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A study of the human immunodeficiency virus Type 1 (HIV-1) 59 long terminal repeat (LTR) was performed to determine the
extent of variation found within the LTR from 19 mother–infant pairs in Tanzania and to assess whether the LTR is useful in
distinguishing maternal sequences that were transmitted to infants. HIV-1 subtypes A, C, and D as well as intersubtype
recombinant LTR sequences were detected in mothers and infants. The LTR subtype was 100% concordant between mothers
and their infants. Diversity calculations showed a significant reduction in LTR variation in infants compared to their mothers.
However, the overall magnitude of LTR variation was less than that found in the env gene from the same individuals. These
data suggest a selective constraint active upon the 59 long terminal repeat that is distinct from immune selective pressure(s)
directed against HIV-1 structural genes. Detection of maternal LTR variants that were transmitted to infants may yield

provided by Elsevier - Publisher Con
important information concerning nonstructural determinants of HIV-1 transmission from mother to infant. © 2000 Academic
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INTRODUCTION

Transmission rates of the human immunodeficiency
virus Type 1 (HIV-1) from mother to infant vary signifi-
cantly from 13 to 43% (Working Group on Mother-To-Child
Transmission of HIV, 1995). Differences in maternal dis-
ease status, mode of delivery, breastfeeding, and the
availability of antiviral therapies may contribute to the
varying rates of HIV-1 perinatal transmission (John and
Kreiss, 1996). Identification of specific viral features of
maternal HIV-1 variants that are transmitted to infants
may aid in designing more effective approaches to pre-
vent perinatal transmission. Viral factors such as pheno-
type (Ometto et al., 1995; Scarlatti et al., 1993a) and
genotype (Renjifo et al., 1999) may contribute to the
ransmission of HIV-1 variants from a mother to her
nfant.

Because of the error-prone nature of the HIV reverse
ranscriptase enzyme, extensive variation within the viral
enome is generated. HIV within an individual exists as

complex of related but distinct genotypic variants,
ermed the quasispecies (Wain-Hobson, 1992). As in-
rapatient variation exists, so does interpatient variation.
ased on phylogenetic analyses of samples from diverse
eographic locations, at least 11 major HIV-1 subtypes,

ermed HIV-1 A–K, have been identified to date (Korber et
l., 1998; McCutchan et al., 1996; Roques et al., 1999).

ntrasubtype variation is typically higher than intrapatient
K
a
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ariation but lower than intersubtype variation. Gag and
nv sequences from different subtypes show that inter-
ubtype variation may be as high as 14 and 30%, respec-

ively (Burke and McCutchan, 1997). HIV-1 subtypes also
ave distinct geographic locations. For instance, HIV-1
ubtype B is the most prevalent subtype in the Americas
nd Western Europe, subtype E is the most prevalent
ubtype in Southeast Asia, and subtypes A, C, and D are

he most prevalent subtypes in Africa. Despite account-
ng for the vast majority of HIV-1 infections globally,
enotypic data from epidemiologically related individu-
ls infected with non-B HIV-1 subtypes are extremely

imited.
Currently, the number and identity of viral loci that

ontain potential determinants associated with perinatal
ransmission of HIV-1 are unknown. Multiple studies
ave shown that env is significantly more diverse in
others than in newborns (Ahmad et al., 1995; Mulder-

ampinga et al., 1995; Scarlatti et al., 1993b; Wike et al.,
992; Wolinsky et al., 1992). The low heterogeneity of

nfant env sequences has led some researchers to hy-
othesize that viruses able to escape the maternal im-
une response or those with specific phenotypic prop-

rties are preferentially transmitted to infants (Wike et al.,
992; Wolinsky et al., 1992). Distinct glycosylation pat-
erns in the V3 region of envelope were found to be
ssociated with perinatal transmission. However, subse-
uent studies have been unable to confirm these find-

ngs (Ahmad et al., 1995; Contag et al., 1997; Mulder-

ampinga et al., 1993; Scarlatti et al., 1993b). Similar
nalyses with vif (Yedavalli et al., 1998a) and vpr (Ye-
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davalli et al., 1998b) have shown these genes to be
highly conserved during perinatal transmission but have
found no signature sequences/motifs associated with
transmission.

