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In this paper, a new novel energy balance method based on the harmonic balance method is proposed to
obtain higher-order approximations of strongly nonlinear problems arising in engineering. Especially,
second-order approximation is considered in this paper. Results found in this paper are compared with
the exact result and other existing results. The results show that the proposed method gives better result
for both small and large amplitudes of oscillation than other existing results. The method is illustrated by
examples. It has been shown that the proposed method is very effective, convenient and quite accurate to
nonlinear engineering problems.
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of nonlinear oscillations is important issue in engi-
neering because many practical engineering components consist
of vibrating systems that can be modeled using oscillator systems.
Nonlinear oscillations are modeled by nonlinear differential equa-
tions. Many analytical approximate techniques were developed to
solve these nonlinear differential equations. The traditional meth-
ods can not used to solve these nonlinear problems if no small
parameter exists in equations. To overcome these shortcomings,
many asymptotic techniques have been developed to solve
strongly nonlinear systems such as parameter-expanding method
[1,2], modified Lindstedt-Poincare method [3,4], homotopy pertur-
bation method (HPM) [5], variational iteration method (VIM) [6-9]
and energy balance method (EBM) [10,11]. He [10] obtained only
first-order approximation by using energy balance method. Usu-
ally, a set of algebraic equations with complex nonlinearities
appears when EBM is formulated to obtain higher-order approxi-
mations. Recently, some authors [ 12-14] have extended the energy
balance method to obtain higher-order approximations for
strongly nonlinear oscillators. Durmaz et al. [12] obtained a
higher-order approximation of energy balance method based on
collocation method. Durmaz and Kaya [13] used Galerkin method
as weighting function to solve strongly nonlinear systems. Khan
and Mirzabeigy [14] developed an improved energy balance
method based on combining collocation and Galerkin-Petrov
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methods. In these articles [12-14], the algebraic nonlinear equa-
tions (which are not written in closed form) are solved
numerically.

In this article, a new novel energy balance method based on
the harmonic balance method has been presented to obtain the
higher-order approximations of strongly nonlinear problems. The
algebraic nonlinear equations found in this paper are solved
analytically and also to be written in closed form. Generally, the
second-order approximation is considered in this paper. Two
examples are given to verify the accuracy and convenient of the
proposed method. The results (obtained in this paper) give better
results and provide high accuracy than other existing results
[12-14] as compared with exact result.

2. The basis idea of He’s energy balance method

Let us consider a general form on the nonlinear problems in the
following form

X+f(x)=0, (1)
with initial conditions
x(0)=A, =x(0)=0. (2)
Its variational can be written as
T/4 1.
Jx) = /0 {—ixz +F(x)} dt, 3)

where T = 22 is a period of nonlinear oscillation and F(x) = [ f(x)dx.
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The Hamiltonian can be written in the following form

H(x) :%Xz + F(x) = F(A). 4)
Eq. (4) gives the following residual
R(t) = %Xz +F(x)—F(A) =0. (5)

The first-order approximate solution was chosen in the follow-
ing form

X(t) =Acoswt. (6)
Substituting Eq. (6) into Eq. (5) yields the following residual

R(t) = %Azwz sin” wt + F(Acos wt) — F(A) = 0. (7)

And finally collocation at wt = § gives

w(A) :% F(A)— F (?A) . (8)

3. New novel energy balance method

Consider the trial solution of Eq. (1) in the following form
x(t) = A((1 — u) cos wt + u cos 3wt) 9)

Eq. (9) satisfies the initial conditions given in Eq. (2).

Substituting Eq. (9) into the left-side of Eq. (5), then dividing by
the factor secwt and we obtain the following Fourier series
expansions:

(X%/2 + F(x) — F(A)) /sec wt = ¢; cos wt
+c3cos3mwt + - -, (10)

where c¢; and c3 are calculated from the following

4 [T (%/2+F(x)-F(A)
Cop1 = % /0 (W) COS(Zn — 1)([) d(p7

n=1,2,... (11)

Substituting the right-side of Eq. (10) into the left-side of Eq. (5)
and then equating the coefficients of the terms cos ¢ and cos 3¢,
we get two nonlinear algebraic equations whose solution provide
the unknown frequency, « and unknown coefficient, u in terms
of amplitude A. Therefore, the determination of second-order
approximation is clear.

