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Abstract

We study two problems in Nielsen fixed point theory using Artin’s braid groups and the Nielsen–
Thurston classification of surface homeomorphisms up to isotopy. The first is that of distinguishing
Reidemeister classes of free group automorphisms realized by a braid (and thus induced by
homeomorphisms of the 2-disc relative to a finite invariant set), for which we give a necessary and
sufficient condition in terms of a conjugacy problem in the braid group. Consequently, one may use
any braid conjugacy invariant (those of Garside’s algorithm, linking numbers, topological entropy,
etc.) and any link invariant (Alexander polynomial, splittability, etc.) to distinguish Reidemeister
classes, giving much stronger criteria than those already known.

The second problem is that of deciding when two fixed points of a surface homeomorphism belong
to the same Nielsen fixed point class. We give two criteria, the first in terms of certain reducing curves
which can be checked using the Bestvina–Handel algorithm, the second using the multi-variable
Alexander polynomial of a link associated with the suspension of the homeomorphism.

Finally we consider generalizations of Sharkovskii’s theorem on the coexistence of periodic orbits
of interval maps to homeomorphisms of the 2-disc. We show that for eachn� 5 there exists a pseudo-
Anosov orientation-preserving homeomorphism of the 2-disc relative to a periodic orbit of periodn

that does not have periodic orbits of all periods, with an analogous result for the 2-sphere. 2002
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1. Introduction

Let f :X →X be a continuous self-map of a compact, connected polyhedronX, and let
Fix(f )= {x ∈X | f (x)= x} denote the set offixed pointsof f . The Lefschetz–Hopf fixed
point theorem states that if theLefschetz numberL(f ) of f is non-zero then every map
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homotopic tof has a fixed point [9]. As well as the existence of fixed points, one is also
interested in finding a lower bound for the cardinality of Fix(f ). Such a lower bound is
given by MF[f ], the minimum number of fixed points amongst all maps homotopic tof ,
but in general it is difficult to calculate explicitly.

Given a fixed point off , a second interesting problem is (loosely speaking) to
understand how it “interacts” with the topology ofX and with other fixed points. We shall
explain presently what we mean by this, but the reader should have in mind that within
the framework of this paper, a fixed point will be interpreted as a component of a link in
a 3-dimensional manifold formed by the suspension of a surface homeomorphism. Apart
from its intrinsic interest, this interaction may be used to understand coexistence properties
and forcing relations of periodic orbits off .

These two problems are related to Nielsen fixed point theory [27]. Two fixed points
belong to the samefixed point classof f if there exists an arcα joining them such that
f (α) is homotopic toα keeping endpoints fixed during the homotopy. Combining this
with the notion of fixed point index leads to the definition of theNielsen numberN(f )

of f , a homotopy invariant which indeed gives a lower bound for MF[f ].
In order to computeN(f ), one must be able to decide whether two fixed points belong

to the same fixed point class. Reidemeister showed that this geometric problem could be
recast in an algebraic context. Letϕ :G → G be an endomorphism of a groupG. Then
u,v ∈ G are said to beReidemeister equivalentor ϕ-conjugate, written u ∼R v, if there
existsw ∈G such thatv = ϕ(w) ·u ·w−1. Let [u] denote theReidemeisteror ϕ-conjugacy
classof u. This leads to the problem ofdistinguishing Reidemeister classes, i.e., deciding
whether two elements ofG belong to the same Reidemeister class or not. Since two
Reidemeister-equivalent elements ofG abelianize (see Section 2.3 for a precise definition)
to the same element,abelianizationgives a simple criterion to distinguish Reidemeister
classes. However, a measure of the difficulty of the problem is that this is one of the
few effective criteria. We will describe the relationship between fixed point classes and
Reidemeister classes in Section 2.2, but briefly, one interpretsϕ as the endomorphismfπ
induced byf on the fundamental groupπ1(X) of X. One associates a Reidemeister class,
or ‘coordinate’ to each fixed point off . Then two fixed points belong to the same fixed
point class if and only if their coordinates coincide.

Reidemeister defined a homotopy invariantLR(f ) of f , theReidemeister trace, which
is an element of the Abelian group freely generated by thefπ -conjugacy classes. It is a
powerful generalization of the Lefschetz number: it can be calculated as an alternating
sum of traces on the cellular chain level, and it contains enough topological information
to be able (up to distinguishing Reidemeister classes) to calculateN(f ), and to extract
fixed point linking information. WhenX is a compact surface (which is the main subject
of interest in this paper), Fadell and Husseini showed thatLR(f ) can be computed using
Fox’s free differential calculus (again up to the problem of distinguishing Reidemeister
classes) just fromfπ [11].

From the point of view of topological dynamics, much attention has been focussed in
recent years on surface homeomorphisms [6,7,17,18,20,23,24,31].The central result in this
area is that of their classification up to isotopy, due to Nielsen and Thurston [12,35]. Given
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a homeomorphismf (relative to some given finitef -invariant subsetA) of a compact
surfaceM, perhaps with boundary∂M, there exists a canonical orThurston representative
g isotopic tof that is one of three types: finite order (sogn = IdM for somen ∈ N), pseudo-
Anosov, or reducible. In the third case, the surface may be cut up into subsurfaces along
a tubular neighbourhood of a finite,g-invariant set of mutually-disjoint curves (reducing
curves), and the restriction of an appropriate iterate ofg to each subsurface is either finite
order or pseudo-Anosov. Given the action off on the fundamental groupπ1(M \A), one
can effectively decide its Thurston type using an algorithm due to Bestvina and Handel [2],
for which there exists an implementation [22]. Pseudo-Anosov homeomorphisms have
many interesting dynamical properties: positive topological entropy (which is minimized
within the isotopy class), and infinitely many periodic orbits that are isotopy stable [1,21].
Further, they have ‘good’ Nielsen-theoretic properties: every fixed point not inA∪∂M has
non-zero fixed point index, and every fixed point in the interior Int(M) of M is unique in
its fixed point class. An important consequence of this is that iff is pseudo-Anosov then
its Reidemeister trace contains precisely all of the fixed point linking information.

This paper will be devoted to the study of two problems: that of distinguishing
Reidemeister classes for automorphisms of the free groupFn of rankn that are induced by
orientation-preservinghomeomorphisms of the 2-discD

2 relative to somen-point invariant
setA, and that of deciding when two fixed points of a surface homeomorphism belong to
the same fixed point class. As well as the Nielsen–Thurston classification, the main tool
that we shall use isArtin’s theory of braids[3]. Given a homeomorphismf : (D2,A) →
(D2,A), one can associate a braidβ (an element of Artin’s braid groupBn on n strings)
with A by fixing an isotopy between the identity andf ; the strings ofβ appear naturally
by followingA under the isotopy. This braid characterizes topologically the isotopy class
of f relative toA. Such a braid induces an automorphism ofFn

∼= π1(D
2 \ A) and of

the corresponding symmetric groupSn. The subgroupBn
n+1 of Bn+1 of elements whose

induced permutation stabilizes(n+1) will play an important rôle. Every fixed pointy /∈A

of f defines an element ofBn
n+1 (that associated withA ∪ {y}) which may be considered

as being obtained fromβ by adding an(n+ 1)st string. This string encodes precisely the
topological interaction (itslinking information) of the fixed point withA. We defineUn+1

to be the kernel of the homomorphismBn
n+1 → Bn defined geometrically by removing the

(n + 1)st string. In fact,Un+1 is isomorphic toFn, andBn
n+1 may be decomposed as a

semi-direct productFn �Bn. This latter fact can be interpreted geometrically using Artin’s
‘combing’ operation (see Section 2.1).

Let ϕ be an automorphism ofFn induced by a braidβ ∈ Bn. For each wordu ∈ Fn, we
give an explicit construction of a braidβu ∈Bn

n+1, theu-extension ofβ , which is precisely
(u,β) ∈ Fn �Bn (see Section 3.1). Then:

Theorem 1. Let ϕ be an automorphism ofFn induced by a braidβ ∈ Bn. Thenu,v ∈ Fn

areϕ-conjugate if and only ifβu andβv are conjugate inBn
n+1 via an element ofUn+1.

Consequently,any braid conjugacy invariant such as those obtained by applying
Garside’s algorithm (and its improvements), linking number properties, Thurston type, etc.,
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andany link invariant (because if two braids are conjugate then their closures represent
the same link inS3) such as the Alexander polynomial or splittability, may be used to
show thatβu andβv are not conjugate inBn+1, and thus that two wordsu,v ∈ Fn are not
ϕ-conjugate. This gives much stronger criteria to distinguish Reidemeister classes than
those already known. Notice that Garside’s algorithm, which in any case is exponential
in the number of strings, tells us whether the given braids are conjugate inBn+1; it says
nothing about whether the conjugacy is via an element ofUn+1. Indeed, in Section 3.4
we will give an explicit example of two braidsβu andβv which are conjugate inBn

n+1
but not via an element ofUn+1. The proof of this fact is in itself interesting because
it uses dynamical methods. In our setting, one could thus solve completely the problem
of distinguishing Reidemeister classes if one were able to decide whether two braids are
conjugate via an element ofUn+1.

Let f : (D2,A) → (D2,A) be an orientation-preserving homeomorphism, whereA

is an n-point, f -invariant set. Letβ ∈ Bn be the associated braid, and letϕ be the
induced free group automorphism. Givenu ∈ Fn, one constructs a homeomorphism
gu : (D2,A∪ {yu}) → (D2,A∪ {yu}), the topologicalu-extension off (see Section 3.2).
By construction,gu, considered as a homeomorphismgu : (D2,A)→ (D2,A), is isotopic
to f (and the induced automorphism ofπ1(D

2 \ A) is alsoϕ), yu ∈ Fix(gu) \A, and the
u-extensionβu ∈ Bn

n+1 of β is the braid associated withA ∪ {yu}. Further, if we consider
gu as a homeomorphism relative toA (and notA ∪ {yu}) then the coordinate ofyu is
equal to theϕ-conjugacy class[u] of u (see Proposition 12). By isotoping relative toA
andA∪ {yu} respectively, we may suppose thatf andgu are the Thurston representatives
within their isotopy classes. Their topological entropies can be calculated directly from
β andβu using the Bestvina–Handel algorithm, without knowingf andgu explicitly. In
Section 3.2 we prove the following result, which gives another criterion to distinguish
Reidemeister classes:

Corollary 2. Let ϕ,u and v be as in Theorem1, and let gu (respectively,gv) be a
topologicalu- (respectively,v-) extension off . If u andv areϕ-conjugate thengu andgv
are topologically conjugate. In particular, they have the same topological entropy.

If f is finite order then it is conjugate to a rigid rotation, and it has a simple fixed point
structure. Thus the dynamical analysis of a general Thurston representative may be reduced
to understanding what happens whenf is pseudo-Anosov relative toA. Givenu ∈ Fn, let
gu : (D2,A∪ {yu}) → (D2,A∪ {yu}) be a topologicalu-extension off . If [u] does not
appear in the final expression for the Reidemeister trace off then it follows from a result
of Smillie [7,24] that the topological entropy ofgu will be strictly greater than that off .