Although viral populations may be influenced by the
immunological response of the host, they may also be
influenced by the transcriptional activation of the viral
quasispecies. The long terminal repeat (LTR) region of
HIV-1 is essential for proviral synthesis, integration of the
proviral DNA into the host cell’s genome, and regulation
of HIV-1 transcription [reviewed in Al-Harthi et al. (1998);
Gaynor (1992)]. The LTR’s central role in the regulation of
HIV-1 gene expression suggests that variations within
this region of the HIV genome may dramatically affect
proviral regulation and expression. A number of studies
have suggested that point mutations, insertions, and
deletions in the LTR may influence the levels of LTR
transactivation (Delassus et al., 1991; Estable et al., 1996;
Kirchhoff et al., 1997; Michael et al., 1994). Others have
demonstrated that insertions and even single point mu-
tations in the LTR may lead to viruses with a better
capacity to replicate and/or direct gene expression
(Chene et al., 1999; Golub et al., 1990; Verhoef et al.,
1999). Subtype-specific differences in the LTR response
to rel proteins (Montano et al., 1997; Naghavi et al., 1999)
and the cytokine TNF-a (Jeeninga et al., 2000; Montano
et al., 2000) have also been shown, further suggesting
that LTR variation is more extensive than previously
thought.

To date, no data on LTR sequences associated with
maternal–infant transmission and few data on the extent
of LTR variation within individuals or between individuals
infected with non-B subtypes have been collected. It is
also unknown whether maternal LTR variants that were
transmitted to infants could be identified and whether
such variants had common sequence characteristics.
We have analyzed 59 LTR sequences from 19 HIV-1-
positive mother–infant pairs from Tanzania to determine
whether the LTR might also vary between mother–infant
pairs and to determine the relevance of nonstructural
regulatory regions to perinatal transmission of HIV-1.

RESULTS

LTR subtype classification

A previous study of the 59 long terminal repeat from 24
infants in Dar es Salaam, Tanzania, identified HIV-1 sub-
types A, C, and D as well as intersubtype recombinant
LTRs with multiple recombination patterns (Blackard et
al., 1999). In the current study, we have further explored
the genetic diversity of the HIV-1 long terminal repeat by
amplifying the 59 LTR from multiple mother–infant pairs
infected with different HIV-1 subtypes as well as inter-
subtype recombinant viruses. The consensus LTR for

DIVERSITY OF HIV-1 LTR AFTER
each individual of 17 of 19 pairs clustered together with
bootstraps of greater than 99%, indicating epidemiolog-

0
l

ical linkage of these samples (Fig. 1). The consensus
LTR for pair 3 grouped together but with a bootstrap of
less than 70%, and the consensus LTR for pair 16 formed
a nonsignificant grouping with the consensus se-
quences of pair 17. Interestingly, these pairs were sub-
sequently shown to possess transmitting maternal LTR
variants. This suggests that the presence of multiple
maternal sequences in the infant may influence the gen-
eration of an accurate consensus LTR sequence in the
infant. In all cases, the consensus LTR subtype for the
mother matched that of the infant. Additionally, all clones
from a mother and her infant typically grouped together
with high bootstrap values, suggesting that mothers
were unlikely to be infected with multiple LTR subtypes
or recombination patterns (data not shown). Five
mother–infant pairs (Nos. 1, 2, 3, 4, and 5) were infected
with subtype A, 7 pairs (Nos. 13, 14, 15, 16, 17, 18, and 19)
were infected with subtype C, 5 pairs (Nos. 7, 8, 9, 10, and
11) were infected with subtype D, and 2 pairs (No. 6 with
A/D and No. 12 with D/A/D) were infected with intersub-
type recombinant LTRs.

