinuous at (xK , y),
and it follows that X is not weakly Namioka. �
Theorem 2.4. Perfectly normal weakly Namioka spaces are Baire.

Proof. Let X be a perfectly normal space and assume that X is not a Baire space. There then exists an open set U in X
that is of first category and of type Fσ . Let Y be a second countable completely regular space with a non-isolated point y0.
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By Theorem 5, p. 1111 of [13], there exists a separately continuous f : X × Y → R whose set of points of discontinuity is
U × {y0}. It follows that X is not weakly Namioka. �
Theorem 2.5 (Main Theorem). Let X be either a completely regular separable space or a perfectly normal space. Then X is Baire if and
only if X is weakly Namioka.

Proof. Follows immediately from Theorems 2.2, 2.3, and 2.4. �
Remark 1. Since metrizable spaces are perfectly normal, weakly Namioka and Baire spaces coincide in the class of metrizable
spaces.

Remark 2. Observe that each proof from this section remains valid if the arbitrary metric space in our definition of a weakly
Namioka space is taken to be R. Thus, among completely regular separable spaces and among perfectly normal spaces, these
definitions give the same class of spaces. An analogous result for Namioka spaces — that among Baire spaces, substituting
R for the arbitrary metric space in the definition of Namioka spaces gives the same class of spaces — is known from [3].

Recall that for topological spaces X and Y , a function f : X → Y is said to be quasi-continuous at the point x if for every
open set U in X containing x and for every open set V in Y containing f (x) there exists an open, non-empty subset U ′ of
U such that f (U ′) ⊂ V . The function is quasi-continuous if it is quasi-continuous at all x ∈ X . We say that f : X × Y → Z is
quasi-continuous with respect to x if f |X×{y} is quasi-continuous for all y ∈ Y and that f is quasi-continuous with respect to y
if f |{x}×Y is quasi-continuous for all x ∈ X . For a topological space X , second countable space Y , and compact metrizable
space Z , T. Nagamizu shows in [18] that if f : X × Y → Z is continuous with respect to y and f |X×{y} quasi-continuous for
each y from a dense set E in Y , then there exists a residual subset A of X such that f is (jointly) continuous on A × Y .
Note that Nagamizu’s result resembles Namioka’s famous theorem in [19], but with Y being second countable. Given the
relationship established between Namioka and weakly Namioka spaces, it is thus natural to wonder for what class of spaces
the assumption of separate continuity in Namioka’s theorem can be weakened.

Question 1. Let Y be locally compact and σ -compact, and let Z be an arbitrary pseudo-metric space. Determine the class
X such that for any X in X and any function f : X × Y → Z which is quasi-continuous with respect to x and continuous
with respect to y, there is a dense Gδ subset A of X such that f is continuous on A × Y .

3. Examples

Recall that a network in a space X is a collection of subsets ρ such that given any open subset U of X and x ∈ U , there
is a member P of ρ such that x ∈ P ⊂ U .

Example 1. In [24, Remarque b, p. 241] M. Talagrand shows that the function f : [0,1] × C p([0,1], [0,1]) → [0,1] given by
f (x, y) = y(x) is separately continuous and discontinuous at every point of X × Y . It can be shown that Y = C p([0,1], [0,1]),
the function space with the topology of pointwise convergence, is completely regular with a countable network, and as such
is hereditarily Lindelof and hereditarily separable (see R. Engelking [8], Exercise 3.4.H, p. 165 and Theorem 2.6.4, p. 107).

Example 2. Answering questions due to A. Alexiewicz, W. Orlicz [1] and J.P. Christensen [6] pertaining to the necessity of the
compactness assumption on the second factor Y in the theorem for Namioka spaces, J.B. Brown ([21], p. 313) constructs a
separately continuous real-valued function defined on the Cartesian product of the closed interval [0,1] and the topological
sum of c many intervals — a complete metric space — such that the conclusion of the theorem for Namioka spaces fails.

Answering Problem C, p. 203 of [11], the first-named author [22] refines Brown’s techniques (“two-dimensional” ex-
ample) by constructing a separately continuous real-valued function f defined on the Cartesian product of two complete
metric spaces X , Y such that the (in fact, dense Gδ) set C( f ) of points of (joint) continuity fails to contain either A × Y or
X × B for any dense Gδ-set A in X or any dense Gδ set B in Y . In other words, the condition of the theorem for Namioka
spaces fails “in both directions”.