Consider the following extension to invariant sets of the definition of Nielsen equiv-
alence. Given a continuous self-mapf of a compact, connected polyhedronX, a finite
f -invariant subsetA⊆X and anf -invariant subsetC ⊆X, we say thatx ∈ Fix(f ) (or that
the pair(x, f )) is Nielsen equivalent toC relative toA if there exists an arcα : [0,1] →X

with α(0) = x, α(1) ∈ C, and such thatf (α) is homotopic toα relative toA by a homo-
topy {Ft }t∈[0,1] satisfyingFt (0)= x andFt (1) ∈ C for all t ∈ [0,1]. We also allow for the
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possibility thatA∩ (C ∪ {x}) �= ∅. In this case, we require moreover thatFt (s) /∈A for all
t ∈ [0,1] and alls ∈ (0,1), and if for i ∈ {0,1} there existsτ ∈ [0,1] such thatFτ (i) ∈ A

thenFt (i) ∈A for all t ∈ [0,1]. In Section 3.3 we prove the following result:

Theorem 3. Let f : (D2,A) → (D2,A) be an orientation-preserving, pseudo-Anosov
homeomorphism. Givenu ∈ Fn, let gu : (D2,A∪ {yu})→ (D2,A∪ {yu}) be a topological
u-extension off . Then, relative toA ∪ {yu}, gu is either pseudo-Anosov or reducible.
Further:

(a) gu is reducible relative toA ∪ {yu} if and only if, relative toA, yu is Nielsen
equivalent either to the boundary∂D2 of D2, or toA;

(b) let v ∈ Fn, and letgv : (D2,A∪ {yv})→ (D2,A∪ {yv}) be a topologicalv-extension
of f . If the pairs(yu, gu) and (yv, gv) are both Nielsen equivalent to∂D2 relative
to A thenu andv areϕ-conjugate if and only if the lengths of their abelianizations
are equal;

(c) if gu is pseudo-Anosov relative toA∪{yu} thenf has a fixed point whose coordinate
is [u] and whose fixed point class is of non-zero index if and only if the topological
entropies off andgu are equal.

In terms of the initial expression for the Reidemeister trace off obtained by applying
Fadell and Husseini’s formula, we may determine which Reidemeister classes correspond
to fixed point classes Nielsen equivalent to the boundary; there is at most one which is non-
empty, and we can find explicitly its coordinate and determine its index by abelianization.
Similarly, we may determine which Reidemeister classes correspond to fixed point classes
Nielsen equivalent toA. For the remaining classes (those which are neither Nielsen
equivalent to the boundary nor toA), we can decide effectively which of them are realized
by fixed points off . This does not mean though that we can determine exactly the final
expression for the Reidemeister trace off : the problem that we come up against is that of
determining the indices of the fixed point classes realized byf . One can in fact determine
the Reidemeister trace off completely by looking at the train track given by the Bestvina–
Handel algorithm.

Using the theory of generalized braid groups, it seems possible that results analogous
to those of Theorems 1 and 3, and Corollary 2 may hold in the case of surfaces of higher
genus. This is the subject of work in progress.

Let ϕ be an automorphism ofFn induced by an orientation-preserving homeomorphism
f : (D2,A) → (D2,A) belonging to an irreducible (i.e., not reducible) isotopy class. In
Corollary 16, we characterize those words that areϕ-conjugate to 1. For example, ifβ ∈Bn

realizesϕ thenw is ϕ-conjugate to 1 if and only if the link̂βw (the closure ofβw in S3)
is split. We also give an effective criterion that may be tested using the Bestvina–Handel
algorithm.

Now let M be a compact, connected surface, and letf : (M,A) → (M,A) be a
homeomorphism, whereA ⊆ Int(M) is a finite subset. In Sections 4 and 5, we consider
the geometric problem of deciding whether two fixed pointsy1, y2 ∈ Fix(f ) \A belong to
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the same fixed point class forf . We study this in relation to Nielsen–Thurston theory.
A simple closed curveC ⊆ Int(M) \ {y1, y2} will be said to beY -reducingif:

(a) Y = {y1, y2}, and C bounds a topological closed discD (which we shall call a
Y -reducing disc) such thatD ∩ (A∪ Y )= Y , and

(b) f (C) is homotopic toC relative toA∪ Y .
If it exists, one may exhibit such a curve by applying the Bestvina–Handel algorithm, for
any Y -reducing curve is also a reducing curve forf : (M,A∪ Y ) → (M,A∪ Y ). This
being the case, the two fixed points belong to the same fixed point class.

Theorem 4. Let f : (M,A) → (M,A) be a surface homeomorphism, and letY =
{y1, y2} ⊆ Fix(f ) \A.

(a) If there exists aY -reducing curve theny1 and y2 belong to the same fixed point
class.

(b) There exists aY -reducing curve if and only if there exists an arcγ joining y1 to y2

such thatf (γ ) is homotopic toγ relative toA ∪ Y . This being the case, one may
chooseγ to be a simple arc.

The condition in (b) is stronger than the condition needed for Nielsen equivalence (where
the homotopy is just carried out relative toA). Although the converse to (a) is in general
false, there are certain interesting cases where it holds (and which can be checked using
the Bestvina–Handel algorithm):

Theorem 5. Let f : (M,A) → (M,A) be a surface homeomorphism, and letY =
{y1, y2} ⊆ Fix(f ) \ A. Suppose that the isotopy class off : (M,A∪ Y ) → (M,A∪ Y)

is finite order or reducible. Theny1 andy2 belong to the same fixed point class if and only
if there exists aY -reducing curve.

It would be interesting to have a necessary and sufficient condition in the pseudo-Anosov
case.

In Section 5, we give necessary conditions on the Alexander polynomial of certain links
for the existence of aY -reducing curve for a orientation-preserving disc homeomorphism
f : (D2,A∪ Y ) → (D2,A∪ Y ), and for the two given fixed points to belong to the same
fixed point class. Given an isotopy{ft }t∈[0,1] between the identity andf , we construct
three braids: one,β ∈ Bn+2 associated withA ∪ {y1, y2}; and then fori = 1,2, αi ∈ Bn

n+1
associated withA ∪ {yi}. We denote their closures bŷβ , α̂1 and α̂2, respectively. Let
∆β̂(t, s, u) denote the 3-variable Alexander polynomial of the closed braidβ̂, where the
indeterminatest , s and u correspond to the components of the link̂β formed byA,
y1 andy2, respectively, and let∆α̂1(t, s) and∆α̂2(t, u) denote the 2-variable Alexander
polynomials of the closed braidŝα1 andα̂2, respectively, with the same convention fort , s
andu. Given two finitef -invariant setsP,Q, let Lk(P,Q; {ft}t∈[0,1]) denote the linking
number ofP aboutQ relative to the isotopy{ft }t∈[0,1].

Theorem 6. With the above notation:
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(a) suppose thaty1 and y2 belong to the same fixed point class forf : (D2,A) →
(D2,A). Then∆β̂(t, s,1)=∆β̂(t,1, s) and∆α̂1(t, s)=∆α̂2(t, s).

(b) suppose that there exists aY -reducing curve. Letm = Lk(y1, y2; {ft }t∈[0,1]) and
l = Lk(A,y1; {ft }t∈[0,1])= Lk(A,y2; {ft }t∈[0,1]).
Then

∆β̂(t, s, u)= (
t l (su)m − 1

) ·∆α̂1(t, su)= (
t l(su)m − 1

) ·∆α̂2(t, su).

These criteria may be used to show that two fixed points do not belong to the same
fixed point class, and to prove the nonexistence ofY -reducing curves, and they are
obviously stronger than just abelianizing the coordinates of the given fixed points. They
may be verified using a formula due to Burau (see Section 5), just by computing matrix
determinants, so are in general quick to check. The generalization of this result to the
characterization of Alexander polynomials associated with reducible isotopy classes is also
the subject of work in progress.

Finally in Section 6, we give an application of the fact that the Reidemeister trace of
f contains all of the fixed point information iff is pseudo-Anosov. It is motivated by
the following beautiful result in one-dimensional dynamics. Given a continuous maph of
the interval, a consequence of Sharkovskii’s theorem [33] is that ifh has a periodic orbit
of period 3 then it has periodic orbits of all periods, i.e., Per(h) = N (Per(h) denotes the
set of periods of periodic orbits ofh). One may ask whether an analogous result is true
for surface homeomorphisms. The specification of the period alone of a periodic orbit no
longer suffices to elicit a positive response to this question. For example, for eachn ∈ N,
the set of periods of a rigid rotation ofD

2 by 2π/n about its centre is{1, n}. We conclude
that we have to place some topological restrictions on the given periodic orbit. A suitable
restriction is that the isotopy class of the homeomorphism relative to the periodic orbitA is
pseudo-Anosov. If the genus of the surfaceM is zero and the homeomorphism preserves
orientation then the following results are known:

(i) If M = D2 and ifA is a periodic orbit of period 3 then Per(f )= N [17,30].
(ii) If M = D2 and if Card(A) = 3 or 4 then Per(f ) = N [18] (Card(A) denotes the

cardinality of the setA).
(iii) If M is the 2-sphereS2 and if Card(A) = 4 then Per(f ) = N [18,31]. The case

wheref is orientation-reversing was also treated in [31].
(iv) If M = S2 and if Card(A)= 5 then Per(f )= N [18].

But if M = D2 or S2 then for eachn� 7,n ∈ N, there exist ann-point setA⊆ Int(M) and
a pseudo-Anosov homeomorphismf relative toA such that Per(f ) �= N [31]. We resolve
the outstanding cases, answering questions posed in [18,31].

Theorem 7.
(a) For eachn� 5, n ∈ N, there exists a pseudo-Anosov homeomorphismf : (D2,A)→

(D2,A), whereA⊆ Int(D2) is a periodic orbit of periodn, such thatPer(f ) �= N.
(b) For eachn � 6, n ∈ N, there exist ann-point setB ⊆ S2 and a pseudo-Anosov

homeomorphismg : (S2,B)→ (S2,B) such thatPer(g) �= N.
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Conclusion (b) follows easily from (a) by collapsing down the boundary ofD2 to a
point z ∈ Fix(g), definingg|S2\{z} = f |Int(D 2), and takingB to beA ∪ {z}. Theng is
pseudo-Anosov relative toB becausef is pseudo-Anosov relative toA, and Per(g) ⊆
Per(f ) because Fix(f ) ∩ Int(D2) �= ∅ (by the Lefschetz–Hopf fixed point theorem, and
taking into account the possible fixed point indices of fixed points of pseudo-Anosov
homeomorphisms).

2. Preliminaries

In this section, we recall some facts that will be used in what follows concerning Artin’s
braid groups, Nielsen fixed point theory, and the Nielsen–Thurston classification of surface
homeomorphisms up to isotopy.

2.1. Artin’s braid groups and the combing operation

The basic reference for this section is [3]. For eachn ∈ N, Artin’s braid groupBn onn
stringsadmits a presentation with generatorsσ1, . . . , σn−1, and with the following defining
relations:

σiσj = σjσi, where|i − j | � 2 and 1� i, j � n− 1,

σiσi+1σi = σi+1σiσi+1, where 1� i � n− 2.

The elements ofBn are calledbraids. Every braid may be represented as a collection ofn

strings, orgeometric braid, in R2×[0,1]. We define thefull twist braid inBn to be the braid
(σ1 · · ·σn−1)

n; for n� 3, it generates the centre ofBn. Given a braidβ = σ
ε1
i1

· · ·σεmim ∈ Bn,
where 1� ij � n− 1 for 1� j � m, let es(β)= ∑m

j=1 εj denote theexponent sumof β .

Theclosureβ̂ of β is the link inS3 obtained by identifying the initial points and end points
of each of the braid strings.

Let Fn be a free group of rankn, with generatorsx1, . . . , xn. Let Aut(Fn) denote the
group of (right) automorphisms ofFn. Artin showed thatBn has a faithful representation
as a subgroup of Aut(Fn). The representation is induced by the group homomorphism
ξ :Bn → Aut(Fn) given by:

(σi)ξ :


xi �→ xixi+1x

−1
i ,

xi+1 �→ xi,

xj �→ xj , if j �= i, i + 1.

(1)

From now on, we will identifyBn with its realization as a group of right automorphisms
of Fn, in particular we shall write(xj )α for (xj )((α)ξ) for all α ∈ Bn. If β is an
endomorphism ofFn thenβ ∈ Bn ⊆ Aut(Fn) if and only if the following two conditions
are satisfied:

(xi)β =Aixρ(i)A
−1
i for all 1 � i � n, and (2)

(x1 · · ·xn)β = x1 · · ·xn, (3)
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whereρ ∈ Sn, Sn being the symmetric group onn elements, andAi ∈ Fn for all 1 � i � n.
For each pair 1� i < j � n+ 1, we define a braidTij ∈ Bn+1 as follows:

Tij = σj−1σj−2 · · ·σi+1σ
2
i σ

−1
i+1 · · ·σ−1

j−2σ
−1
j−1.