Intrapatient variation

To determine the extent of LTR diversification in epi-
demiologically linked individuals, multiple clones from
each mother or each infant were aligned and used to
calculate the LTR intrapatient divergence for each
mother–infant pair. The range of intrapatient LTR diver-
sity varied from 0.6 to 2.4% for the 19 mothers, while the
range of intrapatient diversity for infants varied from 0.3
to 1.3% (Fig. 2A). For 16 of 19 pairs (84%), the intrapatient
LTR divergence of the mother was greater than that of
the infant. For one pair (5%), the intrapatient divergence
of the infant—14 weeks of age at the time of sample
collection—was greater than that of the mother. For two
pairs (11%), the LTR intrapatient divergence was equal in
the mother and the infant (Table 1). The mean LTR in-
trapatient variation of the mothers was significantly
higher than the mean LTR intrapatient variation of the
infants (1.42% versus 0.70%, respectively; P 5 0.0003)
despite collection of infant samples at various times from
6 to 50 weeks after delivery (Fig. 2C). The maternal
quasispecies typically displayed more variation than that
found within the infant regardless of the HIV-1 subtype.

We also calculated the env intrapatient variation using
at least five maternal clones or at least three infant
clones per pair. The env intrapatient variation in mothers
ranged from 0.2 to 7.9% (Fig. 2B). The env intrapatient

ariation in infants ranged from 0.2 to 2.8%. In contrast to
he LTR intrapatient data, only 12 mothers (63%) had
igher env variation than their infants. The mean env

ntrapatient variation was significantly higher in mothers
han in infants (3.11% versus 0.98%, respectively; P 5

403ER TO CHILD TRANSMISSION
.011). The mean LTR variation was also significantly
ower than the mean env variation for mothers (P 5 0.03)



value
(Fig. 2C). However, a similar comparison for infants
found that LTR and env showed equivalent levels of
intrapatient diversity (P 5 0.26).

Transmission of LTR variants

FIG. 1. Consensus LTR sequences were aligned in Clustal W (Thomps
subtypes A through E, G, I, and J to assign an HIV-1 subtype. Closed c
sequences. Arrows indicate intersubtype recombinant LTRs. Bootstrap
results were obtained using maximum parsimony (data not shown).

404 BLACK
To address the issue of LTR variants that were suc-
cessfully transmitted from the maternal blood to her
infant, separate phylogenetic analyses were performed
for each mother–infant pair. The 10 clones from the
mother and the 5 clones from the infant for each pair
were aligned and phylogenetic trees of each pair dem-
onstrated the presence of multiple maternal genotypes

l., 1994) and compared to reference database LTR sequences for HIV-1
enote maternal LTR sequences, while open circles denote infant LTR

s (out of 100) showing each mother–infant pair are indicated. Similar

T AL.
on et a
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in most mothers regardless of LTR subtype. In contrast,
most infants were infected with a highly homogenous



–C5 in
r mothe
LTR population. The relationship between maternal viral
genotypes and those actually transmitted to infants was
assessed by phylogenetic tree analyses. Transmitted
maternal LTR sequences were defined as those se-
quences within the mother that formed a monophyletic
grouping with all infant LTR sequences. Transmitted ma-

FIG. 2. (A) The LTR intrapatient variation was calculated using 10 m
a closed circle (mother) or open circle (infant); however, due to similar v
Each horizontal line represents one mother–infant pair. (B) Envelope C2
at least 3 infant clones. (C) Mean LTR and env intrapatient variation fo

