Letter Section

A note on inverses of power series

M. Ptak, A. Rutkowska and J. Szczurek
Institute of Mathematics and Institute of Higher Geodesy, University of Agriculture, Ul. 18 Stycznia 6, 30-045 Kraków, Poland

Received 1 August 1990
Revised 25 July 1991

Abstract

Ptak, M., A. Rutkowska and J. Szczurek, A note on inverses of power series, Journal oî Computational and Applied Mathematics 39 (1992) 95-101.

We show the recurrence formula for coefficients of an inverse of a power series of two variables. This problem arises from gecdesy.

Keywords: Homogeneous polynomial, power series.

In the following we will consider an inverse of a power series of two variables. The problem arises from geodesy, where the Gauss-Krüger mapping, a function from the surface of the earth's ellipsoid to a subset of \mathbb{R}^{2}, is considered. It is usually given by a power series of two variables, the longitude and the latitude. The coefficients are calculated on the basis of the constants of the ellipsoid. The inverse problem of finding the inverse function to the GaussKrüger mapping is also studied. It can also be given by a power series. It is interesting from the geodesy point of view to compute the coefficients of the inverse series. In the era of computers, it means to find an explicit formula for them. Our purpose is to prove the recurrence formula (1). Let us observe that one can make an algorithm for it, using, for example, [4].

Choose the norm in \mathbb{R}^{2} which gives rectangles as balls, i.e., $\|(x, y)\|=\max (|x|, \lambda|y|\}$, where $\lambda>0$ is fixed. Let us recall that a power series $\sum_{p, q-0}^{\infty} a_{p q} f^{p} l^{q}, a_{p q} \in \mathbb{R}^{2}$, converges on an open set G to a function $\psi: G \rightarrow \mathbb{R}^{2}$ if

$$
\sum_{p, q=0}^{p=m, q=n} a_{p q} f^{p} l^{q} \rightarrow \psi(f, l)
$$

if $m, n \rightarrow \infty$ for all $(f, l) \in G$. In what follows, I_{k} denotes a set $\{1,2, \ldots, k\}$.
Now we can formulate our main result.

Theorem 1. Suppose that a power series $\sum_{p, q=0}^{\infty} a_{p q} f^{p} l^{q}, a_{p q} \in \mathbb{R}^{2}$, concerges on $K(0, R)$ to a function $\psi: K(0, R) \rightarrow V \stackrel{\text { def }}{=} \psi(K(0, R)) \subset \mathbb{R}^{2}$. Assume also that $a_{00}=0$ and

$$
\operatorname{det}\left[\begin{array}{l}
a_{10} \\
a_{01}
\end{array}\right] \neq 0
$$

Then ψ is invertible on $K(0, R)$ and the inverse $\phi: V \rightarrow K(0, R)$ is given as a power series $\sum_{s, t=0}^{\infty} \alpha_{s t} x^{s} y^{t}, \alpha_{s t} \in \mathbb{R}^{2}$, converging on V. Moreover, $\alpha_{00}=0$,

$$
\phi_{1} \stackrel{\operatorname{def}}{=}\left[\begin{array}{l}
\alpha_{10} \\
\alpha_{01}
\end{array}\right]=\left[\begin{array}{l}
a_{10} \\
a_{01}
\end{array}\right]^{-1}
$$

and for $s+:>1$,

$$
\begin{equation*}
\alpha_{s t}=-\phi_{1}\left(\sum_{\substack{k=2 \\ p+a=s^{+t}}} \frac{p!q!}{k!}\left(\sum_{\substack{x: I_{k} \rightarrow(1,2)=\\ \text { card } x_{1}+(1)=p \\ s_{1}+\cdots+s_{k}=s \\ s_{i}+t_{i} \geqslant 1}}\left(\alpha_{s_{1} t_{1}}\right)_{\chi(1)} \cdots\left(\alpha_{s_{k} t_{k}}\right)_{\chi(k)}\right) a_{p q}\right), \tag{1}
\end{equation*}
$$