EachTij may be interpreted geometrically as a positive twist of thej th string about the
ith string. For each 2� j � n + 1, Uj = 〈Tij | 1 � i < j 〉 is a free subgroup of rank
j − 1 ofBn+1. In particular,Un+1 is isomorphic toFn via the isomorphism which for each
1 � i � n associatesTi,n+1 with xi ∈ Fn. A result of Artin states that everyβ ∈Bn+1 may
be written uniquely in the formβ = πββ2 · · ·βn+1, whereπβ is a permutation braid, and
βj ∈Uj for all 2� j � n+1. This decomposition is known ascombingthe braid. The fact
that it is unique may be used, for example, to solve the word problem in the braid group.

For k � 1, consider the subgroupBn
n+k of Bn+k consisting of those elements for

which the induced automorphism of the symmetric groupSn+k fixes(n+ 1), . . . , (n+ k)

pointwise. NowBn embeds naturally inBn
n+k via the injective group homomorphism

ιk :Bn ↪→ Bn
n+k which geometrically consists of addingk extra vertical strings. Conversely,

Bn
n+k projects intoBn via the surjective group homomorphismpk :Bn

n+k → Bn which
geometrically consists of ‘forgetting’ the lastk strings. Clearly,pk ◦ ιk = IdBn .

Now take k = 1, and setp = p1 and ι = ι1. Then Ker(p) = Un+1 ∼= Fn. In the
group-theoretical sense,Bn

n+1 is the extension ofFn by Bn. The combing operation may
be interpreted as the decomposition ofBn

n+1 as the semi-direct product ofUn+1 (or
isomorphically,Fn) with Bn (with actionξ ). In particular:

Lemma 8. Let β ∈ Bn
n+1. Then there existα ∈ Bn andT ∈ Un+1, both unique, such that

β = ι(α) · T . Moreover,α = p(β).

Proof. The uniqueness and existence ofα and T follow from that of the combing
operation. For the second part, observe thatι(α) andT belong toBn

n+1, andp(T )= IdBn .
Applyingp to β , we have thatp(β)= (p ◦ ι)(α)= α. ✷
2.2. Nielsen equivalence and surface maps

The references for this section are [11,26,27]. LetX be a compact, connected
polyhedron, and letf :X → X be a continuous self-map. The notion of Nielsen
equivalence (as defined in the introduction) is an equivalence relation on Fix(f ). The
equivalence classes under this relation will be calledfixed point classes. If x is an isolated
fixed point off then let Ind(x, f ) denote its fixed point index. Ifx, y ∈ Fix(f ) are Nielsen
equivalent then we write(x, f )

N∼ (y, f ). Each fixed point classF is an isolated subset of
Fix(f ), hence itsfixed point indexInd(F, f ) ∈ Z is well defined. A fixed point class will
be calledessentialif its index is non-zero, andinessentialotherwise. The (finite) number
of essential fixed point classes is a homotopy invariant, theNielsen numberN(f ) of f .
Every map homotopic tof has at leastN(f ) fixed points. Since every map homotopic to
f has at leastN(f ) fixed points, the Nielsen number plays an important rôle in the study
of fixed point theory. The problem is that it is difficult to calculate in general.
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Nielsen equivalence may be characterized in other ways. One is that of lifting classes.
Another, due to Jiang, is in terms of homotopy classes in the suspension. LetTf be
the mapping torus off obtained fromX × [0,1] by identifying (x,1) with (f (x),0)
for all x ∈ X. The mapf induces a natural semi-flowψ on Tf . There is a one-to-one
correspondence between the periodic orbits off and closedψ-orbits. Then two fixed
points off belong to the same fixed point class if and only if their corresponding closed
orbits ofψ are homotopic as closed curves inTf [28].

As we indicated in the introduction, the (difficult) geometric problem of deciding
whether two fixed points are Nielsen equivalent can be transformed into an (admittedly
difficult) algebraic problem, that of distinguishing Reidemeister classes. InX, choose
a basepointx0 and a pathw from x0 to f (x0). Set π = π1(X,x0), and denote the

compositionπ
f#→ π1(X,f (x0))

w#→ π by fπ :π → π . So π is partitioned intofπ -con-
jugacy classes. We denote the set offπ -conjugacy classes byπR, and the Abelian group
freely generated byπR by ZπR . Both projectionsπ → πR andZπ → ZπR will be denoted
by the notationu �→ [u]. Notice that iff � g via a homotopy{ft }t∈[0,1]: f � g satisfying
x0 ∈ Fix(ft ) for all t ∈ [0,1] thenfπ = gπ for any choice of pathw.

Let x ∈ Fix(f ). Choose a pathc from x0 to x. The fπ -conjugacy class of〈w(f ◦
c)c−1〉 ∈ π is independent of the choice ofc. We call this class the (fπ -) coordinateof
x, denoted by coord(x, f ). The choice of basepointx0 and pathw from x0 to f (x0) serve
as thereference frame(x0,w) for the coordinate. The relation between the notions of
Reidemeister and Nielsen equivalence is that two fixed points off belong to the same
fixed point class if and only if they have the samefπ -coordinate inπR . This being the
case, we denote the coordinate of the fixed point classF by coord(F, f ). We say that an
fπ -conjugacy class isrealized byf if there exists a fixed point off whosefπ -coordinate
is that class, and that the class isrealized essentiallyif the index of the corresponding fixed
point class is non-zero.

There are two well-known methods which may help to distinguish Reidemeister classes,
neither being algorithmic. The first is to apply directly the definition of Reidemeister
equivalence. In particular, notice that:

fπ (v) · u ∼R u · v,
fπ(u) ∼R u,

(4)

for all u,v ∈ π . The second method is that ofabelianization. Consider the following
compositionη ◦ θ :

π
θ→H1(X)

η→ Coker
(
1− f∗1 :H1(X)→H1(X)

)
, (5)

whereθ is abelianization andη is the natural projection. Everyfπ -conjugacy class is sent
to a single element; we call the image of a coordinate under the mapη ◦ θ theabelianized
coordinate. Thus if two elements ofπ have different abelianizations then they are in
different fπ -conjugacy classes. The converse of this statement is false (see Example 2
of Section 3.4 for a counter-example). Nevertheless, these two methods often suffice to
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determine exactlyLR(f ), as we shall see in Section 6. A third partial solution was given
by Ferrario [13].

Define theReidemeister trace(also known as the generalized Lefschetz number) off ,
denoted byLR(f ), to be the element ofZπR for which the coefficient of[u] ∈ πR is equal
to the index of the fixed point class with coordinate[u]. In other words,

LR(f )=
∑

Ind(F, f ) · coord(F, f ) ∈ ZπR, (6)

where the sum is over the fixed point classes off . This sum makes sense because there are
only a finite number of essential fixed point classes. We call this formal sum thereduced
formof LR(f ), in the sense that eachfπ -conjugacy class appears at most once. We define
theabelianized Reidemeister trace, denoted byLH(f ), to be the abelianization ofLR(f ).
Both LR(f ) andLH(f ) are powerful homotopy invariants off which can be used to
obtain fixed point linking information (see Section 6 and [19] for some direct applications).
The number of terms appearing in Eq. (6) is preciselyN(f ).

Now suppose thatX is a compact, connected surface with boundary. Let{x1, . . . , xn}
be a free basis forπ = π1(X,x0). Fadell and Husseini gave the following formula for
LR(f ) [11]:

LR(f )= [1] − [
Tr

(
J (fπ )

)] ∈ ZπR, (7)

whereJ (fπ) = (∂fπ(xi)/∂xj )1�i,j�n is then × n Jacobian with entries inZπ , and the
derivatives∂/∂xj being with respect to the Fox calculus. They showed that a similar result
is true when∂X = ∅, there being an extra term which corresponds to the action on the
2-chains. Givenfπ , the trace of the Jacobian is in itself very simple to calculate. However,
it is not known in general how to determine the reduced form ofLR(f ) from Eq. (7),
the problem being that of distinguishing the Reidemeister classes that appear. This step is
necessary in order to extract all of the homotopy-invariant fixed point linking information
and to calculateN(f ).

2.3. Surface homeomorphisms

In what follows, M will be a compact, connected, orientable surface, perhaps
with boundary, andA ⊆ Int(M) will be a finite n-point subset. IfM = D

2, let
Homeo(D2, ∂D2) denote the class of orientation-preserving homeomorphisms ofD2 which
fix ∂D2 pointwise, and let Homeo(D2, ∂D2,A) denote the subset of those elements of
Homeo(D2, ∂D

2) which leaveA invariant. By the Alexander trick, every element of
Homeo(D2, ∂D2) is isotopic to the identity via an isotopy fixing the boundary pointwise.

In order to compare fixed point classes of different surface homeomorphisms (via their
coordinates), we recall several definitions [7,8,21]. Fori = 0,1, letfi : (M,A)→ (M,A)

be homeomorphisms, and letyi ∈ Fix(fi). Then(y0, f0) and (y1, f1) areconnected by
isotopyif there exist an isotopy{ft }t∈[0,1]: f0 � f1 relative toA and an arcα : [0,1] →
M such thatα(0) = y0, α(1) = y1, and α(t) ∈ Fix(ft ) for all t ∈ [0,1]. Given a
homeomorphismf : (M,A) → (M,A), x ∈ Fix(f ) is said to beunremovableif for any
homeomorphismg isotopic tof relative toA, there existsy ∈ Fix(g) such that(x, f ) and
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(y, g) are connected by isotopy. The pair(x, f ) is connected toA if there exista ∈A and
a homeomorphismg such that(x, f ) and(a, g) are connected by isotopy, andseparated
fromA otherwise.

Given x, y ∈ Fix(f ), x is strong Nielsen equivalentto y (written (x, f )
SN∼ (y, f )) if

(x, f ) and (y, f ) are connected by a contractible isotopy. We write snc(x, f ) for the
strong Nielsen class ofx. Two strong Nielsen classes are said to beconnected by isotopyif
elements from each class are. Just as for Nielsen equivalence, the notion of strong Nielsen
equivalence can be expressed in terms of the suspension manifold: two fixed points off

are strong Nielsen equivalent if and only if the corresponding simple closed curves are

isotopic. In particular, ifx, y ∈ Fix(f ) then(x, f )
SN∼ (y, f ) if and only if (x, f )

N∼ (y, f ).
Thusx andy belong to the same fixed point class forf if and only they are strong Nielsen
equivalent. Also,(x, f ) is connected toA if and only if it is (strong) Nielsen equivalent to
a point ofA.

If M = D2 then we shall restrict our attention to the class Homeo(D2, ∂D2). Otherwise,
we shall suppose that the Euler characteristic ofM is negative. In both of these situations,

all self-isotopies ofM are contractible [12, p. 22], and so(x, f )
SN∼ (y, f ) if and only if

(x, f ) and(y, f ) are connected by isotopy.
LetB ⊆ Int(M)\A be a finitef -invariant set. In what follows, we shall often considerf

in two ways: as a mapf : (M,A)→ (M,A), and as a mapf : (M,A∪B)→ (M,A∪B).
If this is the case, and if we are considering the coordinate ofx for fπ :π1(M \A) →
π1(M \A) then we shall refer to thecoordinate ofx relative toA (relative to some given
reference frame) if there is a risk of confusion.

Let us recall briefly the Nielsen–Thurston classification of surface homeomorphisms up
to isotopy [12,23,35]. Iff : (M,A) → (M,A) is a homeomorphism then there exists a
canonical homeomorphismg isotopic tof relative toA, theThurston representativeof the
isotopy class, that satisfies one of the following:

(i) g is finite order(there existsm ∈ N such thatgm = Id).
(ii) g is pseudo-Anosov. This means that it preserves a transverse pair of measured

singular foliations, expanding the measure uniformly along the leaves of one
foliation and contracting it uniformly (by the same factor) along the leaves of the
other. All of its fixed points lying in Int(M) are unremovable and unique in their
(strong) Nielsen class.