T

Pair name

HIV-1 subtype

LTR env

1* A A
2 A A
3* A A
4* A DCD
5 A D
6 AD A
7 D D
8* D A
9 D A

10 D D
11 D D
12 DAD A (mother) & D (infant)
13 C C
14* C C
15 C A
16* C C
17 C C
18* C C
19 C C

Note. For 16 of 19 mother–infant pairs, the mother was the more

DIVERSITY OF HIV-1 LTR AFTER
mother–infant pairs, the mother was the more heterogeneous individual whe
transmitting maternal LTR variants were detected.
ternal LTR variants were detected in 7 mothers (Fig. 3a).
For these 7 pairs, 1 to 5 maternal clones were highly
related to infant variants and termed transmitted mater-
nal variants. For example, 2 maternal LTR variants that
form a subcluster (93 of 100 bootstrap values) with all
infant LTR sequences were detected in pair 1. For pair 3,

clones or 5 infant clones. The percentage divergence is indicated as
n some individuals, several circles represent more than one individual.
trapatient variation was calculated using at least 5 maternal clones or
rs and infants is shown in boldface type with ranges in parentheses.

Infant age at draw
(in weeks)

Highest variability

LTR env

6 Mother Mother
26 Equal Mother
10 Mother Mother
14 Mother Mother
26 Mother Infant
39 Mother Mother
39 Mother Infant
26 Mother Infant

8 Mother Mother
6 Mother Mother

50 Mother Mother
10 Mother Mother

6 Mother Infant
6 Mother Mother
6 Mother Infant
6 Mother Infant
6 Mother Mother

14 Infant Infant
14 Equal Mother

geneous individual of the pair when the LTR was analyzed. For 12

405ER TO CHILD TRANSMISSION
aternal
alues i
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ABLE 1

hetero

n env was analyzed. Asterisks denote mother–infant pairs for which
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3 distinct subclusters of maternal LTR variants were
detected: one grouping of 2 variants (100 of 100 boot-
strap values), a second grouping of 5 variants (87 of 100
bootstrap values), and a third grouping of 3 maternal
variants with all 5 infant clones (96 of 100 bootstrap
values). The consensus LTRs for these transmitting
mothers were classified as 3 subtype As (pairs 1, 3, and
4), 3 subtype Cs (pairs 14, 16, and 18), and 1 subtype D

FIG. 3. (a) Maternal LTR variants that were transmitted were determin
nly mother sequences that clustered monophyletically with infant seq

ircles denote maternal LTR sequences, while open circles denote in
sterisks denote maternal LTR variants that were transmitted. A poun

epresentative pairs showing no detectable maternal LTR variants tha

06 BLACK
(pair 8). The infants ranged from 6 to 26 weeks of age
(average 5 11.7 weeks) at the time of sample collection.
No transmitted maternal LTR variants, as defined in this
study, were detected in the remaining 12 mothers de-
spite the presence of multiple maternal variants. For
instance, all 10 maternal LTR sequences from pair 6 form
a tight subgroup (93 of 100 bootstrap values) that is
distinct from all 5 infant sequences (Fig. 3b). These
infants ranged from 6 to 50 weeks of age (average 5 19.7
weeks) at the time of sample collection. Maternal LTR

ligning the 10 clones per mother and 5 clones per infant for each pair.
s with a bootstrap larger than 70 were considered significant. Closed
R sequences. Relevant bootstrap values greater than 70% are given.
denotes the presence of multiple maternal LTR genotypes. (b) Three
transmitted to infants are given.
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sequences were analyzed for potential sequence deter-
minants of perinatal transmission. However, due to the
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sample size, we were unable to detect features common
to all maternally transmitted LTR variants (data not
shown).

CONCLUSIONS

Despite its role in viral transcription and potential roles
in cellular tropism (Chen et al., 1984; DesGroseillers et

l., 1983a; Rosen et al., 1985; Speck et al., 1990b) and
isease specificity (Chatis et al., 1983; DesGroseillers
nd Jolicoeur, 1984; DesGroseillers et al., 1983b; Speck
t al., 1990a; Stoye et al., 1991), the extent of variation of

he HIV-1 59 long terminal repeat is largely unknown.
urrently, the majority of perinatal transmission of HIV-1
ccurs in Africa where non-B HIV-1 subtypes are the
revalent circulating viruses. In the current study of 19
other–infant pairs from Tanzania, the LTR was classi-

ied as HIV-1 subtypes A, C, or D with two pairs having
ntersubtype recombinant LTRs.