4. Examples
4.1. Example 1

We consider a mass attached to the centre of a stretched elastic
wire which is an example of a conservative nonlinear oscillatory
system with an irrational elastic item. In dimensionless form, the
equation of motion of this system is [1]:

AX _0
Vitxz

where over dots denote differentiation with respect to time t and
0<i<1.
The initial conditions are

X(0)=A, x(0)=0, (13)

X4x— (12)

where A denotes the maximum amplitude.

This system oscillates between symmetric bounds [—A,A], and
its angular frequency and corresponding periodic solution are
dependent on the amplitude A.

The variational of Eq. (12) can be written as

Jo) = /OT/4 [_15{2 +1X2 _ /1 +X2} dt. (14)

2 2

Therefore, the Hamiltonian can be written in the following form

H(x):%X2+%x2—i\/1+x2—%A2+2 1+A*=0. (15)

Substituting Eq. (9) into the left-side of Eq. (15), then dividing
by the factor secwt we obtain the following Fourier series
expansions:

(k2/2+ <x2 —A2>/2 —)v(\/l +x2—/1 +A2>>/secwt
= (1 COSWt + c3C0S3wt + -+, (16)

where

c1= A%+ 81 +A% + A% +4A*0*u+b +cu+---,
€3 =A%+ 2A% — A%0? + 2A%Pu +d+eu+---,

b =32((1 + A*)K(—A?) — (1 + 2A%)E(-A%))/(3TA?),
c =128(1 4+ 8A*)E(—-A%))/(157A%),

d =322((A* — 7A% — 8)K(—A%) + (8 + 3A> — 2A"E(-A%))/(157tAY),

e = 32/(768 + 524A")K(—A?) + (40A° — 108A*)K(—A?))/(1057A%).

Herein, K(m) and E(m) are the complete elliptic integrals of the
first and second kind, respectively, defined as follows [15]

2 do
K(m):/o V1 —mcos?0’ an
E(m) = /.n/2 V1 —mcos? 6do. (18)
Jo

Substituting the right-side of Eq. (16) into the left-side of Eq.
(15) and then equating the coefficients of the terms cos ¢ and
cos 3¢ equal to zeros, respectively, we obtain

A%+ 8/\/1+A* + A0? + 4A’wPu+ b+ cu =0, (19)
A%+ 2A% — A0 + 2A%Pu +d + eu = 0, (20)

Solving Egs. (19) and (20), we obtain the unknown coefficient, u
and the second-order approximate frequency, @ as

B b+d+8V/1+A
6b—c—e—8A% + 481+ A

and

w(mJlb8/1\/1+A2+(b+d+8).\/1+A2)(4A24b+c321\/1+A2)

(21)

A A A?(8A2 —6b+c+e—48i\/1+A%)
(22)
Therefore, the second-order approximation becomes
x(t) = A((1 — u) cos wt + ucos3mt), (23)

where u; and w respectively, are given in Egs. (21) and (22).
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4.2. Example 2

Let us consider a of mass m which is moving under the influence
of the central force field with the magnitude of k/r>™*!. The equa-
tion of the orbit in the polar coordinates (r, 0) was governed using
the following dimensionless second order differential equation

[16,17]

)'e+ ox 4 Vx2m+1 — 07

«>0,9>0 m=1,2,3,...K. (24)

where o,y and m are constant values with the initial conditions

x(0)=A, x(0)=0. (25)
We choose « =7 =1 and m = 3 and then, Eq. (25) becomes
X+x+x =0. (26)

The Hamiltonian of Eq. (26) is given as follows:
1 1 1
_ 1 2 1 1o lis
H(x) = + 8X 2A 8A 0. (27)

As a similar process (discussed in Sections 4 and 4.1), two alge-
braic nonlinear equations are obtained as

—1-65A%/128 — 4u — 21A%u/16 + 3u® — 315A%°
+1225A%* + w*(1 + 4u) = 0,

(28)