where χ sets the number of a coordinate $\alpha_{s_{i} t_{i}}\left(i . e .,\left(\alpha_{s_{i} t_{i}}\right)_{\chi(i)}\right.$ is the $\chi(i)$ coordinate of $\left.\alpha_{s_{i} t_{i}}\right)$.
The recurrence formula (1) gives us the possibility to calculate the coefficients $\alpha_{s t}$ of the inverse series knowing the coefficients $a_{p q}$ of the given series. Precisely, $\alpha_{s t}$ depends, for fixed s, t, on $a_{p,}$ and on $\alpha_{s^{\prime} t^{\prime}}$ for s^{\prime}, t^{\prime} such that $s^{\prime}+t^{\prime}<s+t$.

Let X, Y be normed finite-dimensional vector spaces. We state a result that will be of use later.

Proposition 2. Suppose that a series $\sum_{k=0}^{\infty} \psi_{k}$ of homogeneous polynomials $\psi_{k}: X \rightarrow Y$ converges to a function $\psi: K(0, \rho) \rightarrow V \stackrel{\text { def }}{=} \psi(K(0, \rho)) \subset Y$ on $K(0, \rho)$, where $0<\rho \leqslant$ $\left(\lim \sup _{k \rightarrow x} \sqrt[k]{\left\|\psi_{k}\right\|}\right)^{-1}$. If $\psi(0)=0$ and ψ_{1} is invertible, then ψ is invertible and the inverse $\phi: V \rightarrow K(0, \rho)$ is given as a series $\Sigma_{n=0}^{\infty} \phi_{n}$ of homogeneous polynomials $\phi_{n}: Y \rightarrow X$ converging on V.

The above proposition strenghtens [3, Theorem 107], where the inverse of a power series on \mathbb{R} is studied. The main idea of the proof of $[3$, Theorem 107] works also here. Thus we omit the proof.

Proof of Theorem 1. We start with defining the homogeneous polynomials $\psi_{k}(f, l)=$ $\Sigma_{p+q=k} a_{p q} f^{p} l^{q}$ for $k=0,1,2, \ldots$. Reference [2, Chapter XI, §5, Theorem 7] shows that $\sum_{k=0}^{x} \psi_{k}(f, l)$ converges to ψ on $K(0, R)$. It is easy to see that $R \leqslant\left(\lim \sup _{k \rightarrow \infty} \sqrt[k]{\left\|\psi_{k}\right\|}\right)^{-1}$. Applying Proposition 2, there is $\phi: V \rightarrow K(0, R)$, inverse of ψ, and ϕ is given as a series $\sum_{n=0}^{\infty} \phi_{n}$ of homogeneous polynomials $\phi_{n}: Y \rightarrow X$ converging on V. We may write

$$
\begin{equation*}
\phi_{n}(x, y)=\sum_{s+t=n} \alpha_{s t} x^{s} y^{t} \tag{2}
\end{equation*}
$$

for $(x, y) \in V$. Reference [2, Chapter XI, §5, Theorem 7] shows also that $\sum_{s, t=0}^{\infty} \alpha_{s t} x^{s} y^{t}$ converges to ϕ on V. Hence, it remains to prove the formula for $\alpha_{s l}$.

Let $h: X \rightarrow Y$ be any function. For $u_{1} \in X$ we define the function $\Delta_{u_{1}} h: X \rightarrow Y$ as $\left(\Delta_{u_{1}} h\right)(u)$ $=h\left(u+u_{1}\right)-h(u)$. Moreover, for $u_{1}, \ldots, u_{k} \in X$, we put $\Delta_{u_{1} \ldots u_{k}} h=\Delta_{u_{1}}\left(\Delta_{u_{2} \ldots u_{k}} h\right)$. By induction, it is possible to prove the next lemma.