The consensus sequences for a mother and her infant
ndicate that, using a phylogenetic approach, the 59 long
erminal repeat can be used to identify epidemiologically
inked individuals such as mother–infant pairs and to
dentify maternal variants that were successfully trans-

itted to the infant. We noted 100% concordance be-
ween the mother LTR subtype and that of the infant. The

onophyletic nature of LTR sequences from each
other or infant suggests that infections with multiple

TR subtypes are rare or that such infections were not
etected because they represent a very small fraction of

he total LTR quasispecies. We were able to show that
aternal long terminal repeat diversity was generally

igher than that of the infant, although there were several
nstances of transmission of multiple LTR variants to the
nfant. For instance, two or more maternal sequences

ere detected in infants of pairs 1, 3, 4, 14, 16, and 18.
aternal LTR diversity was high regardless of the infect-

ng subtype or recombination pattern detected. The loss
f sequence heterogeneity following transmission sug-
ests that a limited number of maternal genomes se-

ected during perinatal transmission are responsible for
he subsequent infection of the infant. However, we did
ote that for a single pair, the infant LTR quasispecies

sample taken at 14 weeks) was more diverse than that
f the mother, suggesting transmission of multiple ma-

ernal variants or multiple infant infections with HIV-1.
he vertical transmission of multiple variants may be a

unction of the long exposure period of the infant in utero,
he size of the viral inoculum to which the infant may be
xposed during delivery, or subsequent reinfection of the

nfant during breastfeeding. In addition, we have shown
hat the variants that are transmitted from mother to
nfant may represent up to 50% of the maternal LTR
uasispecies.

DIVERSITY OF HIV-1 LTR AFTER
A study of variation over time in the 39 LTR and the nef
verlap coding region found that nef was significantly
ore diverse than the 39 LTR (McNearney et al., 1995).
he authors concluded that the LTR was under greater
elective constraint than nef. Using mother–infant pairs,
e have also noted limited sequence diversity in the 59

TR. LTR intrapatient variation was significantly less than
hat found in a structural gene of mothers. Despite this
imited LTR variation, we did find a statistically significant
eduction in the 59 LTR variation in infants compared to

others following perinatal transmission. As the 59 LTR
tself does not encode proteins capable of interacting
irectly with the host immune system, maternal immune
election pressures do not contribute significantly to the

ow diversity of the infant LTR quasispecies found in the
urrent study. However, immune selection pressures act-

ng upon Tat and the Nef overlap region of the 39 LTR
ay indirectly influence LTR diversity. One likely selec-

ion pressure influencing LTR quasispecies diversity—
nd subsequent transmission—is transcriptional fitness.

The long terminal repeat is responsive to a number of
ytokines, transcriptional activators, and viral proteins.
owever, like other HIV-1 loci, the LTR exists as a qua-

ispecies of distinct LTR variants. Small nucleotide
hanges may impact interactions of the LTR with signal-

ng molecules resulting in a range of transactivation from
TR sequences derived from a single individual. One
tudy has demonstrated that a single point mutation in

he LTR abolished responsiveness to one cellular protein
hile simultaneously increasing responsiveness to an-
ther protein (Verhoef et al., 1999). These observations
ave led some researchers to suggest that HIV-1 gene

egulation by the long terminal repeat may be linked to
IV-1 transmission (Al-Harthi et al., 1998, 1999; Hashemi
t al., 1999; Montano et al., 1997). Those LTR variants that
onsistently respond to the best to the host cell’s signal-

ng molecules will likely be transactivated more than less
esponsive LTRs, thereby leading to higher levels of
ranscription from these LTRs. We have previously dem-
nstrated that HIV-1 subtypes respond differentially to
uclear factor kB (NF-kB)/rel proteins (Montano et al.,