1+ 21A%/64 + 2u — 3A%u/16 — 3u® + w*(—1 + 2u) = 0. (29)

Solving Egs. (28) and (29), we obtain the unknown coefficient, u

and the second-order approximate frequency, w as

= 30
2(256 + 53A°%) G
and
oA — 128 4+ 65A° + (512 + 168A° — 384u + 1260A°u? — 2450A°u3)u
= 128(1+4u) '
@31
where u is given in Eq. (30).
Therefore, the second-order approximation becomes
x(t) = A((1 — u) cos wt + ucos 3wt), (32)

where u3 and w respectively, are given in Egs. (30) and (31).

Table 1(a)
(2=0.5).
A Exact T, [16,18] Present study

[Error %] [Error %]

0.1 8.86926 8.86925 8.86926
0.00 0.00

0.2 8.82148 8.82134 8.82151
0.00 0.00

0.4 8.65303 8.6513 8.65371
0.02 0.00

0.6 8.43214 8.42608 8.43563
0.07 0.04

0.8 8.20359 8.19113 8.21271
0.15 0.11

1 7.99213 7.97282 8.00774
0.24 0.20

2 7.30224 7.26493 7.32116
0.51 0.26

3 6.98206 6.94527 6.99403
0.52 0.17

4 6.80937 6.77686 6.81739
0.48 0.12

5 6.70337 6.67512 6.70914
0.42 0.09

10 6.49021 6.47431 6.49229
0.25 0.03

Table 1(b)
(4 =0.75).
A Exact T, [16,18] Present study
[Error %] [Error %]
0.1 12.4967 12.4967 12.4967
0.00 0.00
0.2 12.2997 12.2988 12.2996
0.00 0.00
04 11.6525 11.6434 11.6523
0.08 0.00
0.6 10.8972 10.8709 10.9017
0.24 0.04
0.8 10.2036 10.15800 10.2196
0.45 0.16
1 9.62541 9.56406 9.65378
0.64 0.29
2 8.04853 7.9669 8.07326
1.02 0.31
3 7.43604 7.36581 7.44951
0.95 0.18
4 7.12982 7.07174 7.13865
0.82 0.12
5 6.94934 6.90074 6.95572
0.70 0.09
10 6.60209 6.57665 6.60458
0.39 0.04
Table 1(c)
(4 =0.95).
A Exact T, [16,18] Present study
[Error %] [Error %]
0.1 27.1568 27.1540 27.1546
0.01 0.00
0.2 24.8790 24.8508 24.8583
0.12 0.08
0.4 19.7807 19.6550 19.70890.36
0.64
0.6 16.0681 15.8836 16.0060
1.15 039
0.8 13.6607 13.4584 13.6415
1.48 0.14
1 12.0753 11.8737 12.09260.14
1.67
2 8.85418 8.70331 8.87392
1.70 0.22
3 7.87452 7.76344 7.88338
1.41 0.11
4 7.42340 7.3375 7.42968
1.16 0.09
5 7.16800 7.0987 7.17292
0.97 0.07
10 6.69611 6.6621 6.69853
0.51 0.04

5. Results and discussion

Based on the harmonic balance method, a new novel analytical
approximate technique has been presented to obtain second-order
approximation of strongly nonlinear oscillator systems. The
proposed method is valid for both small and large amplitudes of
oscillation. Recently, several authors [16,18] have discussed an
oscillation of a mass attached to a stretched elastic wire by the
energy balance method. The results of [16,18] are identical.
Another author, Khan et al. [19] studied strongly nonlinear oscilla-
tors by variational iterative method.