(iii) g is reducible. There exists a finiteg-invariant set of simple closed curves inM \A
which are mutually disjoint, non-homotopic, and neither parallel to a single point
of A, nor to the boundary. These curves are calledreducing curvesfor g. By
cutting M along g-invariant tubular neighbourhoods of these curves, we obtain
a finite number of subsurfaces orreducing components, and the restriction of an
appropriate iterate ofg to each reducing component is either finite order or pseudo-
Anosov. As defined, the set of reducing curves is not in general unique, but we shall
always choose a canonical (minimal) set, which is unique up to isotopy [4,38].

We shall say that theThurston typeof g (and of the isotopy class off ) is finite order,
pseudo-Anosov or reducible respectively. The Thurston type of an isotopy class may be
determined from the induced action on the fundamental group using theBestvina–Handel
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algorithm [2] (see [22] for UNIX- and DOS-executable implementations). The algorithm
also finds reducing curves if there are any, and determines thetopological entropyh(g) of g
and the associated train track in the pseudo-Anosov case. For the caseM = D2, versions of
the algorithm were also given independently by Los [32], and Franks and Misiurewicz [15].

Given a surface homeomorphismf : (M,A) → (M,A), we shall be interested in its
isotopy-invariant fixed-point structure. For many purposes, such as the application of the
Bestvina–Handel algorithm, it is sufficient to consider the induced actionfπ of f on the
(non-compact) complementM \ A. On the other hand, much of the Nielsen fixed point
theory and the Reidemeister trace can only be applied directly to compact spaces. Although
one could try and do relative Nielsen theory, it will be convenient for us instead to blow up
the points ofA: we recompactifyM \A to a surfaceMA by adding a boundary circleCa for
each pointa ∈A. If, further,f is the Thurston representative in its isotopy class then it may
be extended to a homeomorphismf :MA →MA, called theblow up off , by considering
the induced action off on the circle of unit vectors at each point ofA [5]. Identifying
the fundamental groupsπ1(M \ A) and π1(MA) in the obvious way, it follows that
the induced automorphismsfπ :π1(M \A) → π1(M \A) andf π :π1(MA) → π1(MA)

are equal. ConsideringM \ A to be a subset ofMA on which f and f coincide (so
Fix(f ) ∩ (M \ A) = Fix( f ) ∩ (MA \ ⋃

a∈A Ca)), it is clear that Ind(x, f ) = Ind(x, f )

for all x ∈ Fix(f )∩ (M \A); and ifx, y ∈ Fix(f )∩ (M \A) then(x, f )
N∼ (y, f ) (relative

toA) if and only if (x, f )
N∼ (y, f ).

To understand the fixed point structure offπ :π1(M \A) → π1(M \A), one may
computeLR(f ): in light of the previous sentence, the only difference between the fixed
point structures off andf appears at the points ofA ∩ Fix(f ). Let a be such a point. If
Ind(a, f )= +1 then the restriction off to Ca is a non-trivial rotation, so Fix( f )∩Ca = ∅,
and there will be no terms inLR(f ) corresponding to the blow-up ofa. On the other
hand, if Ind(a, f ) � 0 then Ind(Ca, f ) = Ind(a, f ) − 1. In particular, Fix( f ) ∩ Ca �= ∅,
and any element of this set will be a fixed point Nielsen equivalent toCa . As we shall see
in Section 3.3, we are able to detect such fixed points, and consequently determine exactly
the fixed point linking information off onM \ A. Thus it suffices to consider the fixed
point structure off (in particularLR(f )) in order to determine that off .

In defining the blow up off , we supposed thatf was the Thurston representative in
its isotopy class; but the blow-up construction is also valid for homeomorphisms which
are differentiable onA. If, however,f is not differentiable onA then we may carry out
an isotopy off relative toA whose support is an arbitrarily small neighbourhood ofA so
that the homeomorphismf ′ thus obtained is differentiable onA (a local smoothing) [10].
Since we are interested in the isotopy-invariant fixed point structure off which is the same
as that off ′ (becausef andf ′ are isotopic relative toA), we may (and in what follows
shall) assume by consideringf ′ rather thanf if necessary, thatf may be blown up atA,
so thatLR(f ) is defined.

One may compare fixed point classes of isotopic homeomorphisms using isotopy
connection, although this is difficult to verify in practice. A more practical method is to
compare coordinates, but one needs to take care with the reference frames. LetM = D2.
As we remarked previously, we shall restrict our attention to the class Homeo(D2, ∂D2).
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Notice that any homeomorphismf of D2 may be extended to an elementg in this class by
gluing an exterior collarC ∼= (0,1] × S1 to ∂D2 to obtain a new topological discD in such
a way that Fix(g) ∩ C = ∂D. ConsideringD2 to be a subset ofD, any isotopy{ft }t∈[0,1]
of f extends to an isotopy{gt }t∈[0,1] of g such that for allt ∈ [0,1], ft andgt coincide
on D2, and Fix(gt ) ∩ C = ∂D. Two fixed points off are Nielsen equivalent forf if and
only if they are Nielsen equivalent forg. Let x0 ∈ ∂D2 andz0 ∈ ∂D be basepoints, and
let α ⊆ D \ Int(D2) be a path fromz0 to x0. Let w ⊆ ∂D2 be a path fromx0 to f (x0)

homotopic toα−1 · g(α) keeping endpoints fixed. Takingfπ :π1(D
2 \A) → π1(D

2 \A)
(respectively,gπ :π1(D \A)→ π1(D \A)) with respect to the frame(x0,w) (respectively,
(z0,∗z0), ∗z0 being the constant path atz0), it follows that fπ and gπ are equal (up
to identification ofπ1(D

2 \ A,x0) with π1(D \ A,z0) via α). With respect to these
frames, coord(x, f ) = coord(x, g) for eachx ∈ Fix(f ). Since Fix(g) \ Fix(f ) = ∂D and
Ind(∂D, g)= 0, it follows thatLR(g )= LR(f ), and thus we may restrict our attention to
elements of Homeo(D2, ∂D2), and take a reference frame of the form(z0,∗z0).

In general, Thurston representatives do not belong to Homeo(D2, ∂D
2). An elementf

of Homeo(D2, ∂D2,A) will be called afixed-boundary Thurston representativeif it is a
Thurston representative in its isotopy class up to collaring. By this, we mean that there
exists anf -invariant open tubular neighbourhoodN of a simple closed curve contained
in Int(D2) such thatD2 \N has two connected components, one an annulusA containing
∂D

2, and the other a topological closed disc which containsA, such that the restriction of
f to this disc is a Thurston representative. As in the previous paragraph, we may suppose
that Fix(f ) ∩ Int(A) = ∅, and further thath(f |A) = 0. By extension, if the isotopy class
in question is pseudo-Anosov then we shall refer to thefixed-boundary pseudo-Anosov
homeomorphism.

The isotopy class of an elementf of Homeo(D2, ∂D
2,A) may be represented by a (non-

unique) braid. Let{ft }t∈[0,1]: Id � f be an isotopy such thatft ∈ Homeo(D2, ∂D2) for
all t ∈ [0,1]. The subset(A, {ft }t∈[0,1]) = {(ft (A), t)}t∈[0,1] ⊆ D2 × [0,1] is ageometric
braid on n strings which may be identified with an element ofBn. If x0 ∈ ∂D2, the group
of automorphisms ofπ1(D

2 \A,x0)∼= Fn induced by elements of Homeo(D2, ∂D2,A) [3,
p. 33] may be identified naturally withBn. Consideringβ as an element of Aut(Fn), it
follows from Eq. (7) that

LR(f )= [1] − [
Tr

(
J (β)

)] ∈ ZπR, (8)

whereJ (β)= (∂((xi)β)/∂xj )1�i,j�n, andf is the blow up off . We write the right-hand
side of Eq. (8) as follows:

K∑
i=1

µi[wi] ∈ ZπR, (9)

whereµi ∈ {±1}. One of our aims is to be able to decide which of the Reidemeister classes
in this sum are realized essentially byf and byf .
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3. Braid realizations of Reidemeister classes

Let n � 1, and letβ ∈ Bn be a braid. In Section 3.1, given a wordw ∈ Fn, we will
construct a braid belonging toBn

n+1. As we shall see in Section 3.2, this braid will represent
the isotopy class of a disc homeomorphismf relative to a given finite invariant set, and the
point corresponding to the added string will represent a fixed point whosefπ -conjugacy
class is[w]. In Section 3.3, we will give criteria for the Reidemeister class[w] to be
realized essentially byf , and in Section 3.4, we shall give some examples.

3.1. Construction of a braid extension

With the notation of Section 2.1, for each 1� j � n, let Tj = Tj,n+1 ∈ Bn+1. ThenTj
has the following effect on the elements ofFn+1:

(xk)Tj =



xk, if 1 � k � j − 1,

xj xn+1xjx
−1
n+1x

−1
j , if k = j,

xjxn+1x
−1
j x−1

n+1xkxn+1xjx
−1
n+1x

−1
j , if j + 1 � k � n,

xjxn+1x
−1
j , if k = n+ 1,

(10)

with similar expressions for the(xk)T
−1
j . Let β ∈ Bn, and letw = x

ε1
k1

· · ·xεlkl ∈ Fn. Then
we set:

Tw = T
ε1
k1

· · ·T εl
kl

∈ Un+1 � Bn
n+1, and

βw = ι(β) · Tw ∈ Bn
n+1.

Thusβw may be considered as the embedding ofβ in Bn
n+1, followed by a number of

twists of the(n+ 1)st string. We shall also refer toβw as thew-extension ofβ . In terms of
the semi-direct productBn

n+1
∼= Fn �Bn, βw is nothing other than the element(w,β). We

have the following split short exact sequence:

1 → Fn →Bn
n+1

p→ Bn → 1,

where the second map is the monomorphismw �→ Tw.

Proposition 9. Givenβ ∈ Bn andw ∈ Fn, let βw = ι(β) · Tw ∈ Bn
n+1. Let (xn+1)βw =

An+1xn+1A
−1
n+1 ∈ Fn+1, written as a reduced word, and letρ :Fn+1 → Fn be the projection

xi �→ xi for 1 � i � n, andxn+1 �→ 1. Thenρ(An+1)=w.

Proof. By induction on the lengthl of w. We may suppose thatεj = ±1 for all j . The
result is clear ifl = 0, so suppose thatw ∈ Fn has lengthl � 0. Let η = Tw ∈ Bn

n+1.

Then ρ(An+1) = w by the induction hypothesis, where(xn+1)η = An+1xn+1A
−1
n+1 is

written as a reduced word. Now considerw′ = wx
εk
k , where 1� k � n, andεk = ±1.

Setη′ = Tw′ ∈ Bn
n+1. We shall suppose thatεk = +1, the case thatεk = −1 being similar.

Sinceη′ = η · Tk , it follows from Eq. (10) that:

(xn+1)η
′ = (

An+1xn+1A
−1
n+1

)
Tk = αxkxn+1x

−1
k α−1, (11)
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whereα ∈ Fn+1 = (An+1)Tk is a reduced word. Soρ((An+1)Tk) = ρ(α). On the other
hand, from Eq. (10), we see thatρ((xj )Ti) = ρ(xj ) for all 1 � j � n + 1 and for all
1 � i � n, and soρ((u)Ti) = ρ(u) for all u ∈ Fn+1 and for all 1� i � n. In particular,
ρ((An+1)Tk)= ρ(An+1)=w. If we write (xn+1)η

′ in reduced formA′
n+1xn+1A

′−1
n+1, then

we have to show thatρ(A′
n+1) = w′. In other words, we need to look for cancellation in

Eq. (11).
If there is no cancellation thenA′

n+1 = αxk , and we obtain the required result. So

suppose that there is cancellation. Thenα must be of the (reduced) formα = α′xmn+1x
−1
k ,

wherem ∈ Z is chosen so that|m| is maximal. Then(xn+1)η
′ = α′xn+1α

′−1, as a reduced
word, in other wordsA′

n+1 = α′. But ρ(A′
n+1)= ρ(α′)= ρ(αxk)=wxk =w′. ✷

The following result will be very useful.