Lemma 3. If $h: X \rightarrow Y$ is any function, then

$$
\Delta_{u_{1} \ldots u_{k}} h(u)=(-1)^{k} h(u)+\sum_{r=1}^{k}(-1)^{k-r} \sum_{1 \leqslant \nu_{1}<\cdots<\nu_{r} \leqslant k} h\left(\sum_{i=1}^{r} u_{\nu_{i}}+u\right) .
$$

Applying [1, formula 7.4.6] for a composition of two polynomials, we can see that the nth homogeneous polynomial of the composition of ψ and ϕ is the following:

$$
\sum_{i_{1}+\cdots+i_{k}=n} \psi_{k}\left(\phi_{i_{1}}(\cdot), \ldots, \phi_{i_{k}}(\cdot)\right)
$$

where $\tilde{\psi}_{k}:\left(\mathbb{R}^{2}\right)^{k} \rightarrow \mathbb{R}^{2}$ is the unique k-linear symmetric function corresponding to the homogeneous polynomial ψ_{k}, i.e.,

$$
\psi_{k}(u)=\tilde{\psi}_{k}(\underbrace{u, \ldots, u}_{k \text { times }})
$$

Since $\psi \circ \phi=\mathrm{id}$, we have

$$
\begin{equation*}
\phi_{0}=0, \quad \phi_{1}=\psi_{1}^{-1}, \quad \phi_{n}=-\phi_{1} \circ \sum_{\substack{k=2, \ldots, n \\ i_{1}+\cdots, i_{k} n=n \\ i_{\imath} \geqslant 1}} \tilde{\psi}_{k} \circ\left(\phi_{i_{1}}, \ldots, \phi_{i_{k}}\right) . \tag{3}
\end{equation*}
$$

In [1, Theorem 6.3.1] it was shown that $\Delta_{u_{1} \ldots u_{k}} \psi_{k}$ is a constant function for any $u_{1}, \ldots, u_{k} \in \mathbb{R}^{2}$ and

$$
\tilde{\psi}_{k}\left(u_{1}, \ldots, u_{k}\right)=\frac{1}{k!} \Delta_{u_{1} \ldots u_{k}} \psi_{k}
$$

Hence, by Lemma 3 we obtain

$$
\begin{aligned}
\tilde{\psi}_{k}\left(u_{1}, \ldots, u_{k}\right) & =\frac{1}{k!} \Delta_{u_{1}, \ldots, u_{k} \cdot \frac{\prime}{k}}(0) \\
& =\frac{1}{k!} \sum_{r=1}^{k}(-1)^{k-r} \sum_{1 \leqslant \nu_{1}<\cdots<\nu_{r} \leqslant k} \psi_{k}\left(\sum_{i=1}^{r} u_{\nu_{i}}\right)
\end{aligned}
$$

Let $u_{i}=\left(f_{i}, l_{i}\right) \in K(0, R)$, thus

$$
\begin{aligned}
& \tilde{\psi}_{k}\left(\left(f_{1}, l_{1}\right), \ldots,\left(f_{k}, l_{k}\right)\right) \\
& \quad=\frac{1}{k!} \sum_{r=1}^{k}(-1)^{k-r} \sum_{1 \leqslant \nu_{1}<\cdots<\nu_{r} \leqslant k} \psi_{k}\left(\sum_{i=1}^{r} f_{\nu_{i}}, \sum_{i=1}^{r} l_{\nu_{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{k!} \sum_{r=1}^{k}(-1)^{k-r} \sum_{1 \leqslant \nu_{1}<\cdots<\nu_{r} \leqslant k} \sum_{\substack{p+q=k \\
p, q \geqslant 0}}\left(\left(\sum_{i=1}^{r} f_{\nu_{i}}\right)^{p}\left(\sum_{i=1}^{r} l_{\nu_{l}}\right)^{q}\right) a_{p q} \\
& =\sum_{\substack{p+q=k \\
p, q \geqslant 0}} \frac{1}{k!}\left(\sum_{r=1}^{k}(-1)^{k-r} \sum_{1 \leqslant \nu_{1}<\cdots<\nu_{r} \leqslant k}\left(\sum_{i=1}^{r} f_{\nu_{i}}\right)^{p}\left(\sum_{i=1}^{r} l_{\nu_{l}}\right)^{q}\right) a_{p q} .
\end{aligned}
$$