1997) and the pro-inflammatory cytokine, TNF-a (Jeen-
inga et al., 2000; Montano et al., 2000). Similarly, tran-
scriptional activation of particular LTR variants within an
infected mother during pregnancy or during breastfeed-
ing may increase the likelihood of transmission of these
activated variants when compared to long terminal re-
peats with minimal transcriptional activity. Thus, persis-
tent LTR variants found within infants may reflect in-
creased transcriptional fitness of such variants in the
mothers relative to LTR variants that were not transmit-
ted. This hypothesis is compelling in light of the growing
body of literature linking HIV-1 levels to sexually trans-
mitted diseases and other components of the vaginal
microflora. For instance, a factor identified in the female

407ER TO CHILD TRANSMISSION
genital tract has been reported to increase HIV-1 gene
expression via the viral long terminal repeat (Al-Harthi et
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al., 1998; Spear et al., 1997). Similar studies have dem-
onstrated that Treponema pallidum lipoproteins (Theus
et al., 1998), bacterial vaginosis-associatd microorgan-
isms (Al-Harthi et al., 1999; Hashemi et al., 1999), and

omponents of the normal vaginal flora (Klebanoff et al.,
999) may also induce HIV-1 expression. These data
uggest the presence of mechanisms regulating HIV-1
ene expression that may be distinct from those influ-
ncing other genomic regions. For structural proteins,

he maternal immune system is the most likely selection
ressure influencing perinatal transmission. However,

or nonstructural regions of the HIV-1 genome such as
he long terminal repeat, immunoselective pressures are
ess likely to impact variability and/or transmission. Fac-
ors present in the female reproductive tract may influ-
nce both genital tract viral load and the likelihood of
exual and perinatal transmission of HIV-1.

To our knowledge, this is the largest number of
other–infant pairs studied to date and the first study to

nalyze LTR variants associated with perinatal transmis-
ion. Further analysis of viral variants transmitted from
others to infants may further aid researchers in the

evelopment of new strategies for the prevention and
reatment of HIV. It has been suggested recently that

IV-1 env variants from blood and genital secretions of
he same individual may represent distinct viral popula-
ions (Overbaugh et al., 1996; Poss et al., 1995; Shaheen
t al., 1999; Zhu et al., 1996). Similarly, LTR variants in the
eripheral blood may not adequately reflect the transmit-

ed virus population; therefore, further inclusion of se-
uences from vaginal fluid or breast milk is needed for

uture studies. The use of phylogenetic methods to dis-
inguish transmitted viral variants from nontransmitted
ariants may be particularly useful in establishing HIV-1
equences important for transmission.

In conclusion, our results suggest that multiple host–
irus interactions may occur during perinatal transmis-
ion. We propose that there are multiple selection pres-
ures that act upon different genomic regions of HIV-1.
hese pressures may include the host immune system
cting upon structural regions as well as transcriptional
ctivation and fitness acting upon nonstructural regions
f the HIV-1 genome such as the 59 long terminal repeat.

MATERIALS AND METHODS

tudy population and sample collection

Mothers and infants participated in a randomized dou-
le-blind trial to determine whether vitamin supplements
ay reduce the rate of perinatal transmission of HIV-1 in
ar es Salaam, Tanzania (Fawzi et al., 1998, 2000). All
others were classified as stage 1 (84%) or stage 2 (16%)

ccording to the World Health Organization HIV disease
tage classification. To determine the correlation be-

408 BLACK
ween the HIV-1 subtype in the infant and that of the
other, 22 pairs were selected. Whole blood was col-

s
i

ected from mothers at delivery and from infants between
and 50 weeks of age. Peripheral blood mononuclear

ells (PBMCs) were separated by centrifugation on Ficoll
ensity gradients. Mother and infant samples were
oded before amplifications and uncoded after phyloge-
etic analyses had been performed to ensure quality
ontrol of all sequences. Mother and infant samples
ere processed separately to avoid potential contami-
ation. BLAST searches were performed to confirm that
o contamination between samples or known viral iso-

ates had occurred (Altschul et al., 1997).