Proposition 10. If w ∈ Fn andβ ∈ Bn thenTw · ι(β)= ι(β) · T(w)β .

Proof. By induction on the length ofw. In fact, it suffices to check that for all 1� i � n,
1� j � n−1 andε ∈ {±1},Txεi ·σ±1

j = σ±1
j ·T

(xεi )σ
±1
j

. This follows from a straightforward

calculation using the relations (1).✷
Theorem 11. Let β ∈ Bn be a braid, and letϕ ∈ Aut(Fn) be the associated free group
automorphism. Letv,w ∈ Fn. Then:

(a) v andw are ϕ-conjugate if and only ifβv and βw are conjugate inBn
n+1 via an

element ofUn+1;
(b) βv andβw are conjugate via an element ofBn

n+1 if and only if there existsδ ∈ Bn

that commutes withβ , and such that(w)δ andv areϕ-conjugate.

Remarks.
(1) Part (a) of this theorem is the statement of Theorem 1. It gives a necessary and

sufficient condition to decide when two elements ofFn are Reidemeister equivalent.
In particular, any function of the braid group invariant under conjugation may be
used to show that two elements ofFn are not Reidemeister equivalent.

(2) SinceUn+1 � Bn
n+1, condition (a) of the theorem implies condition (b). The

converse is false: see the remarks at the end of Section 3.4 for a counter-example.

Proof of Theorem 11. (a) Suppose thatv,w ∈ Fn are ϕ-conjugate. Then there exists
γ ∈ Fn such thatv = ϕ(γ ) ·w · γ−1. SoTγ ∈Un+1, and:

Tγ · βw · T −1
γ = Tγ · ι(β) · Tw · Tγ−1

= ι(β) · Tϕ(γ ) · Tw · Tγ−1

= ι(β) · Tϕ(γ )·w·γ−1 = ι(β) · Tv = βv,

by Proposition 10.
Conversely, suppose thatβv andβw are conjugate inBn

n+1 via an element ofUn+1. Then
there exists an elementT ∈ Un+1 such thatTβwT −1 = βv . Now T is of the formTγ for
someγ ∈ Fn. So by Proposition 10,
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Tγ · βw · T −1
γ = βv,

Tγ · ι(β) · Tw · Tγ−1 = ι(β) · Tv,
ι(β) · Tϕ(γ )·w·γ−1 = ι(β) · Tv, and thus

Tϕ(γ )·w·γ−1 = Tv ∈ Un+1.

We conclude thatϕ(γ ) · w · γ−1 = v (Un+1 is isomorphic toFn), and thusv andw are
ϕ-conjugate.

(b) This follows in a similar way: ifαβv = βwα, whereα = ι(δ) · Tu ∈ Bn
n+1, δ ∈ Bn

andu ∈ Fn, thenι(δβ) · Tϕ(u)·v = ι(βδ) · T(w)δ·u. By uniqueness of the combing operation,
δβ = βδ, andϕ(u) · v = (w)δ · u. Thus (w)δ = ϕ(u) · v · u−1, and (w)δ and v areϕ-
conjugate. The converse is clearly true also.✷
3.2. Topological braid extensions for disc homeomorphisms

Let A ⊆ Int(D2) be ann-point set, letx0 ∈ ∂D2, and letf ∈ Homeo(D2, ∂D2,A).
Givenw ∈ Fn, we construct an elementgw of Homeo(D2, ∂D

2,A∪ {yw}) satisfying the
following conditions:

(BE1) gw is isotopic tof relative toA (in particular,gw|A = f |A), and the isotopy is
chosen so that∂D2 is fixed pointwise during the isotopy.

(BE2) yw ∈ (Fix(gw)∩ Int(D2)) \A.
(BE3) coord(yw,gw)= [w] relative toA.

Remark. The coordinates forf andgw are taken in the same reference frame(x0,∗x0).
Condition (BE1) implies thatfπ = (gw)π , so thefπ - and (gw)π -conjugacy classes
coincide.

We add a fourth condition which, by isotopinggw relative toA∪ {yw} if necessary, we
may assume to be satisfied:

(BE4) gw is the fixed-boundary Thurston representative in its isotopy class relative to
A∪ {yw}.

A homeomorphismgw satisfying conditions (BE1)–(BE4) will be called atopologicalw-
extension off . To see how to constructgw (at least up to isotopy relative toA ∪ {yw}),
one may consider a braid realization. Let{ft }t∈[0,1] : Id � f be an isotopy (fixing∂D2

pointwise during the isotopy), and letβ ∈ Bn represent the geometric braid(A,ft ). Pick
a pointyw ∈ Int(D2) \ A, and letgw : (D2,A∪ {yw}) → (D2,A∪ {yw}) be an element of
Homeo(D2, ∂D2,A∪ {yw}) that realizes the braidβw = ι(β) · Tw ∈ Bn

n+1. We considergw
to be obtained by the composition of two isotopies: during the first,yw is fixed and the braid
realized byA is β ; the second isotopy realizesTw, yw corresponding to the(n+1)st string.
The first two of properties (BE1)–(BE3) may be satisfied easily; if we forget the(n+ 1)st
string ofβw then we recoverβ . The following proposition shows that property (BE3) is
also satisfied:

Proposition 12. With the notation of the above construction,coord(yw,gw)= [w] relative
toA.
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Proof. Considerπ1(D
2 \ (A ∪ {yw}), x0) ∼= 〈x1, . . . , xn+1〉 (yw corresponds toxn+1).

If (xn+1)βw = An+1xn+1A
−1
n+1, written as a reduced word, thenρ(An+1) = w by

Proposition 9.
Pick a loop representingxn+1 ∈ Fn+1. In D2 \A, collapse it down to an arcc joining x0

toyw. One checks that inπ1(D
2\A,x0), 〈gw(c) ·c−1〉 = ρ(An+1), and so coord(yw,gw)=

[w] relative toA. ✷
Remark. Consider the isotopy{ft }t∈[0,1]: Id � f . Let x ∈ Fix(f ) \A, and letα ∈ Bn

n+1
be the braid realized by(A∪{x}, {ft }t∈[0,1]). It follows from Lemma 8 thatα = ι◦p(α) ·T
as elements ofBn

n+1, for someT ∈ Un+1. The isotopy{ft }t∈[0,1] may be modified to reflect
this decomposition.

The notion of topologicalw-extension may be used to decide whether the Reidemeister
class [w] is realized essentially byf . Let w ∈ Fn, and let gw : (D2,A∪ {yw}) →
(D2,A∪ {yw}) be a topologicalw-extension off . If z ∈ Fix(f ) \ A then consider the
two homeomorphismsf : (D2,A∪ {z}) → (D2,A∪ {z}) andgw . Their geometric braids
are represented by braidsβu ∈ Bn

n+1 (by the above remark withT = Tu for someu ∈ Fn)
andβw ∈Bn

n+1 (by construction), respectively. Then:

Theorem 13. With the above notation:
(a) coord(z, f )= coord(yw,gw) relative toA if and only ifβu andβw are conjugate in

Bn
n+1 via an element ofUn+1;

(b) let v ∈ Fn, and letgv : (D2,A∪ {yv})→ (D2,A∪ {yv}) be a topologicalv-extension
of f . Thencoord(yv, gv)= coord(yw,gw) if and only ifsnc(yv, gv) is connected by
isotopy tosnc(yw,gw).

Proof. (a) This follows from the fact thatfπ = (gw)π (considered as automorphisms of
π1(D

2 \A,x0)), Proposition 12 and Theorem 11.
(b) Sinceyv andyw are chosen arbitrarily, we may suppose thatyv �= yw. Let i :Bn+1 ↪→

Bn+1
n+2 denote the inclusion homomorphism. As for the topologicalw-extensions, we

construct a homeomorphismgvw ∈ Homeo(D2, ∂D2,A∪ {yv, yw}) satisfying:
(1) gvw is isotopic tof relative toA (in particular,gvw|A = f |A), and the isotopy is

chosen so that∂D2 is fixed pointwise during the isotopy.
(2) {yv, yw} ⊆ Fix(gvw) \A.
(3) coord(yv, gv) = coord(yv, gvw) and coord(yw,gw) = coord(yw,gvw), where coor-

dinates are taken relative toA in a frame(x0,∗x0), with x0 ∈ ∂D2.
This may be achieved by taking an elementgvw of Homeo(D2, ∂D2,A∪ {yv, yw}) that
realizes the braidi(ι(β)) · i(Tv) · σn+1 · i(Tw) · σ−1

n+1 ∈ Bn
n+2. If we forget the(n + 2)nd

(respectively,(n + 1)st) string then we obtain the braidι(β) · Tv = βv ∈ Bn
n+1 (re-

spectively,ι(β) · Tw = βw ∈ Bn
n+1), while if we forget both of these strings, we ob-

tain β . Thusgvw is isotopic togv (respectively,gw) relative toA ∪ {yv} (respectively,
A ∪ {yw}), and the isotopy may be chosen to lie within Homeo(D2, ∂D2,A∪ {yv}) (re-
spectively Homeo(D2, ∂D2,A∪ {yw})). So relative toA, snc(yv, gv) is connected by iso-
topy to snc(yv, gvw), snc(yw,gw) is connected by isotopy to snc(yw,gvw), coord(yv, gv)=
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coord(yv, gvw), and coord(yw,gw) = coord(yw,gvw). We considerf , gv , gw andgvw to
be elements of Homeo(D2, ∂D2,A). Relative to the frame(x0,∗x0), it follows that the in-
duced automorphismsfπ , (gv)π , (gw)π and(gvw)π of π1(D

2 \A,x0) are all equal. The
corresponding Reidemeister classes are thus all in terms of the action of the same free
group automorphism.

So coord(yv, gv) = coord(yw,gw) if and only if coord(yv, gvw) = coord(yw,gvw),
which is in turn equivalent to snc(yv, gvw)= snc(yw,gvw), which is equivalent to the fact
that snc(yv, gvw) is connected by isotopy to snc(yw,gvw). ✷
Proof of Corollary 2. Let f ∈ Homeo(D2, ∂D2,A) be such thatfπ = ϕ, and letβ ∈ Bn

be the braid that realizesϕ. Givenu,v ∈ Fn, let gu : (D2,A∪ {yu})→ (D2,A∪ {yu}) and
gv : (D2,A∪ {yv})→ (D2,A∪ {yv}) be topologicalu- andv-extensions off , respectively.
Sinceu andv arefπ -conjugate, it follows from Theorem 11 thatβu andβv are conjugate
in Bn

n+1 via an elementT ∈Un+1, and so are conjugate inBn+1. These braids are realized
bygu andgv , respectively. Identifyingπ1(D

2\(A∪{yu}), x0)with π1(D
2\(A∪{yv}), x0),

we see that(gu)π and(gv)π are conjugate via an automorphism induced byT . SinceT
may be realized by a homeomorphism, it follows thatgu andgv are topologically conjugate
up to isotopy. By construction,gu andgv are the Thurston representatives in their respec-
tive isotopy classes. But the topological conjugate of a Thurston representative is also a
Thurston representative in its isotopy class. Moreover, a Thurston representative is unique
up to topological conjugacy in its isotopy class (recall that we take a canonical set of reduc-
ing curves), modulo the behaviour on the tubular neighbourhood of any reducing curves,
which in any case we can suppose to be of some standard form depending essentially on
the behaviour of the homeomorphism on the complement of the neighbourhood. Hencegu

andgv are topologically conjugate, and so they have the same topological entropy.✷
Remark. It follows from the above proof that any two topologicalw-extensions of a given
homeomorphism are topologically conjugate.