Let

$$
S^{\operatorname{def}} \sum_{r=1}^{k}(-1)^{k-r} \sum_{1 \leqslant \nu_{1}<\cdots<i, \leqslant k}\left(\sum_{i=1}^{r} f_{\nu_{i}}\right)^{p}\left(\sum_{i=1}^{r} l_{\nu_{i}}\right)^{q} .
$$

It is known that

$$
\left(a_{1}+\cdots+a_{m}\right)^{n}=\sum_{k_{1}+\cdots+k_{m}=n} \frac{n!}{k_{1}!\cdots k_{m}!} a_{1}^{k_{1}} \cdots a_{m}^{k_{m}}
$$

thus

$$
\begin{aligned}
& S=\sum_{r=1}^{k}(-1)^{k-r} \sum_{1 \leqslant \nu_{1}<\cdots<\nu_{r} \leqslant k}\left(\sum_{p_{i}+\cdots+p_{r}=p} \frac{p!}{\bar{p}!} f_{p_{i} \geqslant 0}^{p_{1}} \cdots f_{\nu_{r}}^{p_{r}}\right) \\
& \times\left(\sum_{i_{1}:} \sum_{\substack{+q_{r}=q \\
a_{i} \geqslant 0}} \frac{q!}{\bar{q}!} l_{\nu_{1}}^{q_{1}} \cdots l_{\nu_{r}}^{q_{r}}\right) \\
& =\sum_{r=1}^{k}(-1)^{k-r} \sum_{1 \leqslant \nu_{1}<\cdots<\nu_{r} \leqslant k} \sum_{\substack{p_{1}+\cdots \\
q_{1}+\cdots+p_{1}=p \\
p_{i}, q_{i} \geqslant 0}} \frac{p!q!}{\bar{p}!\bar{q}!} f_{\nu_{1}}^{p_{1}} \cdots f_{\nu_{r}}^{p_{r}} l_{\nu_{1}}^{q_{1}} \cdots l_{\nu_{r}}^{q_{r}},
\end{aligned}
$$

where $\bar{p}!=p_{1}!\cdots p_{r}!, \bar{q}!=q_{1}!\cdots q_{r}!$ Fix r and let

$$
S_{r} \stackrel{\text { def }}{=} \sum_{1 \leqslant \nu_{1}<\cdots<\nu_{r} \leqslant k} \sum_{\substack{p_{1}+\cdots+p_{r}=p \\ q_{1}+\ldots, q_{1} \\ p_{i}, q_{i} \geqslant 0}} \frac{p!q!}{\ddot{p}!\tilde{q}!} f_{2}^{L_{1}} \cdots f_{\nu_{r}}^{p_{r}} q_{\nu_{1}}^{q_{1}} \cdots l_{\nu_{r}}^{q_{r}}
$$

Now put $\tilde{q}=\left(\tilde{q}_{1}, \ldots, \tilde{q}_{k}\right), \tilde{p}=\left(\tilde{p}_{1}, \ldots, \tilde{p}_{k}\right)$, where $\tilde{p}_{i}=p_{i}$ and $\tilde{q}_{i}=q_{i}$ for $i \in\left\{\nu_{1}, \ldots, \nu_{r}\right\}$ and $\tilde{p}_{i}=\tilde{q}_{i}=0$, otherwise. Hence