First of all, we have determined the approximate periods of
Eq. (12) obtained in this paper for several values of A (amplitude)
and several values of /. and compared with exact period (see
Appendix A) and other existing results (those results obtained in
[16,18]), which are presented in Tables 1(a)-(c). Finally, we have
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A Exact T, [12] [13] [14] [19] Present study
[Error %] [Error %] [Error %] [Error %] [Error %]

0.1 6.283184 6.283180 6.283180 6.283180 6.283184 6.283183
0.00 0.00 0.00 0.00 0.00

0.5 6.256551 6.283180 6.258310 6.260320 6.256551 6.258434
0.43 0.03 0.06 0.00 0.03

1 5.105976 5.183180 5.170870 5.204260 5.10394 5.162441
1.51 1.27 1.93 0.04 1.11

5 0.074464 0.0791614 0.078397 0.0752559 0.073629 0.074477
6.31 5.28 1.06 1.12 0.02

10 0.009309 0.009896 0.009800 0.009407 0.009204 0.009310
6.31 5.28 1.06 1.13 0.01

50 7.45 E-05 0.0000791 0.0000784 0.0000752 7.36 E-05 7.45 E-05
6.18 524 0.94 1.21 0.00

100 9.31 E-06 9.9 E-06 9.8 E-06 9.40 E-06 9.2 E-06 9.31 E-06
6.34 5.26 0.97 1.18 0.00

determined the approximate periods of Eq. (26) obtained in this
paper for several values of A and compared with other existing
energy balance methods [12-14,19] together with exact period
(see Appendix B) and which are plotted in Table 2. Also, we have
calculated the corresponding percentage errors of each article
and presented in Tables 1 and 2.

From these Tables 1 and 2, we see that the approximate periods
obtained in this paper not only are in nice agreement with the cor-
responding exact result and but also give better result than those
obtained in [12-14,16,18,19]. Therefore, the present technique is
very powerful for solving strongly nonlinear oscillator problems.

6. Conclusion

In this paper, a new novel energy balance method based on the
harmonic balance method has been presented to determine the
second-order approximation of strongly nonlinear oscillator sys-
tems. From seeing the relative errors obtained in this paper and
other relative errors obtained by other methods, we conclude that
the present technique is very effective and convenient; further-
more, this method gives more accurate results than other existing
results for solving strongly nonlinear oscillator problems.
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Appendix A. Derivation of the exact period of Example 1

Integrating Eq. (12) and using the corresponding initial condi-
tions in Eq. (13), we obtain the first integral as

2
(%> XA = A - 214 A (A1

Solving Eq. (A.1) for dt, we obtain

dt = + dx (A2)

\/(AZ —x2) +2;v(\/1+_x2— V1 +A2) .

The exact period of the oscillation is four times the time taken
by the mass to move from x = 0 to x = A. Therefore, the exact per-
iod is given by

A dx
T.(A)) = 4 . (A3)
/0 \/(AZ ~x2)+ 2 (VI+R - V14 A)

A new variable 0 is defined [20] as
x=Asin0 (A4)
Substituting Eq. (A.4) into Eq. (A.3) and then Eq. (A.3) becomes

T,(A)) = 4/7[/2 [1 - 2;./(\/1 L Atsin?0 41 +A2)} .
o (AS5)

Appendix B. Derivation of the exact period of Example 2

Integrating Eq. (26) and using the corresponding initial condi-
tions in Eq. (25), we obtain the first integral as

dx\* , 2 s
ar) TXAX/A=A A4 (B.1)
Solving Eq. (B.1) for dt, we obtain
dt =+ dx . (B.2)
VA =)+ (4° -84

The exact period of the oscillation is four times the time taken
by the mass to move from x = 0 to x = A. Therefore, the exact per-
iod is given by

A
T.(A)) = 4/0 \/(AZ v

Therefore, the exact period of Eq. (26) by choosing a new vari-
able [20] x = A sin 0 as

dx
+ (A® — x8)/4

(B.3)

T,(A) = 8 /On/2 [4+ A1 4-sin® 0)(1 + sin® 0) 2 do. (B.4)

References

[1] Xu L. Application of He’s parameter-expansion method to an oscillation of a
mass attached to a stretched elastic wire. Phys Lett A 2007;368:259-62.

[2] Xu L. Determination of limit cycle by He's parameter-expanding method for
strongly nonlinear oscillators. ] Sound Vibr 2007;302:178-84.

[3] He JH. Modified Lindstedt-Poincare methods for some strongly non-linear
oscillations. Part I: expansion of a constant. Int ] Nonlinear Mech 2002;37
(2):309-14.