3.3. A criterion for the realization of Reidemeister classes

In this section, we suppose thatA⊆ Int(D2) is ann-point subset, wheren� 3, and that
f ∈ Homeo(D2, ∂D2,A) is a fixed-boundary pseudo-Anosov homeomorphism.

Givenw ∈ Fn, let gw : (D2,A∪ {yw}) → (D2,A∪ {yw}) be a topologicalw-extension
of f . By construction,gw is isotopic tof relative toA. In its isotopy class relative to
A ∪ {yw}, gw is the fixed-boundary Thurston representative, so it is either reducible or
pseudo-Anosov. We analyse these two cases separately.

3.3.1. The reducible case
Part (a) of Theorem 3 will follow by takingg = gw andy = yw in the statement of the

following proposition:
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Proposition 14. LetA ⊆ Int(D2) be ann-point subset, and letf : (D2,A)→ (D2,A) be
an orientation-preserving homeomorphism whose isotopy class is pseudo-Anosov. Letg

be isotopic tof relative toA, and suppose thaty ∈ Fix(g) \A.
(a) The isotopy class ofg : (D2,A∪ {y}) → (D2,A∪ {y}) is reducible if and only if,

relative toA, y is Nielsen equivalent either to∂D2, or toA.
(b) Let (x0, c) be a reference frame, wherex0 ∈ ∂D2 and c ⊆ ∂D2 is a path from

x0 to g(x0). Then, relative toA, y is Nielsen equivalent to∂D2 if and only if
coord(y, g)= [(x1 · · ·xn)m] for somem ∈ Z.

Remarks.
(1) From this, one may use the Bestvina–Handel algorithm to decide whether a

Reidemeister class represents a fixed point class Nielsen equivalent to the boundary,
Nielsen equivalent toA, or Nielsen equivalent to neither.

(2) The result holds in particular iff is the Thurston or fixed-boundary Thurston
representative in its isotopy class relative toA.

Proof of Proposition 14. We will prove part (a) of the proposition; part (b) will
follow directly from the proof. Ify ∈ ∂D2 then the isotopy class ofg : (D2,A∪ {y}) →
(D2,A∪ {y}) is reducible, andy is Nielsen equivalent to∂D2 relative toA. So let us
suppose thaty ∈ Int(D2). By isotoping relative toA ∪ {y} if necessary, we may further
suppose thatg is the Thurston representative in its isotopy class relative toA∪ {y}.

First, suppose thatg : (D2,A∪ {y})→ (D2,A∪ {y}) is reducible. Sinceg is isotopic to
f relative toA, there are exactly two reducing components, one of which,D, say, contains
y. Sog fixes each component setwise. There are two possibilities:

(i) D is a topological annulus, one of whose boundary components is∂D2, and
D ∩A= ∅, or

(ii) D is a topological disc containing exactly one pointa of A.
In both cases,g|D : (D, (D ∩A)∪ {y}) → (D, (D ∩A)∪ {y}) is finite order. It is thus
conjugate to rigid rotation and so must be the identity. Ifη ⊆ D is any arc joiningy to
∂D2 in Case (i), or toa in Case (ii), theng(η) = η, and so relative toA, y is Nielsen
equivalent to∂D2 in Case (i), and toA in Case (ii).

To prove part (b) and the converse of part (a), first suppose thaty is Nielsen equivalent
to ∂D2 for g relative toA. Let (x0, c) be a reference frame as in part (b). We first show
that coord(y, g)= [(x1 · · ·xn)m] for somem ∈ Z, from which we shall conclude thatg is
reducible relative toA∪ {y}. As usual, we identifyπ1(D

2 \A,x0) with Fn = 〈x1, . . . , xn〉.
Sincey is Nielsen equivalent to∂D2 relative toA, there exist an arcα : [0,1] → D2 \A
such thatα(0) ∈ ∂D2 andα(1)= y, and a homotopy{αt }t∈[0,1] : [0,1] → D2 \A satisfying
α0 = g(α), α1 = α, and for all t ∈ [0,1], αt (0) ∈ ∂D2 andαt(1) = y. Homotopingα if
necessary, we may suppose thatα(0)= x0. For eacht ∈ [0,1], the arcλt = {αs(0)}0�s�t ·
αt joins α(0) = g(x0) to α(1) = y, and relative to these two endpoints, it is homotopic
to g(α) = λ0. Further,λ1 = {αs(0)}0�s�1 · α whose first segment{αs(0)}0�s�1 ⊆ ∂D2

is an arc joiningg(x0) to x0. Hence〈c · g(α) · α−1〉 = 〈c · {αs(0)}0�s�1〉 ∈ π1(∂D2, x0).
Interpretingπ1(∂D2, x0) as the infinite cyclic subgroup ofπ1(D

2\A,x0) generated byξ =
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(x1 · · ·xn), it follows that〈c · g(α) · α−1〉 = ξm, for somem ∈ Z, and coord(y, g) = [ξm]
relative toA. This proves the necessity of part (b).

Now suppose that coord(y, g) = [ξm] relative to A. As in Section 3.2, the braid
associated with the isotopy class ofg : (D2,A∪ {y}) → (D2,A∪ {y}) may be written in
the formβw = ι(β) · Tw ∈ Bn

n+1 for somew ∈ Fn, and so coord(y, g) = [w] relative to
A by Proposition 12. Thusw and ξm are gπ -conjugate (where we considerg to be a
homeomorphism relative toA), so there existsγ ∈ Fn such thatξm = gπ (γ ) · w · γ−1.
Let h : (D2,A∪ {y}) → (D2,A∪ {y}) be the Thurston representative of the isotopy class
represented by the braidσ = ι(β) · Tξm ∈ Bn

n+1. By Theorem 1 it follows thatβw andσ
are conjugate inBn

n+1 (in fact, Tγ · βw · T −1
γ = σ ). So as in the proof of Corollary 2,g

andh are topologically conjugate. It is clear from the form ofσ thath is reducible: there
exists anh-invariant simple closed curve whose isotopy class is represented by the word
ξ ∈ Fn+1. Thurston type is a conjugacy invariant, sog is also reducible relative toA∪ {y}
(there exists ag-invariant simple closed curve whose isotopy class is represented by the
word (ξ)T −1

γ ∈ Fn+1). The sufficiency of part (b) also follows, and this indeed completes
the proof of part (b) and the first case of the converse of part (a).

Finally, the second case of the converse of part (a) may be deduced from the first case
as follows. Suppose thaty is Nielsen equivalent toA. There existsa ∈ A such thaty is
Nielsen equivalent toa relative toA. Collapse down∂D2 to a pointz, and blow upa to a
boundary circle to give a new topological discD. Theng induces a homeomorphismg′ of
D. SetA′ = (A \ {a})∪ {z}. Theny ∈ Fix(g′) is Nielsen equivalent to∂D for g′ relative to
A′. By a similar argument to that of the first case, we conclude thatg′ is reducible relative
toA′ ∪ {y}, and thatg is reducible relative toA∪ {y}. ✷

Given a wordw = x
ε1
i1

· · ·xεrir in the generatorsx1, . . . , xn of Fn, define theabelianized
length of w to be τ (w), where τ :Fn → Z is the group homomorphism defined by
w �→ ∑r

j=1 εij . If f ∈ Homeo(D2, ∂D
2,A) then we shall say thatw is connected to∂D

2

if yw is Nielsen equivalent to∂D2 relative toA for some (and hence any) topological
w-extensiongw : (D2,A∪ {yw})→ (D2,A∪ {yw}) of f .

Corollary 15. For wi ∈ Fn, i = 1,2, let gi : (D2,A∪ {yi}) → (D2,A∪ {yi}) be a
topologicalwi -extension off . Suppose that the pairs(y1, g1) and(y2, g2) are both Nielsen
equivalent to∂D2 relative toA. Then:

(a) w1 andw2 arefπ -conjugate if and only if their abelianized lengths are equal;
(b) snc(y1, g1) andsnc(y2, g2) are connected by isotopy if and only if the abelianiza-

tions ofcoord(y1, g1) andcoord(y2, g2) are equal.

The proof of the corollary follows from Theorem 13 and Proposition 14. This also proves
part (b) of Theorem 3. One can thus decide effectively which of the Reidemeister classes
appearing in Eq. (9) correspond to the Nielsen class of∂D

2, and among them, which are
Reidemeister equivalent. One can also prove the following result which characterizes those
words ofFn that are Reidemeister equivalent to 1:
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Corollary 16. Letϕ be an automorphism ofFn that is induced by a braidβ ∈Bn. Suppose
further that β is realized by an orientation-preserving homeomorphismf : (D2,A) →
(D2,A) whose isotopy class relative toA is irreducible. Then:

[1] = {
w ∈ Fn | βw is conjugate toι(β) in Bn

n+1 via an element ofUn+1
}

= {
w ∈ Fn | β̂w is a split link

}
= {

w ∈ Fn |w is connected to∂D2
} ∩ Ker(τ ).

Once again, this gives a criterion that may be verified using the Bestvina–Handel
algorithm.

3.3.2. The pseudo-Anosov case
Givenw ∈ Fn, suppose thatgw is the fixed-boundary pseudo-Anosov homeomorphism

relative toA ∪ {yw}. By condition (BE1) and [24], we have thath(gw) � h(f ). The
following result is part (c) of Theorem 3.

Theorem 17. The Reidemeister class[w] is realized essentially byf if and only if
h(f )= h(gw).

Remark. The topological entropy of a Thurston representative is equal to that of a fixed-
boundary Thurston representative belonging to the same isotopy class. One can hence
calculate the topological entropies off and gw using the Bestvina–Handel algorithm.
Theorem 17 thus gives an effective criterion for the realization of the Reidemeister class
[w] by f .

Proof of Theorem 17. Let us first show thatf realizes[w] if and only if h(f ) = h(gw).
Suppose that[w] is not realized byf . Sincegw is pseudo-Anosov relative toA ∪ {yw}, it
follows from Proposition 14 that relative toA, yw is neither Nielsen equivalent to∂D

2 nor
to A. Soyw is separated fromA. Further,gw is isotopic tof relative toA, yw ∈ Fix(gw),
and by Theorem 13, snc(yw,gw) is not connected by isotopy to any fixed point off . It
follows from a result of Smillie [7,24] thath(gw) > h(f ).

Conversely, if[w] is realized byz ∈ Fix(f )\A then it follows from an argument similar
to that of Corollary 2 thatf andgw are topologically conjugate, and soh(f )= h(gw).

Finally, if f realizes[w] essentially then it realizes[w]. The converse is also true: if[w]
is realized byz ∈ Fix(f )\A then it is separated fromA becauseyw is. Taking into account
the possible fixed point indices of fixed point classes of pseudo-Anosov homeomorphisms,
it follows that if z belongs to the fixed point classF then Ind(F, f ) �= 0. ✷
3.4. Comments and examples

With f ∈ Homeo(D2, ∂D2,A) as in Section 3.3 (pseudo-Anosov relative toA), one
may determine which terms appearing in Eq. (9) are the coordinates of fixed point classes
realized essentially byf . In particular:



J. Guaschi / Topology and its Applications 117 (2002) 199–230 221

(a) One may determine those terms that correspond to fixed point classes that are Nielsen
equivalent to the boundary, and among them, those that are Reidemeister equivalent
(Proposition 14). From this, the indices of the corresponding fixed point classes may be
computed. In fact, at most one of these classes has non-zero (negative) indexµ, and any
remaining classes are empty.

(b) In a similar way, one may determine those terms that correspond to fixed point
classes Nielsen equivalent toA. Again, there is at most one non-empty fixed point class
Nielsen equivalent to each fixed point inA. SetFA to be the sum of such terms: it may
be zero, for example ifA ∩ Fix(f ) = ∅. As we indicated in Section 2.3, the structure of
Fix( f ) \ Fix(f ) is encapsulated inFA (f is the blow-up off atA).