$$
S_{r}=\sum_{\substack{\text { v: } I_{r} \rightarrow I_{k} \\ \text { increasing }}} \sum^{\prime} \frac{p!q!}{\tilde{p}!\tilde{q}!} f_{1}^{\bar{p}_{1}} \cdots f_{k}^{\bar{p}_{k}} \bar{l}_{1}^{\tilde{q}_{1}} \cdots l_{k}^{\bar{q}_{k}},
$$

where Σ^{\prime} denotes the sum over all $\tilde{p}, \tilde{q}: I_{k} \rightarrow I_{k} \cup\{0\}$ such that $\tilde{p}_{1}+\cdots+\tilde{p}_{k}-p$, $\tilde{q}_{1}+\cdots+\bar{q}_{k}=q$. Put also $f^{\bar{p}}=f_{1}^{\bar{p}_{1}} \cdots f_{\underline{l}}^{\bar{p}_{k}}, \quad l^{\hat{q}}=l_{1}^{\bar{q}_{1}} \cdots l_{k}^{\tilde{q}_{k}}, \quad|\tilde{p}|=\tilde{p}_{1}+\cdots+\tilde{p}_{k}, \quad|\tilde{q}|=$
$\tilde{q}_{1}+\cdots+\tilde{q}_{k}$. But one can see that

$$
\begin{aligned}
& S_{r}=\sum_{\delta=k-r}^{k-1} \sum_{\substack{\text { all } \bar{p}, \bar{q} \text { having } \\
\delta \text { noughis }}} \frac{p!q!}{\tilde{p}!\tilde{q}!} f^{\bar{p}} l^{\bar{q}} \sum_{\substack{\bar{q} \\
I_{k}-\nu\left(I_{r} \rightarrow I_{k} \\
I_{r}\left(f i: \bar{p}_{i}=\bar{q}_{i}=0\right)\right.}} 1 \\
& =\sum_{\delta=k-r \text { all } \begin{array}{c}
\bar{p}, \bar{q} \text { having } \\
\delta \text { nought }
\end{array}}\binom{\delta}{k-r} \frac{p!q!}{\tilde{p}!\bar{q}!} f^{\hat{p}} l^{\bar{q}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
S & =\sum_{r=1}^{k}(-1)^{k-r} S_{r} \\
& =\sum_{r=1}^{k} \sum_{\delta=k-r}^{k-1} \sum_{\substack{\text { all } \overline{\tilde{q}} \text { having } \\
\delta \text { noughts }}}(-1)^{k-r}\binom{\delta}{k-r} \frac{p!q!}{\tilde{p}!\tilde{q}!} f^{\bar{q}} l^{\bar{q}} .
\end{aligned}
$$

Now we will change the order of the sums. Let $\delta_{\tilde{p} \bar{q}}=\operatorname{card}\left\{i: \tilde{p}_{i}=\tilde{q}_{i}=0\right\}$. If \tilde{p}, \tilde{q} are fixed, then r goes from $k-\delta_{\bar{p} \bar{q}}$ to k.

Hence,

$$
\begin{aligned}
& S=\sum_{\tilde{p}, \bar{q}: I_{k} \rightarrow l_{k} \cup\{0\}} \sum_{r=k-\delta_{\bar{p} \bar{q}}}^{k}(-1)^{k-r}\binom{\delta_{\tilde{p} \bar{q}}}{k-r} \frac{p!q!}{\tilde{p}!\tilde{q}!} f{ }^{\bar{p}} l^{\bar{q}} \\
& |\hat{p}|=p,|\bar{q}|=q \\
& =\sum_{\substack{\dot{p}, \tilde{q}: I_{k} \rightarrow I_{k} \cup(0) \\
|\vec{p}|=p, \bar{q} \mid=q}} \frac{p!q!}{\tilde{p}!\tilde{q}!} f^{\tilde{p}} \bar{l}^{\bar{q}} \sum_{r=k-\delta_{\bar{p} \bar{q}}}^{k}(-1)^{k-r}\binom{\delta_{\bar{p} \bar{q}}}{k-r} .
\end{aligned}
$$