Recall [9, Chapter 4] that a point x ∈ X is called a P-point if any Gδ set containing x is a neighborhood of x, and a space
X is called a P-space if each x ∈ X is a P-point.

The classical example of a discontinuous separately continuous function sp :R×R→R is defined by:

sp(x, y) =
{ 2xy

x2+y2 (x, y) 	= (0,0),

0 (x, y) = (0,0).

One may think that any non-discrete completely regular (Hausdorff) spaces X , Y admit a discontinuous, separately contin-
uous function f : X × Y →R, but this is not true. In fact:
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Proposition 3.1. ([11, Theorem 6.14, p. 196]) Let X , Y be completely regular spaces, x0 ∈ X be a P-point and y0 ∈ Y have a separable
neighborhood. If f : X × Y → R is separately continuous, then f is continuous at (x0, y0).

Hence one must impose certain restrictions on the nature of non-isolated points in X and Y to guarantee the existence
of a separately continuous function. Following [2] one may ask the following natural questions: Suppose X and Y are
completely regular spaces with non-isolated Gδ points x ∈ X and y ∈ Y . Is there a separately continuous function f : X ×Y →
R that is discontinuous at (x, y)? Can such a function f be chosen of the form f = sp ◦ (g × h) for suitable continuous
functions g : X →R and h : Y →R?

It is shown in [2] that this cannot be done in ZFC. Under Martin’s Axiom these questions have negative answers. On
the other hand there are models of ZFC (e.g., Near Coherence of P-Filters) in which the answers to these questions are
affirmative. See [2] for more details.

We now generalize Proposition 3.1:

Theorem 3.2. Let x0 ∈ X be a P-point, y0 ∈ Y have a separable neighborhood, and Z be regular. If f : X × Y → Z is separately
continuous, then f is continuous at (x0, y0).

Proof. Assume x0 ∈ X , y0 ∈ Y , Z , and f : X × Y → Z are as above. Let S be a separable neighborhood of y0, D a countable
dense subset of S , and V an open neighborhood of f (x0, y0) in Z . By the regularity of Z , we can choose an open V ∗ in
Z such that f (x0, y0) ∈ V ∗ ⊂ cl(V ∗) ⊂ V , where cl(V ∗) denotes the closure of V ∗ in Z . Using continuity with respect to y,
we may assume without loss of generality that f ({x0} × S) ⊂ V ∗ . By continuity with respect to x we have for any y ∈ D
some U y open in X such that x0 ∈ U y and f (U y × {y}) ⊂ V ∗ . Since x0 is a P-point, there exists an open set U ⊂ ⋂

y∈D U y
containing x0. As f (U y ×{y}) ⊂ V ∗ and U ⊂ U y for each y ∈ D , we have f (U × D) ⊂ V ∗ . Since f is continuous with respect
to y, it follows that f (U × S) ⊂ f (U × cl(D)) ⊂ cl(V ∗) ⊂ V . Therefore f is continuous at (x0, y0). �
Remark 3. Example 6.16 of [11] shows that the local separability condition on Y is necessary to Proposition 3.1 and Theo-
rem 3.2.

Example 3. In Example 3.2 of [10], G. Gruenhage and D. Lutzer construct a Lindelof, hereditarily paracompact, linearly
ordered (thus Hausdorff and completely normal) P-space that is not a Baire space. By Theorem 3.2, this space is weakly
Namioka.

Following [7], we call a space X ultradisconnected if it is crowded (has no isolated points) and if every two disjoint
crowded subsets of X have disjoint closures.

Example 4. In Example 3.3 of [7], E.K. van Douwen constructs a countable (thus separable), regular (and Hausdorff), ul-
tradisconnected space X . As an ultradisconnected space, X has no isolated points, and so is the countable union of closed
nowhere dense sets (its single points) and is therefore not a Baire space. For any second countable space Y , the product
X × Y is first countable. Ultradisconnected spaces are extremally disconnected [7], so any sequence (x, y)n in X × Y con-
verging to (x, y) must be eventually constant in X . Thus for any metric space Z and any function f : X × Y → Z continuous
with respect to y, the image of (x, y)n under f must converge to f (x, y). It follows that any separately continuous function
X × Y → Z is continuous and so X is weakly Namioka.
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