(c) The remaining terms in Eq. (9) correspond to fixed point classes that are Nielsen
equivalent neither to the boundary nor toA. If wi is such a term, one may decide whether
or not [wi] corresponds to a fixed point class realized essentially byf by comparing the
topological entropy off with that of its topologicalwi -extension (Theorem 17). We thus
obtain a sum of the form:

LR(f )= µ · [(x1 · · ·xn)m
] +FA +

l∑
i=1

µi · [wi], (12)

whereµi ∈ {±1}, m ∈ Z, andl ∈ N, and for 1� i � l, f and thusf realize essentially the
fixed point class whose coordinate is[wi].

We now illustrate our results with some examples.

Example 1. Considerβ = σ1σ
−1
2 ∈ B3. It is well known that this braid represents a

pseudo-Anosov isotopy class. Nowx1 andx2 are Reidemeister equivalent because(x2)β =
x1. We can also see this by applying Theorem 1 to the braid extensionsβx1 andβx2, since
T
x−1

2
· βx1 · Tx2 = βx2.

Example 2. Consider the wordsx1 and x3x
−1
2 x1 for the same braid as in Example 1.

They cannot be distinguished by abelianization. The associated braid extensions are not
conjugate because the topological entropies of the corresponding topological extensions
are different. Moreover, the 2-variable Alexander polynomials of the associated closed
braids are different (see also Theorem 6 and Section 5). Similarly,x2 and x3 are not
Reidemeister equivalent.

Returning to Eq. (12), there is still an (open) problem: with these methods, it is
not clear how one might determine the indices of the non-empty fixed point classes
corresponding to the remaining terms (this could in fact be done by determining the
train track off using the Bestvina–Handel algorithm). All of these terms correspond
to essential fixed point classes off , but in general, there will be pairwise cancellation
of terms whose indices are of opposite sign. The problem comes down to that of
comparing strong Nielsen classes of different pairs(yi, gi). One idea is to construct an
extension of an extension and use the notion of reducibility. Givenv,w ∈ Fn, consider the
homeomorphismgvw : (D2,A∪ {yv, yw}) → (D2,A∪ {yv, yw}) constructed in the proof



222 J. Guaschi / Topology and its Applications 117 (2002) 199–230

of part (b) of Theorem 13. If it is reducible (relative toA ∪ {yv, yw}) then, relative toA,
yw andyv belong to the same fixed point class forgvw, and so(yw,gw) and(yv, gv) are
connected by isotopy.

Example 3. Again takeβ = σ1σ
−1
2 ∈ B3. We already know thatv = x2 andw = x1

are Reidemeister equivalent. We can also see that corresponding fixed points belong to
the same fixed point class for the homeomorphismgvw. Consider the associated braid
βvw = σ1σ

−1
2 σ3σ

2
2σ

−1
3 σ4σ3σ2σ

2
1σ

−1
2 σ−1

3 σ−1
4 ∈ B5. One observes that there is a reducing

curve whose isotopy class is of the formx2x4x
−1
2 x5 containing the strings corresponding

to y1 andy2.

We shall come back to this type of reducibility in Section 4. The existence of such a
reduction can also be indicated by comparing the Alexander polynomial of various closed
braids (see Theorem 6).

However, the converse of the above observation does not hold: the fact that the two
fixed points belong to the same fixed point class does not imply that there exists such a
reduction. The reason is clear: in this setting, reducibility is relative toA∪ {yv, yw}, while
belonging to the same fixed point class is just relative toA. As an example, consider the
braidσ 2

1σ
2
2σ

−2
1 σ−2

2 ∈ B3 whose closure is the Borromean rings. This braid is realized by
a pseudo-Anosov homeomorphism of the disc. But relative to the second fixed point, the
first and third fixed points belong to the same fixed point class. For another example which
is realized by a pseudo-Anosov homeomorphism of the formgvw, it suffices to takev = x1

andw = x2 for the braidβ = σ1σ
−1
2 ∈ B3. Notice that this is similar to Example 3 above,

except that we have exchangedv andw. With this in mind, one may ask the following
question.

Question. Let ϕ be a free group automorphismϕ realized by ann-braid. Givenv,w ∈ Fn

does there exist some explicit construction of another braid (perhaps similar to that of
gvw, but taking into account the twisting of the two added strings) such that this braid is
reducible if and only ifv andw are Reidemeister equivalent forϕ?

One can sometimes distinguish certain Reidemeister classes in a simple way using
abelianizationanddynamical properties, as in the following example.

Example 4. Consider the free group automorphism induced by the braidβ = (σ1σ
−1
2 )2 ∈

B3. Then:

β:


x1 �→ x1x3x

−1
1 x−1

3 x2x3x1x
−1
3 x−1

1 ,

x2 �→ x1x3x
−1
1 ,

x3 �→ x−1
3 x−1

2 x3x1x
−1
3 x2x3.

Letf : (D2,A)→ (D2,A) be the Thurston representative in an isotopy class which relative
to A realizes the braidσ1σ

−1
2 . Sog = f 2 : (D2,A) → (D2,A) is pseudo-Anosov relative

to A becausef is, and it realizes the braidβ . Are x1 andx2 Reidemeister equivalent for
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gπ = β? Abelianization alone does not help to decide, and there does not seem to be any
simple way of using the relations (4) either. Moreover, the entropies of the associated braid
extensions are equal.

In fact,x1 andx2 are notgπ -conjugate. Letg be the blow up ofg atA. One can show
easily thatLR(g )= [x2] − [x1x3] + [x1] + [x−1

3 ] − [x−1
3 x−1

2 ] + [x−1
3 x−1

2 x3] − [1]. These
seven classes abelianize toLH(g )= −t2 + 2t − 1+ 2t−1 − t−2. Thusg has at least one
fixed point of positive index corresponding to the abelianized coordinatet . It follows from
Section 2.3 that the same is true forg. The maximal index of a fixed point of a pseudo-
Anosov homeomorphism is+1, sog has at least two such fixed points of index 1, and
sinceg is pseudo-Anosov relative toA, they must belong to different fixed point classes.
But [x1] and[x2] are the only Reidemeister classes inLR(g ) abelianizing tot , they are
the coordinates of these two fixed points, and they are thus distinct as elements ofπR. So
x1 andx2 are notgπ -conjugate.

Remarks.
(1) The preceding example also proves the assertion made in Remark (2) following

Theorem 11: there existβ ∈ Bn, v ∈ Fn, andδ ∈ Bn which commutes withβ such that
βv andβ(v)δ are conjugate via an element ofBn

n+1 but not necessarily via an element of

Un+1. For taken = 3, β = (σ1σ
−1
2 )2 ∈ B3, v = x2, δ = σ1σ

−1
2 , andw = (v)δ = x1. We

have just seen thatv and(v)δ are not Reidemeister equivalent forβ . Soβv andβ(v)δ are
not conjugate via an element ofU4. However,δ commutes withβ , and(w)δ = (x2)β is
Reidemeister equivalent tov = x2 for β . It follows from part (b) of Theorem 11 thatβv
andβ(v)δ are conjugate via an element ofB3

4 (they are in fact conjugate viaι(δ)).
(2) Let h : (M,A)→ (M,A) be a pseudo-Anosov homeomorphism of a compact, con-

nected surfaceM. For eachn ∈ N, the fixed points ofhn lying in Int(M) \ A belong to
distinct fixed point classes. One might ask whether the braid types [6,7,18,21], considered
relative toA, of two periodic orbits ofh of the same period are distinct. The answer is no.
For consider the pseudo-Anosov homeomorphismg : (D2,A) → (D2,A) in the previous
example. Fori = 1,2, letyi ∈ Fix(g) \A be a fixed point which realizes the Reidemeister
class[xi] for g. The preceding remark shows that, relative toA, y1 andy2 have the same
braid type.

There are several possibilities for extensions of these ideas. One would be to general-
ize the extension construction to surfaces of higher genus. This could be undertaken using
generalized braid groups. Another is to consider the case of periodic orbits, in particular,
to find analogous criteria to decide when two periodic orbits are strong Nielsen equivalent
in the sense of Asimov and Franks [1]. These two generalizations are the subject of work
in progress.

4. Reidemeister classes and reducibility

In this section, we give a criterion in terms of reducibility to decide whether two fixed
points of a surface homeomorphism belong to the same fixed point class.
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Fig. 1. The arcsα1 andα2.

Let M be a compact, connected, orientable surface, and letA ⊆ Int(M) be a finite
subset. Letf : (M,A) → (M,A) be an orientation-preserving homeomorphism, and let
{y1, y2} = Y ⊆ Fix(f ) \ A, wherey1 �= y2. By adding a collar containing no new fixed
points to each boundary component ofM, we may suppose without loss of generality that
y1, y2 ∈ Int(M).

Suppose thaty1 andy2 lie in the same fixed point class forf : (M,A)→ (M,A). Then
there exists an arcc : [0,1] →M \A joining them such thatf (c) is homotopic toc relative
toA, keeping endpoints fixed. A priori,c is not an embedding, but it can be made to be so,
by ‘pushing off’ any self-intersections. But as we have already seen in Section 3.4,f (c) is
not necessarily homotopic toc relative toA∪Y . As another example, consider the two arcs
α1 andα2 shown in Fig. 1. They are homotopic relative toA= {x}, but are not homotopic
relative toA ∪ Y , and it is easy to construct a homeomorphism of the discD2 that fixes
pointwisex, y1 andy2, and that sendsα1 ontoα2.

With this in mind, we shall say that a simple closed curveC ⊆ Int(M) \Y is Y -reducing
if:

(YR1) C bounds a topological closed discD (which we shall call aY -reducing disc)
such thatD ∩ (A∪ Y )= Y , and

(YR2) f (C) is homotopic toC relative toA∪ Y .
This definition may be extended to larger finite subsetsY ⊆ Fix(f ) \A. It follows from

a theorem of Baer [10] that if condition (YR2) is satisfied thenf (C) is in fact isotopic
to C relative toA ∪ Y . This means that anyY -reducing curve is also (up to isotopy)
a reducing curve (in the sense of Nielsen–Thurston theory) for the homeomorphism
f : (M,A∪ Y ) → (M,A∪ Y ). By applying the Bestvina–Handel algorithm, one can thus
decide effectively whether such a curve exists, and if so, the algorithm will exhibit a
Y -reducing curve (which may not be unique). In particular, the following result, which is
part (a) of Theorem 4, gives a criterion (stronger than abelianization of their coordinates)
to decide whether two fixed points belong to the same fixed point class.

Proposition 18. Suppose thatf : (M,A) → (M,A) and Y are as above, and suppose
further that there exists aY -reducing curve. Theny1 andy2 belong to the same fixed point
class.

For the proof, it suffices to take an arc contained in the correspondingY -reducing disc
joiningy1 andy2. In general, the converse of the proposition is false. As in Section 3.4, take
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M = D2 and a homeomorphism whose suspension realizes the braidσ 2
1σ

2
2σ

−2
1 σ−2

2 ∈ B3.
Its isotopy class is pseudo-Anosov, so there are no essential reducing curves, but relative
to any one of the three points associated to the braid strings, the other two points belong to
the same fixed point class.

There are however certain interesting cases, where with extra hypotheses, the converse
of Proposition 18 is true. This being the case, the fact that two fixed pointsy1 andy2 of
a surface homeomorphismf belong to the same fixed point class means that there exists
a Y -reducing curve, and we can thus distinguish the Reidemeister classes of fixed points
of f . This is indeed the case in the situations described in part (b) of Theorem 4, and in
Theorem 5.

Proof of part (b) of Theorem 4. To prove the necessity of the condition, it suffices to
takeγ to be any simple arc joiningy1 to y2 contained within theY -reducing disc whose
boundary is the givenY -reducing curve.