Let us denote the last sum by S_{0}. Then

$$
S_{0}=\sum_{s=0}^{\delta_{\bar{p} \bar{q}}}\binom{\delta_{\hat{p} \dot{q}}}{s}(-1)^{s}=\sum_{s=0}^{\delta_{\bar{p} \bar{q}}}\binom{\delta_{\bar{p} \bar{q}}}{s}(-1)^{s} 1^{\delta_{\bar{q} \bar{q}}-s}=(1-1)^{\delta_{\bar{p} \bar{q}}} .
$$

If $\delta_{\bar{p} \bar{q}}=0$, then $S_{0}=1$ and $S_{0}=0$, otherwise. But $\delta_{\bar{p} \bar{q}}=0$ means that $\tilde{p}_{i} \neq 0$ or $\tilde{q}_{i} \neq 0$ for all i, so $\tilde{p}_{i}+\tilde{q}_{i} \geqslant 1$ for all i. However, if $p_{i_{0}}+q_{i_{0}} \geqslant 2$ for any i_{0}, then $p+q \geqslant k+1$, but $p+q=k$. Hence $\tilde{p}_{i}=1$ or $\tilde{q}_{i}=1$ and $\tilde{p}^{-1}(1) \cap \tilde{q}^{-1}(1)=\emptyset$. Since $\tilde{p}!=\tilde{q}!=1$, if $\sum^{\prime \prime}$ is the sum over all $\tilde{p}, \tilde{q}: I_{k} \rightarrow\{0,1\}$ such that $\tilde{p}^{-1}(1) \cup \tilde{q}^{-1}(1)=I_{k}, \tilde{p}^{-1}(1) \cap \tilde{q}^{-1}(1)=\emptyset,|\tilde{p}|=p,|\tilde{q}|=q$, we have

$$
S=\Sigma^{\prime \prime} p!q!f^{\bar{p}} l^{\bar{q}}=\sum_{\substack{\left.1 \leqslant \nu_{1}<\cdots<\nu_{p} \leqslant k \\ 1 \leqslant \mu_{1}<\cdots<\mu_{n} \leqslant k \\ \nu_{i} \neq \mu_{j} \text { for all } i, j\right)}} p!q!f_{\nu_{1}} \cdots f_{\nu_{p}} l_{\mu_{1}} \cdots l_{\mu_{q}}
$$

Finally,

$$
\tilde{\psi}_{k}\left(\left(f_{1}, l_{1}\right), \ldots,\left(f_{k}, l_{k} \grave{j}\right)=\sum_{\substack{p_{p+q}=k \\ p, q \geqslant 0}}\left(\frac{p!q!}{k!} \sum_{\substack{1 \leqslant \nu_{1}<\cdots<\nu_{p} \leqslant k \\ 1 \leqslant \mu_{1}<\ldots<\mu_{g} \leqslant k \\ \nu_{1} \neq \mu_{j} \text { forall }(i, j)}} f_{\nu_{1}} \cdots f_{\nu_{p}} l_{\mu_{1}} \cdots l_{\mu_{q}}\right) a_{p q} .\right.
$$