TR and envelope amplifications

PBMC crude cell lysates were used in a heminested
olymerase chain reaction to amplify a 725-nucleotide

ragment including the 59 long terminal repeat and the 59
ntranslated region. Primers used for the first-round am-
lification were LTR-A (nucleotides 63–92 of HXB2)

Korber et al., 1998) and PBS-B (nucleotides 790–815).
rimers for the second round amplification were LTR-A
nd PBS-D (nucleotides 764–787). Amplification condi-

ions were 2 min at 94°C, followed by 31 cycles of 1 min
t 94°C, 1 min at 56°C, 1 min at 72°C, and a final
xtension step of 5 min at 72°C. One reaction with
IV-1-negative cell extracts and another reaction with no
NA were included in every PCR amplification. The 59
TR from two maternal samples and one infant sample
ould not be amplified; therefore, sequences from 19
other–infant pairs were further analyzed. Amplification

f the envelope C2–C5 region has been previously de-
cribed (Renjifo et al., 1999). PCR amplicons were gel
urified and ligated into the PCR2.1-TOPO vector. Plas-
ids were propagated and purified according to stan-

ard laboratory protocols prior to sequencing using an
BI 373 automated sequencer.

hylogenetic analyses

A consensus LTR for each individual was generated
sing 10 clones per mother or 5 clones per infant. Man-
al editing of consensus alignments was performed and
onsensus LTR sequences for each individual were
ligned with reference LTR sequences using the neigh-
or-joining method of Clustal W (Thompson et al., 1994).
he database reference LTR sequences for HIV-1 sub-

ypes A through E, G, I, and J used to assign the HIV-1
ubtype include the following: A, consensusA, U455,
2UG037; B, consensusB, HXB2, RF; C, consensusC,
2BR025, 93MW959; D, consensusD, Z2Z6, EL1; E, con-
ensusE, 93TH253, 90CR402; G, DRCBL; I, 97PVMY,
7PVCH; and J, BFP90 (Korber et al., 1998). Consensus
equences were analyzed using the Recombinant Iden-

ification Program (RIP) with a 100-bp window and gap

T AL.
tripping (Siepel et al., 1995). A four-sequence alignment
ncluding the putative recombinant sequence, the con-
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sensus sequence of the two putative parental subtypes,
and an outlier (consensus O) was used to localize break-
points for putative intersubtype LTR recombinant se-
quences. Additional phylogenetic analyses with HIV-1
subtype A, C, and D references were performed to con-
firm that sequences upstream (59) of the recombinant
breakpoint belonged to one subtype while sequences
downstream (39) of the breakpoint belonged to a different
subtype. Only when agreement occurred between both
RIP and the breakpoint analysis were sequences con-
sidered to be intersubtype LTR recombinants. Intrapa-
tient pairwise distances were calculated using the
Kimura method of MegAlign (DNASTAR, Inc., Madison,
WI) with separate alignments of the 10 maternal or 5
infant clones. The maternal LTR sequences that were
transmitted were determined by aligning the 10 clones
per mother and 5 clones per infant for each pair in
Clustal W (Thompson et al., 1994). Statistical robustness

nd reliability of the branching order within each phylo-
enetic tree were confirmed by bootstrap analysis

Felsenstein, 1985). Only maternal sequences that
ormed a monophyletic grouping with infant sequences

ith a bootstrap value larger than 70% were considered
ignificant. Here we use maternal “variants” to refer to
aternal LTR sequences that were significantly associ-

ted with infant LTR sequences, thereby distinguishing
aternal transmitted sequences from those not transmit-

ed. Consensus nucleotide sequences have been sub-
itted to GenBank under Accession Nos. AF239621–
F239658.

tatistical analyses

Intrapatient variation within both mothers and infants
as not normally distributed; therefore, nonparametric
nalyses were performed. The Wilcoxon sign rank test
as used to test the hypothesis that the median differ-
nce in intrapatient variation between mothers and in-

ants was zero. P values of less than 0.05 were consid-
red statistically significant.
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