To prove sufficiency, isotopef relative toA∪Y to the ‘standard form’ϕ : (M,A∪ Y )→
(M,A∪ Y) of [29]. It follows from that paper (blowing up the points ofY to boundary
circles if necessary—the corresponding boundary components are thenϕ-related) thaty1

andy2 must both lie in the same finite order componentM0 which is fixed pointwise by
ϕ, and thatγ may be chosen to lie entirely withinM0. Now takeC ⊆ Int(M0) to be any
simple closed curve bounding a disc satisfying condition (YR1), thenϕ(C) = C, and so
condition (YR2) is satisfied forf . ✷

A similar argument proves Theorem 5. It would be interesting to have an analogous char-
acterization of fixed point classes for the case where the isotopy class off : (M,A∪ Y )→
(M,A∪ Y) is pseudo-Anosov. Of course, the Borromean rings example shows again that
equivalence in Theorem 5 does not hold in this case. We can interpret topologically the
negative result of this example. From Jiang’s characterization of fixed point classes in
terms of curves in the suspension (see Section 2.2), it follows that two fixed pointsy1,
y2 of a surface homeomorphismf belong to the same fixed point class if and only if the
corresponding simple closed curvesC1, C2 are freely isotopic in the mapping torus minus
the image ofA under the suspension flow. Since there is noY -reducing curve, this means
that there is no embedded annulus whose boundary components areC1 andC2, and whose
interior avoidsC1 ∪ C2.

5. Reducibility and the Alexander polynomial

Let β ∈ Bn be a braid, and letL1, . . . ,Lµ denote theµ � 1 components of the link
β̂. The permutationρ induced byβ consists ofµ disjoint cyclesρ1, . . . , ρµ, whereρi
corresponds to the componentLi of β̂. With the notation of Section 2.1, the link groupG=
π1(S

3 \ β̂ ) of the complement of̂β in S3 admits the presentation〈x1, . . . , xn |R1, . . . ,Rn〉,
whereRi is the relationAixρ(i)A

−1
i x−1

i for i = 1, . . . , n [3]. Let ψ denote simultaneously
the canonical group homomorphismFn = 〈x1, . . . , xn〉 →G and its extensionZFn → ZG

to the group rings. LetH = 〈t1〉 × · · · × 〈tµ〉 denote the free abelian group of rankµ,
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and letϕ denote simultaneously the homomorphismG → H which maps the generator
xi to the indeterminatetj , where i belongs to the support ofρj , and its extension
ZG→ ZH to the group rings, whereZH is the ring of polynomials int1, t

−1
1 , . . . , tµ, t

−1
µ

with integer coefficients. For eachj = 1, . . . ,µ, we may considertj to be at once a
free generator ofH and an oriented meridian ofLj . There is a matrix representation
r :Bn → GL(n− 1,ZH), which we call thelink representationof Bn [19]. One obtains
thereduced Burau representationby identifyingt1, . . . , tµ in r(β) to a single symbolt .

Let A ⊆ Int(D2) be ann-point subset, and letf ∈ Homeo(D2, ∂D2,A) be such that
A consists ofµ distinct periodic orbits off . Let {ft }t∈[0,1] : Id � f be an isotopy that
is fixed on∂D2, and letβ ∈ Bn represent the geometric braid(A, {ft }t∈[0,1]). The link
representation may be interpreted as a signed linking transition matrix for an Axiom A
representative that realizes the braidβ [14]. It is also strongly related to the abelianized
Reidemeister trace: more precisely,LH (f ) = −Tr(r(β)) [16], and Coker(1− f ∗1) =
H [26,27]. Further,L(f )= LH(f )|t1=···=tµ=1 is the usual Lefschetz number [16].

Burau showed that det(r(β) − Id) = (1 + t + · · · + tn−1) · ∆β̂(t) if µ = 1, and
det(r(β) − Id) = (ϕψ(x1 · · ·xn) − 1) · ∆β̂(t1, . . . , tµ) if µ � 2 [36]. This gives a simple
method of computing the Alexander polynomials of closed braids, such as those appearing
in Theorem 6, which is a stronger criterion than that of abelianization. Theorem 6 may be
used to detect certain reducible isotopy classes, notably theY -reducible ones of Section 4.
The generalization of this is the subject of work in progress.

Part (a) of Theorem 6 follows from Theorem 1 and the fact that the closures of conjugate
braids have the same Alexander polynomial. Part (b) may be proved by looking at a
Jacobian matrix with respect to the Fox calculus of the action ofβ on a suitable set
of generators forπ1(D

2 \ A); by conjugation, one may suppose thatβ is adapted to the
reduction. The result also follows directly from [34,37].

The converse to Theorem 6 is false. Consider the following example (suggested by
Jonathan Hillman). Take

β = σ2σ3σ
−3
1 σ2σ3σ4σ3σ

−1
2 σ 2

1σ
−1
2 σ−1

3 σ−1
4 ∈ B6.

Let f : (D2,A∪ {y1, y2}) → (D2,A∪ {y1, y2}) be an orientation-preserving homeomor-
phism that realizesβ (via an isotopy{ft }t∈[0,1]), whereA is a periodic orbit of period 4
corresponding to the first four strings, andy1 andy2 are fixed points off corresponding
to the 5th and 6th strings respectively. With the notation introduced just before the state-
ment of Theorem 6,∆β̂ = ∆α̂2 = 0 because the linkŝβ and α̂2 are both split. Further,
∆α̂1 = 0; this can be checked using the above formulae for the Alexander polynomial, or
by observing that̂α1 may be deformed into the unsplittable link on p. 56 of [25]. So all the
polynomials in Theorem 6 are identically zero (as are the linking numbersl andm). Sup-
pose that there were to exist aY -reducing curve. It follows from Theorem 4 thaty1 andy2

belong to the same fixed point class forf : (D2,A)→ (D2,A). Sinceα1 = δu andα2 = δv ,
whereδ = σ2σ3σ

−3
1 σ2σ3 ∈ B4, u= x−1

2 x1 andv = 1 in F4, it follows from Theorem 1 that
α1 andα2 must be conjugate via an element ofU5 (and thus conjugate inB5). But α̂1 is an
unsplittable link, whileα̂2 is a split link, soα1 andα2 cannot be conjugate. One concludes
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thaty1 andy2 must belong to distinct fixed point classes, and that there is noY -reducing
curve.

6. Periods for disc homeomorphisms

In this section we prove part (a) of Theorem 7 by constructing an explicit example for
eachn� 5.

Let f : (D2,A) → (D2,A) be an orientation-preserving homeomorphism, whereA ⊆
Int(D2) is a periodic orbit off , and the isotopy class off relative toA is pseudo-Anosov.
Let g : (D2,A) → (D2,A) be the pseudo-Anosov homeomorphism in this isotopy class.
Two fixed points ofg belong to the same fixed point class if and only if they both belong
to ∂D2. If z ∈ Fix(g) were to belong to a non-essential fixed point class then it follows
by studying the local foliation structure of pseudo-Anosov homeomorphisms thatz would
have to be a 1-pronged singularity of the foliations (e.g., [18,30]), and soz ∈ A. Since
A∩Fix(g)= ∅, we conclude thatz must lie in an essential fixed point class. So the element
LR(f ) describes exactly the linking information of the fixed points of the pseudo-Anosov
homeomorphismg. In particular, the projected coordinateηθ(coord(z, f ))= t l , wherel is
the algebraic linking number ofz aboutA in some given suspension.

Proof of Theorem 7. Taken� 5. Letβ = σ1σ2 · · ·σn−3σ
−1
n−2σ

−1
n−1 ∈ Bn. Letf : (D2,A)→

(D2,A) be the Thurston representative of the isotopy class relative toA such thatfπ may
be identified withβ . We will show thatf is pseudo-Anosov and that it has no points of
period 2.

We calculate the action ofβ (and hencefπ ) onπ1(D
2 \A) using Eq. (1):

β :



x1 �→ x1x2 · · ·xn−3xnx
−1
n−3 · · ·x−1

2 x−1
1 ,

xi �→ xi−1, for 2� i � n− 2,

xn−1 �→ x−1
n xn−2xn,

xn �→ x−1
n xn−1xn.

Applying Eqs. (4) and (8), we see that

LR(f )= [1] −
[

n∑
i=1

∂((xi)β)

∂xi

]
= [x1] + [

x−1
n

] − [1]. (13)

We claim thatf : (D2,A)→ (D2,A) is pseudo-Anosov. It cannot be finite order since the
exponent sum es(β) of β would have to be a non-zero multiple ofn−1 [6], and we see that
es(β)= n− 5 (which is not divisible byn− 1 if n � 4). On the other hand,f cannot be
reducible. One can prove this using the Bestvina–Handel algorithm. We give an alternative
short proof using linking number properties. Suppose thatf were reducible relative toA.
Let {C1, . . . ,Ck} be a set of reducing curves such thatf (Ci ) = Ci+1 for 1 � i � k − 1 and
f (Ck) = C1. Then 1< k < n andk | n. Let D0 be the reducing component that contains
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∂D2; it is a k-holed disc. Each one of the other reducing componentsD1, . . . ,Dk contains
n/k > 1 points ofA. Suppose thatz ∈ Fix(f ) = Fix( f ). Since Fix(f ) ∩ (

⋃k
i=1Di ) = ∅

then z ∈ D0. Let [α] ∈ ZπR be the coordinate ofz. Then the abelianized coordinate is
ηθ([α])= t l ∈ Coker(1− f ∗1), wherel is the linking number ofz aboutA. By reducibility,
l must be a multiple ofn/k. But from Eq. (13), there exist two fixed points whose
abelianized coordinates aret±1, which implies thatn= k. This contradicts our assumption
thatn/k > 1. Hencef must be pseudo-Anosov relative toA.

We now show thatf has no points of period 2. It suffices to prove that Fix(f )= Fix(f 2).
By considering the abelianization of the three fixed point classes in Eq. (13), we conclude
that they are distinct. On∂D2, each of the two invariant foliations associated with the
pseudo-Anosov homeomorphism has at least one singularity, the singularities of the two
foliations alternate, the singularities are permuted byf , and they all have the same period.
Remembering that two fixed points off belong to the same fixed point class if and only if
they lie in∂D2, and by considering the index of a fixed point in terms of the local foliation
structure [18,30], we conclude from Eq. (13) that:

(i) f has exactly two (interior) fixed points of positive index, corresponding to thefπ -
conjugacy classes[x1] and[x−1

n ];
(ii) f either has exactly one interior fixed point of negative index, or it has exactly

two fixed points on∂D2 (which correspond to singularities of the foliations). This
corresponds to thefπ -conjugacy class[1].

Similarly,β2 has the following action onFn:

β2:



x1 �→ x1x2 · · ·xn−3xnx
−1
n−3x

−1
n xn−1xnxn−3x

−1
n x−1

n−3 · · ·x−1
2 x−1

1 ,

x2 �→ x1x2 · · ·xn−3xnx
−1
n−3 · · ·x−1

2 x−1
1 ,

xi �→ xi−2, for 3� i � n− 2,

xn−1 �→ x−1
n x−1

n−1xnxn−3x
−1
n xn−1xn,

xn �→ x−1
n x−1

n−1xn−2xn−1xn.

Applying Eqs. (4) and (8) (forf 2
π -conjugacy classes), we see that:

LR

(
f 2) = [x1x2] + [

x−1
n x−1

n−1

] − [1]
= [

(x1)β · x1
] + [(

x−1
n

)
β · x−1

n

] − [1].
So f 2 has exactly three fixed point classes, which are distinct (as classes off 2). Since
f 2 : (D2,A)→ (D2,A) is also pseudo-Anosov relative toA, we conclude as before that:

(i) f 2 has exactly two (interior) fixed points of positive index, corresponding to the
f 2
π -conjugacy classes[(x1)β · x1] and[(x−1

n )β · x−1
n ];

(ii) f 2 either has exactly one interior fixed point of negative index, or it has exactly
two fixed points on∂D2 (which correspond to singularities of the foliations). This
corresponds to thef 2

π -conjugacy class[1].
But Fix(f ) ⊆ Fix(f 2), hence it follows that the fixed points off 2 are precisely the fixed
points off . Sof has no periodic points of period 2. In particular, Per(f ) �= N. ✷
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Remark. Applying the Bestvina–Handel algorithm to these examples, and constructing a
Markov partition, one may in fact show that Per(f )= N \ {2}.
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