Hence, using (3) we have

$$
\begin{aligned}
& \phi_{n}(x, \because)=-\phi_{1}\left(\sum_{\substack{k=2, \cdots i_{1}=n \\
i_{1}+\cdots+i_{k}=n}} \tilde{\psi}_{k}\left(\sum_{\substack{s_{1}+t_{1}=i_{1} \\
s_{1}, i_{1} \geqslant 0}} \alpha_{s_{1} t_{1}} x^{s_{1}} y^{t_{1}}, \ldots, \sum_{\substack{s_{k}+t_{k_{1}}=i_{k} \\
s_{k}, r_{k} \geqslant 0}} \alpha_{s_{k} t_{k}} x^{s_{k}} y^{t_{k}}\right)\right) \\
& =-\phi_{1}\left(\sum _ { \substack { k = 2 , i _ { i } ^ { n } = n \\
i _ { 1 } + \cdots \cdots + i _ { k } = n } } \sum _ { \substack { p + q = k \\
p , q \geqslant 0 } } \frac { p ! q ! } { k ! } \left(\sum_{\substack{x: I_{k} \rightarrow(1,2) \\
\text { card } \chi^{-1}(1)=p}}\left(\sum_{\substack{s_{1}+t_{1}=i_{1} \\
s_{1} t_{1} \geqslant 0}}\left(\alpha_{s_{1} t_{1}}\right)_{\chi(1)} x^{s_{1}} y^{t_{1}}\right)\right.\right. \\
& \left.\left.\times \cdots \times\left(\sum_{\substack{s_{k}+i_{k}=i_{k} \\
s_{k}, t_{k} \geqslant 0}}\left(\alpha_{s_{k} t_{k}}\right)_{\chi(k)} x^{s_{k}} y^{t_{k}}\right)\right) a_{p q}\right),
\end{aligned}
$$

where $\left.\left(\alpha_{s, t}\right)_{\chi}\right)_{\chi(i)}$ is the $\chi(i)$ coordinate of $\alpha_{s, t, i}$. Thus

$$
\begin{aligned}
& \phi_{n}(x, y)=-\phi_{1}\left(\sum_{\substack{k=2, \ldots, n \\
i_{1}+\cdots+i_{k}=n}} \sum_{\substack{p+q=k \\
p, q \geqslant 0}} \frac{p!q!}{k!}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-\phi_{1}\left(\sum_{\substack{k=2, \ldots n \\
p+q-k}} \frac{p!q!}{k!}\right. \\
& \left.\times\left(\sum_{\substack{x: I_{k} \rightarrow(1,2) \\
\text { card } \chi^{-1}(1)=p}} \sum_{\substack{s+t=n \\
s_{1}+\cdots+s_{s}=s \\
t_{1}+\cdots+t_{k}=t \\
s_{t}+t_{t} \geq 1}}\left(\alpha_{s_{1} t_{1}}\right)_{\chi(1)} \cdots\left(\alpha_{s_{k} t_{k}}\right)_{\chi(k)} x^{s} y^{t}\right) a_{p q}\right) \\
& =\sum_{s+t=n}-\phi_{1}\left(\sum_{\substack{k=2, \ldots \ldots n \\
p+q=k}} \frac{p!q!}{k!}\right. \\
& \left.\times\left(\sum_{\substack{x: I_{k} \rightarrow(1,2) \\
\text { card } \chi^{-1}(1)=p \\
s_{1}+\cdots+s_{1}+\cdots+t_{k}=s \\
s_{1}+t_{1} \geqslant 1}}\left(\alpha_{s: t_{1}}\right)_{\chi(1)} \cdots\left(\alpha_{s_{k} t_{k}}\right)_{\chi(k)}\right) a_{p q}\right) x^{s} y^{t} .
\end{aligned}
$$

Comparing the above witis (2) we obtain (1) and the proof has been finished.
Remark 4. For the sake of simplicity of notation, Theorem 1 concerned a power series of two variables. However, it can be easily generalized to a power series of n variables.

References

[1] H. Cartan, Calcul Différentiel. Form Différentielles (Hermanı, Paris, 1967).
[2] G.M. Fichtengolc, Lectures on Differential and Integral Calculus (Nauka, Moscow, 1969, in Russian).
[3] H. Knopp, Theorie und Anwendung der Unendlichen Reihen (Springer, Berlin, 1922).
[4] E.M. Reingold, J. Nievergelt and N. Deo, Combinatoria' Algorithrns. Theory and Practice (Prentice-Hall, Englewood Cliffs, NJ, 1977).

