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Abstract 

Ptak, M., A. Rutkowska avd J. Szczurek, A note on inverses of power series, Journal or” Computational and 
Applied Mathematics 39 (199Z) 95-101. 

We show the recurrence formula for coefficients of an inverse of a power series of two variables. This problem 
arises from gecdesy. 
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In the following we will consider an inverse of a power series of two variables. The problem 
arises from geodesy, where the Gauss-Kruger mapping, a function from the surface of the 
earth’s ellipsoid to a subset of R’, is considered. It is usually given by a power series of two 
variables, the longitude and the latitude. The coefficients are calculated on the basis of the 
constants of the ellipsoid. The inverse problem of finding the inverse function to the Gauss- 
Kruger mapping is also studied. It can also be given by a power series. It is interesting from the 
geodesy point of view to compute the coefficients of the inverse series. In the era of computers, 
it means to find an explicit formula for them. Our purpose is to prove the recurrence formula 
(1). Let us observe that one can make an algorithm for it, using, for example, [4]. 

Choose the norm in R* which gives rectangles as balls, i.e., ]l<x, y) 11 = maxi I x I, A I y I I, 

where A > 0 is fixed. Let us recall that a power series E~,s=cla,,fPIq, apq 6 R*, converges on an 
open set G to a function q? : G --) R* if 

p=m,q=n 

c apqfP14 --) $(f 9 07 
p,q=o 

if m, n 3 00 for all (f, I) E G. In what follows, Ik denotes a set { 1, 2,. . . , k}. 

Now we can formulate our main result. 
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Theorem 1. Suppose that a power series c”,,,=uap,lf *IQ, apcl E R2, conr*erges on K(0, R) to a 
tnciion Q% : K(0, R) --) Vdzf - #(K(O, R)) c 8%‘. Assume also that a,, = 0 and 

det a”; Lf 0. 
[ I 

Tlzen Q% is inrertible on K(0, R) and the inr?erse (b : V + K(0, R) is given as a power series 
ll~wf ,ocys~xsyr, a,, E IR’, converging on V. Moreover, au0 = 0, 

c 
~:Ip(l.z) s,+ --- +sk=s 

car,-J x-‘(l)=p f,+ --- +tk=t 
St + ti 2 1 

where x sets the number of a coordinate Q, I (i.e., (“s,t,)xci, is the x(i) coordinate of Q). I I 

‘The recurrence formula (1) gives us the possibility to calculate the coefficients cyst 2f the 
inverse series knowing the coefkients a,, of the given series. Precisely, cysI depends, for fixed 
s, t, on a,, and on qltC for s’, t’ such that s’+t’<s+t. 

Let X, Y be normed finite-dimensional vector spaces. We state a result that will be of use 
later. 

Proposition 2. Suppose that a series ZT =a& of homogeneous polynomials ek : X ---) Y 
def 

confierges to a function 3/ : K(0, p) + V = $( K(0, p)) c Y on K(0, p), where 0 < p G 

&m SU~~_$ & II )-I. if e(O) = 0 and $I is invertible, then + is invertible and the inuerse 
4 : V-, K(0, p) is given as a series ~=0q5, of homogeneous polynomials 4, : Y--j X converging on 

The above proposition strenghtens 13, Theorem 1071, where the inverse of a puwer series on 
is studied. The main idea of the proof of 13, Theorem 1071 works also here. Thus we omit the 

proof. 

kf of Theorem 1. We start with defining the homogeneous polynomials qQ& f, I) = 
c P+q=kapqfP1q for k =O, 1, 2 ,... . Reference [2, Chapter XI, $5, Theorem 71 shows that 

&#&f, 2) converges to $ on K(0, R). It is easy to see that R G (lim sup K_&Ji)-1. 
Applying Proposition 2, there is 4 : V --) K(0, R), inverse of rl/, and C#J is given as a series 
~~+&, of homogeneous polynomials 4, : Y--*X converging on V. We may write 

4,(x, Y)= c a&Yt, (2) 
s+t=n 
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for (x, y) E V. Reference 12, Chapter XI, $5, Theorem 73 shows also that E~,r,oa,,xSy’ 
converges to 4 on I’. Hence, it remains to prove the formula for a~,,. 

Let h : X + Y be any function. For ur E X we define the function A,,,h : X + Y as (A14_,h)(u) 
= h(u + u,) -h(u). Moreover, for ui, l . l ) uk EX, we put Au,___l,Lh = AUI(Au2___,kh). By rnduc- 
tion, it is possible to prove the next lemma. 

Lemma3. Ifh:X + Y is any function, then 

A l+.UkhG4 = WJkhW + i (-vk-’ 
r=l 

Applying [l, formula 7.4.61 for a composition of two polynomials, we can see that the nth 
homogeneous polynomial of the composition of $ and 4 is the following: 

c ~k(~i,(.),...,~i,(.)), 
i,+ -- - +ik=n 

where & : (R2)k + R2 is the unique k-linear 
neous polynomial &, i.e., 

$,&) = (G,(u). 

k times 

Since # 0 4 = id, we have 

symmetric function corresponding to the homoge- 

In [l, Theorem 6.3.11 it was shown that A,, _..Uk@k is a constant function for any u,, 
and 

Hence, by Lemma 3 we obtain 

1 
&&,,..* 9 +) = FAu ,,..., .,+k(‘) 

. 