[4] He JH. Modified Lindstedt-Poincare methods for some strongly non-linear
oscillations. Part II: a new transformation. Int J Nonlinear Mech 2002;37
(2):315-20.

[5] He JH. New interpretation of homotopy perturbation method. Int ] Mod Phys B
2006;20(18):2561-8.

[6] He JH. Variational iteration method - some recent results and new
interpretations. ] Comput Appl Math 2007;207(1):3-17.


http://refhub.elsevier.com/S2211-3797(15)00056-X/h0005
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0005
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0010
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0010
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0015
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0015
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0015
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0020
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0020
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0020
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0025
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0025
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0030
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0030

308 Md. Abdur Razzak, Md. Mashiar Rahman/Results in Physics 5 (2015) 304-308

[7] He JH, Wu XH. Construction of solitary solution and compaction-like solution
by variational iteration method. Chaos Solitons Fractals 2006;29(1):108-13.
[8] Xu L. Variational principles for coupled nonlinear Schrédinger equations. Phys
Lett A 2006;359:627-9.
[9] Momani S, Abuasad S. Application of He's variational iteration method to
Helmholtz equation. Chaos Solitons Fractals 2006;27(5):1119-23.
[10] He JH. Preliminary report on the energy balance for nonlinear oscillations.
Mech Res Commun 2002;29:107-11.
[11] He JH. Some asymptotic methods for strongly nonlinear equations. Int J Mod
Phys B 2006;20:1141-99.
[12] Durmaz S, Demirbag SA, Kaya MO. High order He's energy balance method
based on collocation method. Int ] Nonlinear Sci Numer Simul 2010;11:1-5.
[13] Durmaz S, Kaya MO. High-order energy balance method to nonlinear
oscillators. ] Appl Math 2012:7. http://dx.doi.org/10.1155/2012/518684
Article ID 518684.
[14] Khan Y, Mirzabeigy A. Improved accuracy of He’s energy balance method for
analysis of conservative nonlinear oscillator. Neural Comput Appl
2014;25:889-95.

[15] Thomson LM. Elliptic integrals. In: Abramowitz M, Stegun IA, editors.
Handbook of mathematical functions. New York: Dover Publications; 1972.

[16] Ganji SS, Ganji DD, Ganji ZZ, Karimpour S. Periodic solution for strongly
nonlinear vibration systems by He's energy balance method. Acta Appl Math
2009;106:79-92.

[17] Marinca V, Herisanu N. A modified iteration perturbation method for some
nonlinear oscillation problems. Acta Mech 2006;184:231-42.

[18] Jamshidi N, Ganji DD. Application of energy balance method and variational
iteration method to an oscillation of a mass attached to a stretched elastic
wire. Curr Appl Phys 2010;10:484-6.

[19] Khan Y, Latifizadeh H, Rafieipour H, Hesameddini E. Analytical approximate
technique for strongly nonlinear oscillators problem arising in engineering.
Alexandria Eng ] 2012;51:351-4.

[20] Sun WP, Wu BS, Lim CW. Approximate analytical solutions for oscillation of a
mass attached to a stretched elastic wire. ] Sound Vibr 2007;300:1042-7.


http://refhub.elsevier.com/S2211-3797(15)00056-X/h0035
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0035
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0040
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0040
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0045
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0045
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0050
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0050
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0055
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0055
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0060
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0060
http://dx.doi.org/10.1155/2012/518684
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0070
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0070
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0070
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0075
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0075
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0080
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0080
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0080
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0085
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0085
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0090
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0090
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0090
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0095
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0095
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0095
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0100
http://refhub.elsevier.com/S2211-3797(15)00056-X/h0100

	Application of new novel energy balance method to strongly nonlinear oscillator systems
	1 Introduction
	2 The basis idea of He&rsquo;s energy balance method
	3 New novel energy balance method
	4 Examples
	4.1 Example 1
	4.2 Example 2

	5 Results and discussion
	6 Conclusion
	Acknowledgments
	Appendix A Derivation of the exact period of Example 1
	Appendix B Derivation of the exact period of Example 2
	References