=; 5 (_l)k-r 

’ r=l 

c @k( i”v,). 
l,(u,< ... <u,<k i=l 

Let Ui = (fi, li) E K(O, R), thus 

(G,((f,, z,)--,(fk, ,,I) 

. . . ,u,$[W2 

lfv,< --- <v,,(k 
rC’k ifv,, i ‘v,) ( 

i=l i=l 
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= i i (-I)“_’ c . r=l l<u,< --- 

E (( ;lfu,)p( fJu,)9 
<u,<k p+q=k i=l 

PI930 

p.qao - 

Let 

sEf i r_qk-’ 
r=l 

c 
l,(u,< --- <:,sk 

It is known that 

(a, + --• +aJ = 
?Z! 

___+k,=nkl!... k,,!af’...a2’ c 
k,+ 

thus 

r=l I c 
i<V,< --- <v,<k pii -.- +p,=p 

, 
X I c 59, 19 .*. r 

’ 
II +9r'9 3 

VI vr 

! $30 I 

r-l 
c p!q! 

PI -fv, 
IGv,< --- <v,Gk p,+ - -- +pr=p P!@ 

q*+ --- +9r=9 
Pivqi>O 

where j?! =pl! l l l p,!, Q! =ql! l l - qr!. Fix r and let 

f 
P, 
ur 

a P9 

. fl P* (II 
v, “I 

. . . l9* 
ur ’ 

c p!q! f LI 

+p =p P!@ L 

. . . Pr9, . ..I9. fl 
l<q< --- 

v, VI “r l 
<u,sk pr+ --- 

91+ * - - +q:=-q 

Now put dj=@,..., cf&), F=(& ,... 
ji = ii = 0, otherwise. Hence 

,@&), where &=pi and iji=qi for iE{ul,...,v,) and 

s,= c 
p!q! C’_-fpI . . . fpq l l . Qk, 

‘I: I,+I, @!i! 
increasing 

where c’ denotes the sum over all j?, 4’ : !& --) I& U (0) such that ijl + . a l +& “p, 

4. ‘L 
f -3. +&ik =q_ Put &o fp =fpl l 1 l fp, l(/= [!I - - - Ip, 16 1 =jjl + l -- +jk, 14’1 = 
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41+ l l l +&. But one can see that 
k-l 

%=C c 
p!q! _ _ 
- P(7 fl c 1 

Ji=k -r 311 ij,@ having fi!tf ! v: r,-*z, 
6 noughts 

S=k -r all @,Q having 
6 noughts 

ThUS 

Now we will change the order of the sums. Let afig = card{i: iji = +i = 01. If fi, 4 are fixed, then 
r goes from k - & to k. 

Hence, 

S = v 
#L 

fi.4: fk-+IAu(O} r=k-S,, 

Let us denote the last sum by S,. Then 

If s-- = 0, then S, = 1 and S, = 0, otherwise. But S,, = 0 means that j$ # 0 or ii # 0 for all i, 
So igy+ <i >, 1 for all i. However, if pi, + 4i, 3 2 for any i,, then p + q 2 k + 1, but p + q = k. 
Hence iii = 1 or lc7i = 1 and j-“(l) ni-‘(1) = 41. Since jj! = i! = 1, if C” is the sum over all 
@, &r,-+{O, 1) such that fi-‘(l)uG-l(l)=&, @-‘(1)&j-l(l)=@, ifil =p, 14’1 =q, We 

have 
$= rp!q!fqL c Pk? !f,, l l l f&i, l l l &* 

lgv,< a.. cv,ezk 
I&CL,< *a. </.q,<k 

Vi # pj for all (i ,j) 

Finally, 



1 

Hence, using (3) we have 
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I 
X . . . x I c bsktk)X(k)~~skYtk Qpq 3 

‘\ sic ii&=iri 
S&J&>,0 )I 1 I 

where (as,r,)x(C, is the x(i) coordinate of as,t,. Thus 

X c c (as*t,)x(,, - - - (asktk)X(k)xS~+ *-* +v’+ ... +Ik 
~:f,+{1.2) j=l,...,k 

cardX_‘(l)=p s,+t~=i~ 

p!q! 
=- 

6 c k’ 
k=2.... n a 

p+q=k 

X I c c c (%,t,)X(,) - - - (%&t&)X(&’ 
x:1&+(1,2) s+t=n sI+ *** +s&=s 

cardx-‘(l)=p t,i -- - +t&=t 
s, + t, B 1 

a 
Pcl 

= c 
s+t=n 

4 

p!q! 

c k’ 
k=2....,n s 

p+q=k 

X I c (%,l)x(,) ’ - ’ (as&t&)X(k) 
X:~,--S{1,2) s,+ --- +s&=s 

cardX-‘(l)=p tI+ --- it&=t 
s, + I, 2 1 

Comparing the above wif:l (2) we obtain (1) and the proof has been finished. II 

mark 4. For the sakp of simplicity of notation, Theorem 1 concerned a power series of two 
variables. However, it can be easily generalized to a power series of n variables. 



M. Ptak et al. / Incerses of power series 101 

References 

[l] H. Cartan, Calcul Dqftrentiel. Form Dijfkrentielles (Hcrmanil, Paris, 1967). 
[2] G.M. Fichtengolc, Lectures on Differential and Integral C&ulus (Nauka, Moscow, 1969, in Russian). 
[3] H. Knopp, Theorie und Anwendung der Unendlichen Reihen (Springer, Berlin, 1922). 
[4] E.M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms. Tkeoty and Practice (Prentice-Hall, 

Englewood Cliffs, NJ, 1977). 


